Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/152251
Título: On the weak convergence of shift operators to zero on rearrangement-invariant spaces
Autor: Karlovych, Oleksiy
Shargorodsky, Eugene
Palavras-chave: Fundamental function
Limit operator
Marcinkiewicz endpoint space
Non-separable Orlicz space
Rearrangement-invariant Banach function space
Shift operator
Weak convergence to zero
Mathematics(all)
Data: Jan-2023
Resumo: Let { hn} be a sequence in Rd tending to infinity and let {Thn} be the corresponding sequence of shift operators given by (Thnf)(x)=f(x-hn) for x∈ Rd. We prove that {Thn} converges weakly to the zero operator as n→ ∞ on a separable rearrangement-invariant Banach function space X(Rd) if and only if its fundamental function φX satisfies φX(t) / t→ 0 as t→ ∞. On the other hand, we show that {Thn} does not converge weakly to the zero operator as n→ ∞ on all Marcinkiewicz endpoint spaces Mφ(Rd) and on all non-separable Orlicz spaces LΦ(Rd). Finally, we prove that if { hn} is an arithmetic progression: hn= nh, n∈ N with an arbitrary h∈ Rd\ { 0 } , then { Tnh} does not converge weakly to the zero operator on any non-separable rearrangement-invariant Banach function space X(Rd) as n→ ∞.
Descrição: Publisher Copyright: © 2022, Universidad Complutense de Madrid.
Peer review: yes
URI: http://hdl.handle.net/10362/152251
DOI: https://doi.org/10.1007/s13163-022-00423-4
ISSN: 1139-1138
Aparece nas colecções:FCT: DM - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
OKES7_REMC_2023_04_27_postprint.pdf388,93 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.