Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/152251| Título: | On the weak convergence of shift operators to zero on rearrangement-invariant spaces |
| Autor: | Karlovych, Oleksiy Shargorodsky, Eugene |
| Palavras-chave: | Fundamental function Limit operator Marcinkiewicz endpoint space Non-separable Orlicz space Rearrangement-invariant Banach function space Shift operator Weak convergence to zero Mathematics(all) |
| Data: | Jan-2023 |
| Resumo: | Let { hn} be a sequence in Rd tending to infinity and let {Thn} be the corresponding sequence of shift operators given by (Thnf)(x)=f(x-hn) for x∈ Rd. We prove that {Thn} converges weakly to the zero operator as n→ ∞ on a separable rearrangement-invariant Banach function space X(Rd) if and only if its fundamental function φX satisfies φX(t) / t→ 0 as t→ ∞. On the other hand, we show that {Thn} does not converge weakly to the zero operator as n→ ∞ on all Marcinkiewicz endpoint spaces Mφ(Rd) and on all non-separable Orlicz spaces LΦ(Rd). Finally, we prove that if { hn} is an arithmetic progression: hn= nh, n∈ N with an arbitrary h∈ Rd\ { 0 } , then { Tnh} does not converge weakly to the zero operator on any non-separable rearrangement-invariant Banach function space X(Rd) as n→ ∞. |
| Descrição: | Publisher Copyright: © 2022, Universidad Complutense de Madrid. |
| Peer review: | yes |
| URI: | http://hdl.handle.net/10362/152251 |
| DOI: | https://doi.org/10.1007/s13163-022-00423-4 |
| ISSN: | 1139-1138 |
| Aparece nas colecções: | FCT: DM - Artigos em revista internacional com arbitragem científica |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| OKES7_REMC_2023_04_27_postprint.pdf | 388,93 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











