Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/152195
Título: Towards Segmentation and Labelling of Motion Data in Manufacturing Scenarios
Autor: Santos, António
Rodrigues, João
Folgado, Duarte
Santos, Sara
Fujão, Carlos
Gamboa, Hugo
Palavras-chave: Industry
Inertial
Labeling
Musculoskeletal disorders
Segmentation
Self-similarity matrix
Summarization
Time series
Unsupervised
Computer Science(all)
Mathematics(all)
Data: 2022
Editora: Springer
Citação: Santos, A., Rodrigues, J., Folgado, D., Santos, S., Fujão, C., & Gamboa, H. (2022). Towards Segmentation and Labelling of Motion Data in Manufacturing Scenarios. In C. Gehin, B. Wacogne, A. Douplik, R. Lorenz, B. Bracken, C. Pesquita, A. Fred, A. Fred, & H. Gamboa (Eds.), Biomedical Engineering Systems and Technologies - 14th International Joint Conference, BIOSTEC 2021, Revised Selected Papers (pp. 80-101). (Communications in Computer and Information Science; Vol. 1710 CCIS). Springer. https://doi.org/10.1007/978-3-031-20664-1_5
Resumo: There is a significant interest to evaluate the occupational exposure that manufacturing operators are subjected throughout the working day. The objective evaluation of occupational exposure with direct measurements and the need for automatic annotation of relevant events arose. The current work proposes the use of a self similarity matrix (SSM) as a tool to flag events that may be of importance to be analyzed by ergonomic teams. This way, data directly retrieved from the work environment will be summarized and segmented into sub-sequences of interest over a multi-timescale approach. The process occurs under 3 timescale levels: Active working periods, working cycles, and in-cycle activities. The novelty function was used to segment non-active and active working periods with an F1-score of 95%. while the similarity function was used to correctly segment 98% of working cycle with a duration error of 6.12%. In addition, this method was extended into examples of multi time scale segmentation with the intent of providing a summary of a time series as well as support in data labeling tasks, by means of a query-by-example process to detect all subsequences.
Descrição: Publisher Copyright: © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Peer review: yes
URI: http://hdl.handle.net/10362/152195
DOI: https://doi.org/10.1007/978-3-031-20664-1_5
ISBN: 978-3-031-20663-4
978-3-031-20664-1
ISSN: 1865-0929
Aparece nas colecções:FCT: DF - Documentos de conferências internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Towards_Segmentation_and_Labelling_of_Motion_Data_in_Manufacturing_Scenarios.pdf7 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.