Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/151616
Título: SBML2HYB
Autor: Pinto, José
Costa, Rafael S.
Alexandre, Leonardo
Ramos, João
Oliveira, Rui
Palavras-chave: Statistics and Probability
Biochemistry
Molecular Biology
Computer Science Applications
Computational Theory and Mathematics
Computational Mathematics
Data: Jan-2023
Resumo: Here we present sbml2hyb, an easy-to-use standalone Python tool that facilitates the conversion of existing mechanistic models of biological systems in Systems Biology Markup Language (SBML) into hybrid semiparametric models that combine mechanistic functions with machine learning (ML). The so-formed hybrid models can be trained and stored back in databases in SBML format. The tool supports a user-friendly export interface with an internal format validator. Two case studies illustrate the use of the sbml2hyb tool. Additionally, we describe HMOD, a new model format designed to support and facilitate hybrid models building. It aggregates the mechanistic model information with the ML information and follows as close as possible the SBML rules. We expect the sbml2hyb tool and HMOD to greatly facilitate the widespread usage of hybrid modeling techniques for biological systems analysis.
Descrição: The authors thank H. Mochao for useful implementation ideas. JP and LA acknowledge PhD grants [SFRD/BD14610472019], Fundação para a Ciência e Tecnologia (FCT).
Peer review: yes
URI: http://hdl.handle.net/10362/151616
DOI: https://doi.org/10.1093/bioinformatics/btad044
ISSN: 1367-4803
Aparece nas colecções:FCT: DQ - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
btad044.pdf1,36 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.