Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/145522
Registo completo
Campo DCValorIdioma
dc.contributor.advisorXufre, Patricia-
dc.contributor.authorMagalhães, Manuel Maria Da Cunha-
dc.date.accessioned2022-11-15T14:15:56Z-
dc.date.available2022-11-15T14:15:56Z-
dc.date.issued2022-01-20-
dc.date.submitted2021-12-17-
dc.identifier.urihttp://hdl.handle.net/10362/145522-
dc.description.abstractThis project was conducted in the context of the Project-Based Learning program. The purpose of the program is to provide an experience in a real-life business and data analytics project. During the last 18 months a work collaboration have been carried out between four NOVA SBE Business Analytics master students and Brisa. The main objective of the project was to produce new traffic forecasting models in Python. The individual work carried out by the author of this study, was focused on the hyperparameter fine tuning procedure for the forecasting models. The research for different methodologies resulted in the experimentation of grid search and random search frameworks. As expected, grid search achieved better results but it is a process that requires more computational power and time.pt_PT
dc.language.isoengpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FECO%2F00124%2F2013/PTpt_PT
dc.rightsopenAccesspt_PT
dc.subjectBusiness analyticspt_PT
dc.subjectBusiness and data analyticspt_PT
dc.subjectGrid searchpt_PT
dc.subjectHyperparameter fine tuningpt_PT
dc.subjectRandom searchpt_PT
dc.titleHyperparameter fine tuning for a time series forecasting modelpt_PT
dc.typemasterThesispt_PT
thesis.degree.nameA Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economicspt_PT
dc.identifier.tid203082664pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2021-22_fall_39926_manuel-magalhaes.pdf1,18 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.