Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/144834
Título: A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation
Autor: Pinto-Marques, Hugo
Cardoso, Joana
Silva, Sílvia
Neto, João L
Gonçalves-Reis, Maria
Proença, Daniela
Mesquita, Marta
Manso, André
Carapeta, Sara
Sobral, Mafalda
Figueiredo, Antonio
Rodrigues, Clara
Milheiro, Adelaide
Carvalho, Ana
Perdigoto, Rui
Barroso, Eduardo
Pereira-Leal, José
Palavras-chave: SDG 3 - Good Health and Well-being
Data: 1-Nov-2022
Resumo: OBJECTIVE: To propose a new decision algorithm combining biomarkers measured in a tumor biopsy with clinical variables, to predict recurrence after liver transplantation (LT). SUMMARY BACKGROUND DATA: Liver cancer is one of the most frequent causes of cancer-related mortality. LT is the best treatment for hepatocellular carcinoma (HCC) patients but the scarcity of organs makes patient selection a critical step. Additionally, clinical criteria widely applied in patient eligibility decisions miss potentially curable patients while selecting patients that relapse after transplantation. METHODS: A literature systematic review singled out candidate biomarkers whose RNA levels were assessed by quantitative PCR in tumor tissue from 138 HCC patients submitted to LT (>5 y follow up, 32% beyond Milan criteria). The resulting four gene signature was combined with clinical variables to develop a decision algorithm using machine learning approaches. The method was named HepatoPredict. RESULTS: HepatoPredict identifies 99% disease-free patients (>5 y) from a retrospective cohort, including many outside clinical criteria (16%-24%), thus reducing the false negative rate. This increased sensitivity is accompanied by an increased positive predictive value (88,5%-94,4%) without any loss of long-term overall survival or recurrence rates for patients deemed eligible by HepatoPredict; those deemed ineligible display marked reduction of survival and increased recurrence in the short and long term. CONCLUSIONS: HepatoPredict outperforms conventional clinical-pathologic selection criteria, (Milan, UCSF) providing superior prognostic information. Accurately identifying which patients most likely benefit from LT enables an objective stratification of waiting lists and information-based allocation of optimal versus suboptimal organs.
Descrição: Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
Peer review: yes
URI: http://hdl.handle.net/10362/144834
DOI: https://doi.org/10.1097/SLA.0000000000005637
Aparece nas colecções:NMS: CEDOC - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
A_Gene_Expression_Signature_to_Select.18.pdf272,72 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.