Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/144737
Registo completo
Campo DCValorIdioma
dc.contributor.authorAndreani, Roberto-
dc.contributor.authorRaydan, Marcos-
dc.date.accessioned2022-10-14T22:14:13Z-
dc.date.available2022-10-14T22:14:13Z-
dc.date.issued2021-01-
dc.identifier.citationAndreani, R., & Raydan, M. (2021). Properties of the delayed weighted gradient method. Computational Optimization And Applications, 78(1), 167-180. https://doi.org/10.1007/s10589-020-00232-9-
dc.identifier.issn0926-6003-
dc.identifier.otherPURE: 45487415-
dc.identifier.otherPURE UUID: f7431af0-fefe-4fb6-a35a-e7be3847e69f-
dc.identifier.otherScopus: 85091508626-
dc.identifier.otherWOS: 000572867500001-
dc.identifier.urihttp://hdl.handle.net/10362/144737-
dc.descriptionFunding Information: Roberto Andreani was financially supported by FAPESP (Projects 2013/05475-7 and 2017/18308-2) and CNPq (Project 301888/2017-5). Marcos Raydan was financially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the Project UIDB/MAT/00297/2020 (Centro de Matemática e Aplicações). Roberto Andreani would like to thank the Operations Research Group at CMA (Centro de Matemática e Aplicações), FCT, NOVA University of Lisbon, Portugal, for the hospitality during a two-week visit in December 2019. Funding Information: We would like to thank two anonymous referees for their comments and suggestions that helped us to improve the final version of this paper. Roberto Andreani was financially supported by FAPESP (Projects 2013/05475-7 and 2017/18308-2) and CNPq (Project 301888/2017-5). Marcos Raydan was financially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the Project UIDB/MAT/00297/2020 (Centro de Matemática e Aplicações). Roberto Andreani would like to thank the Operations Research Group at CMA (Centro de Matemática e Aplicações), FCT, NOVA University of Lisbon, Portugal, for the hospitality during a two-week visit in December 2019. Publisher Copyright: © 2020, Springer Science+Business Media, LLC, part of Springer Nature.-
dc.description.abstractThe delayed weighted gradient method, recently introduced in Oviedo-Leon (Comput Optim Appl 74:729–746, 2019), is a low-cost gradient-type method that exhibits a surprisingly and perhaps unexpected fast convergence behavior that competes favorably with the well-known conjugate gradient method for the minimization of convex quadratic functions. In this work, we establish several orthogonality properties that add understanding to the practical behavior of the method, including its finite termination. We show that if the n× n real Hessian matrix of the quadratic function has only p< n distinct eigenvalues, then the method terminates in p iterations. We also establish an optimality condition, concerning the gradient norm, that motivates the future use of this novel scheme when low precision is required for the minimization of non-quadratic functions.en
dc.format.extent14-
dc.language.isoeng-
dc.rightsopenAccess-
dc.subjectConjugate gradient methods-
dc.subjectFinite termination-
dc.subjectGradient methods-
dc.subjectKrylov subspace methods-
dc.subjectSmoothing techniques-
dc.subjectControl and Optimization-
dc.subjectComputational Mathematics-
dc.subjectApplied Mathematics-
dc.titleProperties of the delayed weighted gradient method-
dc.typearticle-
degois.publication.firstPage167-
degois.publication.issue1-
degois.publication.lastPage180-
degois.publication.titleComputational Optimization And Applications-
degois.publication.volume78-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.1007/s10589-020-00232-9-
dc.description.versionauthorsversion-
dc.description.versionpublished-
dc.contributor.institutionCMA - Centro de Matemática e Aplicações-
Aparece nas colecções:FCT: CMA - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
DWGMvSept2020.pdf268,13 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.