Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/143802
Título: How Many Fractional Derivatives Are There?
Autor: Valério, Duarte
Ortigueira, Manuel D.
Lopes, António M.
Palavras-chave: fractional calculus
fractional derivative
signals and systems
Mathematics(all)
Data: 25-Fev-2022
Citação: Valério, D., Ortigueira, M. D., & Lopes, A. M. (2022). How Many Fractional Derivatives Are There? Mathematics, 10(5), Article 737. https://doi.org/10.3390/math10050737
Resumo: In this paper, we introduce a unified fractional derivative, defined by two parameters (order and asymmetry). From this, all the interesting derivatives can be obtained. We study the one-sided derivatives and show that most known derivatives are particular cases. We consider also some myths of Fractional Calculus and false fractional derivatives. The results are expected to contribute to limit the appearance of derivatives that differ from existing ones just because they are defined on distinct domains, and to prevent the ambiguous use of the concept of fractional derivative.
Descrição: Funding: This work was partially funded by National Funds through the FCT-Foundation for Science and Technology within the scope of the CTS Research Unit—Center of Technology and Systems/UNINOVA/FC /NOVA, under the reference UIDB/00066/2020, and also by FCT through IDMEC, under LAETA, project UID/EMS/50022/2020. Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Peer review: yes
URI: http://hdl.handle.net/10362/143802
DOI: https://doi.org/10.3390/math10050737
Aparece nas colecções:FCT: DEE - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
How_Many_Fractional_Derivatives_Are_There.pdf786,47 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.