Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/143544
Registo completo
Campo DCValorIdioma
dc.contributor.authorIzadi, Zara-
dc.contributor.authorGianfrancesco, Milena A.-
dc.contributor.authorAguirre, Alfredo-
dc.contributor.authorStrangfeld, Anja-
dc.contributor.authorMateus, Elsa F.-
dc.contributor.authorHyrich, Kimme L.-
dc.contributor.authorGossec, Laure-
dc.contributor.authorCarmona, Loreto-
dc.contributor.authorLawson-Tovey, Saskia-
dc.contributor.authorKearsley-Fleet, Lianne-
dc.contributor.authorSchaefer, Martin-
dc.contributor.authorSeet, Andrea M.-
dc.contributor.authorSchmajuk, Gabriela-
dc.contributor.authorJacobsohn, Lindsay-
dc.contributor.authorKatz, Patricia-
dc.contributor.authorRush, Stephanie-
dc.contributor.authorAl-Emadi, Samar-
dc.contributor.authorSparks, Jeffrey A.-
dc.contributor.authorHsu, Tiffany Y.T.-
dc.contributor.authorPatel, Naomi J.-
dc.contributor.authorWise, Leanna-
dc.contributor.authorGilbert, Emily-
dc.contributor.authorDuarte-García, Alí-
dc.contributor.authorValenzuela-Almada, Maria O.-
dc.contributor.authorUgarte-Gil, Manuel F.-
dc.contributor.authorRibeiro, Sandra Lúcia Euzébio-
dc.contributor.authorde Oliveira Marinho, Adriana-
dc.contributor.authorde Azevedo Valadares, Lilian David-
dc.contributor.authorGiuseppe, Daniela Di-
dc.contributor.authorHasseli, Rebecca-
dc.contributor.authorRichter, Jutta G.-
dc.contributor.authorPfeil, Alexander-
dc.contributor.authorSchmeiser, Tim-
dc.contributor.authorIsnardi, Carolina A.-
dc.contributor.authorReyes Torres, Alvaro A.-
dc.contributor.authorAlle, Gelsomina-
dc.contributor.authorSaurit, Verónica-
dc.contributor.authorZanetti, Anna-
dc.contributor.authorCarrara, Greta-
dc.contributor.authorLabreuche, Julien-
dc.contributor.authorBarnetche, Thomas-
dc.contributor.authorHerasse, Muriel-
dc.contributor.authorPlassart, Samira-
dc.contributor.authorSantos, Maria José-
dc.contributor.authorMaria Rodrigues, Ana-
dc.contributor.authorRobinson, Philip C.-
dc.contributor.authorMachado, Pedro M.-
dc.contributor.authorSirotich, Emily-
dc.contributor.authorLiew, Jean W.-
dc.contributor.authorHausmann, Jonathan S.-
dc.date.accessioned2022-09-06T22:38:09Z-
dc.date.available2022-09-06T22:38:09Z-
dc.date.issued2022-10-
dc.identifier.issn2578-5745-
dc.identifier.otherPURE: 46125353-
dc.identifier.otherPURE UUID: 7deb7da4-4de4-4fee-a8a7-e437831dbc87-
dc.identifier.otherScopus: 85134738149-
dc.identifier.urihttp://hdl.handle.net/10362/143544-
dc.descriptionFunding Information: We acknowledge financial support from the ACR and EULAR. The ACR and EULAR were not involved in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Publisher Copyright: © 2022 The Authors. ACR Open Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.-
dc.description.abstractObjective: Some patients with rheumatic diseases might be at higher risk for coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS). We aimed to develop a prediction model for COVID-19 ARDS in this population and to create a simple risk score calculator for use in clinical settings. Methods: Data were derived from the COVID-19 Global Rheumatology Alliance Registry from March 24, 2020, to May 12, 2021. Seven machine learning classifiers were trained on ARDS outcomes using 83 variables obtained at COVID-19 diagnosis. Predictive performance was assessed in a US test set and was validated in patients from four countries with independent registries using area under the curve (AUC), accuracy, sensitivity, and specificity. A simple risk score calculator was developed using a regression model incorporating the most influential predictors from the best performing classifier. Results: The study included 8633 patients from 74 countries, of whom 523 (6%) had ARDS. Gradient boosting had the highest mean AUC (0.78; 95% confidence interval [CI]: 0.67-0.88) and was considered the top performing classifier. Ten predictors were identified as key risk factors and were included in a regression model. The regression model that predicted ARDS with 71% (95% CI: 61%-83%) sensitivity in the test set, and with sensitivities ranging from 61% to 80% in countries with independent registries, was used to develop the risk score calculator. Conclusion: We were able to predict ARDS with good sensitivity using information readily available at COVID-19 diagnosis. The proposed risk score calculator has the potential to guide risk stratification for treatments, such as monoclonal antibodies, that have potential to reduce COVID-19 disease progression.en
dc.language.isoeng-
dc.rightsopenAccess-
dc.subjectRheumatology-
dc.titleDevelopment of a Prediction Model for COVID-19 Acute Respiratory Distress Syndrome in Patients With Rheumatic Diseases-
dc.typearticle-
degois.publication.firstPage872-
degois.publication.issue10-
degois.publication.lastPage882-
degois.publication.titleACR Open Rheumatology-
degois.publication.volume4-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.1002/acr2.11481-
dc.description.versionpublishersversion-
dc.description.versionpublished-
dc.title.subtitleResults From the Global Rheumatology Alliance Registry-
dc.contributor.institutionNOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)-
dc.contributor.institutionCentro de Estudos de Doenças Crónicas (CEDOC)-
Aparece nas colecções:NMS: CEDOC - Artigos em revista internacional com arbitragem científica



FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.