Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/143253
Título: Classifying earnings conference calls
Autor: Salomão, Antônio Elias Xavier
Orientador: Hirschey, Nicholas H.
Palavras-chave: Machine learning
Event study
Natural language processing
Data de Defesa: 10-Jan-2022
Resumo: This study examines whether it is possible to classify the sentiment of earnings conference calls of U.S. publicly traded companies not by using standard metrics such as standardized unexpected earnings, but by but using the general sentiments, opinions and affective states present in the earnings calls. This classification task is attempted using the naïve Bayes classifier. Results show that due to the high signal to noise ratio present in the earnings calls, the classifier of choice was unable to adequately distinguish positive earnings calls from negative ones and vice-versa. Nonetheless, the classifier did shed light on the extent to which company CEOs tend to be overly optimistic when partaking in the conference calls.
URI: http://hdl.handle.net/10362/143253
Designação: A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2020-21_fall_47516_antonio_salomao.pdf3,4 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.