Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/142641
Registo completo
Campo DCValorIdioma
dc.contributor.advisorHan, Qiwei-
dc.contributor.authorKruse, Theresa Isabel-
dc.date.accessioned2022-07-29T12:56:35Z-
dc.date.available2022-07-29T12:56:35Z-
dc.date.issued2022-01-20-
dc.date.submitted2021-12-17-
dc.identifier.urihttp://hdl.handle.net/10362/142641-
dc.description.abstractAs account-based marketing and customer engagement are major sales drivers in B2B companies, this paper aims to examine and improve the customer referencing at a B2B software company. Customer referencing allows prospective customers to interact with existing customers and learn about their experience with the company’s software. Currently, prospects and possible advocates are matched manually, resulting in a time-and resource-intensive procedure. The goal of this paper is to propose a machine learning-driven recommendation system to match prospect requests with the company’s existing advocates based on their similarity.pt_PT
dc.language.isoengpt_PT
dc.rightsopenAccesspt_PT
dc.subjectMachine learningpt_PT
dc.subjectBusiness analyticspt_PT
dc.subjectData analyticspt_PT
dc.subjectCelonispt_PT
dc.subjectMultilabel classificationpt_PT
dc.subjectKnnpt_PT
dc.subjectAccount-based marketingpt_PT
dc.subjectCustomer engagementpt_PT
dc.subjectSales referencept_PT
dc.subjectCustomer referencept_PT
dc.subjectProcess optimizationpt_PT
dc.titleAML-based customer reference recommendation system to optimize the sales process at a B2B software companypt_PT
dc.typemasterThesispt_PT
thesis.degree.nameA Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economicspt_PT
dc.identifier.tid203022203pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2021-22_fall_43891_theresa-kruse_final.pdf758,31 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.