Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/142641Registo completo
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.advisor | Han, Qiwei | - |
| dc.contributor.author | Kruse, Theresa Isabel | - |
| dc.date.accessioned | 2022-07-29T12:56:35Z | - |
| dc.date.available | 2022-07-29T12:56:35Z | - |
| dc.date.issued | 2022-01-20 | - |
| dc.date.submitted | 2021-12-17 | - |
| dc.identifier.uri | http://hdl.handle.net/10362/142641 | - |
| dc.description.abstract | As account-based marketing and customer engagement are major sales drivers in B2B companies, this paper aims to examine and improve the customer referencing at a B2B software company. Customer referencing allows prospective customers to interact with existing customers and learn about their experience with the company’s software. Currently, prospects and possible advocates are matched manually, resulting in a time-and resource-intensive procedure. The goal of this paper is to propose a machine learning-driven recommendation system to match prospect requests with the company’s existing advocates based on their similarity. | pt_PT |
| dc.language.iso | eng | pt_PT |
| dc.rights | openAccess | pt_PT |
| dc.subject | Machine learning | pt_PT |
| dc.subject | Business analytics | pt_PT |
| dc.subject | Data analytics | pt_PT |
| dc.subject | Celonis | pt_PT |
| dc.subject | Multilabel classification | pt_PT |
| dc.subject | Knn | pt_PT |
| dc.subject | Account-based marketing | pt_PT |
| dc.subject | Customer engagement | pt_PT |
| dc.subject | Sales reference | pt_PT |
| dc.subject | Customer reference | pt_PT |
| dc.subject | Process optimization | pt_PT |
| dc.title | AML-based customer reference recommendation system to optimize the sales process at a B2B software company | pt_PT |
| dc.type | masterThesis | pt_PT |
| thesis.degree.name | A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics | pt_PT |
| dc.identifier.tid | 203022203 | pt_PT |
| dc.subject.fos | Domínio/Área Científica::Ciências Sociais::Economia e Gestão | pt_PT |
| Aparece nas colecções: | NSBE: Nova SBE - MA Dissertations | |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| 2021-22_fall_43891_theresa-kruse_final.pdf | 758,31 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











