Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/138154
Título: A machine learning approach to predicting stock returns
Autor: Silva, Francisco Trindade De Oliveira
Orientador: Rodrigues, Paulo Manuel Marques
Palavras-chave: Prediction
Machine learning algorithms
Python
Stock market
Forecasting stock returns
Data de Defesa: 29-Jun-2021
Resumo: Machine learning approaches to stock market forecasting have become increasingly popular throughout the years due to their predictive power and ability to identify hidden patterns in the data. However, considering the inherent volatility and complexity of stock markets, this is a challenging problem to model. This paper presents a comparative analysis of the performance of various machine learning regression algorithms in predicting stock returns. Several leading and technical indicators are considered as features to predict the monthly return of the S&P 500 Index, a market-capitalization-weighted index of the 500 largest publicly traded companies in the United States.
URI: http://hdl.handle.net/10362/138154
Designação: A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2020-21_spring_29162_francisco-silva.pdf567,35 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.