Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/134767
Título: A lower estimate for weak-type Fourier multipliers
Autor: Karlovich, Alexei
Shargorodsky, Eugene
Palavras-chave: 42B15
46E30
abstract Lorentz space
Banach function space
continuous embedding
Fourier multiplier
weak doubling property
Analysis
Numerical Analysis
Computational Mathematics
Applied Mathematics
Data: 2022
Citação: Karlovich, A., & Shargorodsky, E. (2022). A lower estimate for weak-type Fourier multipliers. Complex Variables and Elliptic Equations, 67(3), 642-660. https://doi.org/10.1080/17476933.2021.1958796
Resumo: Asmar et al. [Note on norm convergence in the space of weak type multipliers. J Operator Theory. 1998;39(1):139–149] proved that the space of weak-type Fourier multipliers acting from (Formula presented.) into (Formula presented.) is continuously embedded into (Formula presented.). We obtain a sharper result in the setting of abstract Lorentz spaces (Formula presented.) with (Formula presented.) built upon a Banach function space X on (Formula presented.). We consider a source space (Formula presented.) and a target space (Formula presented.) in the class of admissible spaces (Formula presented.). Let (Formula presented.) denote the space of Fourier multipliers acting from (Formula presented.) to (Formula presented.). We show that if the space X satisfies the weak doubling property, then the space (Formula presented.) is continuously embedded into (Formula presented.) for every (Formula presented.). This implies that (Formula presented.) is a quasi-Banach space for all choices of source and target spaces (Formula presented.).
Descrição: UIDB/00297/2020
Peer review: yes
URI: http://hdl.handle.net/10362/134767
DOI: https://doi.org/10.1080/17476933.2021.1958796
ISSN: 1747-6933
Aparece nas colecções:FCT: DM - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
A_lower_estimate_for_weak_type_Fourier_multipliers.pdf1,85 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.