Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/134696
Título: From black box to machine learning
Autor: Galinha, Claudia F.
Crespo, João G.
Palavras-chave: ANN
Artificial intelligence
Big data
Chemometrics
Fluorescence excitation-emission matrices (EEM)
Membrane processes
Modelling
Multivariate data analysis
PCA
PLS
Chemical Engineering (miscellaneous)
Process Chemistry and Technology
Filtration and Separation
Data: Ago-2021
Citação: Galinha, C. F., & Crespo, J. G. (2021). From black box to machine learning: A journey through membrane process modelling. Membranes, 11(8), Article 574. https://doi.org/10.3390/membranes11080574
Resumo: Membrane processes are complex systems, often comprising several physicochemical phenomena, as well as biological reactions, depending on the systems studied. Therefore, process modelling is a requirement to simulate (and predict) process and membrane performance, to infer about optimal process conditions, to assess fouling development, and ultimately, for process monitoring and control. Despite the actual dissemination of terms such as Machine Learning, the use of such computational tools to model membrane processes was regarded by many in the past as not useful from a scientific point-of-view, not contributing to the understanding of the phenomena involved. Despite the controversy, in the last 25 years, data driven, non-mechanistic modelling is being applied to describe different membrane processes and in the development of new modelling and monitoring approaches. Thus, this work aims at providing a personal perspective of the use of non-mechanistic modelling in membrane processes, reviewing the evolution supported in our own experience, gained as research group working in the field of membrane processes. Additionally, some guidelines are provided for the application of advanced mathematical tools to model membrane processes.
Descrição: UIDB/50006/2020 UIDP/50006/2020
Peer review: yes
URI: http://hdl.handle.net/10362/134696
DOI: https://doi.org/10.3390/membranes11080574
ISSN: 0076-6356
Aparece nas colecções:FCT: DQ - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
membranes_11_00574.pdf2,76 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.