Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/134496
Título: Classification of Abnormal Signaling SIP Dialogs through Deep Learning
Autor: Pereira, Diogo
Oliveira, Rodolfo
Kim, Hyong S.
Palavras-chave: deep learning
performance analysis
Session initiation protocol
vulnerability prediction
Computer Science(all)
Materials Science(all)
Engineering(all)
Data: 13-Dez-2021
Citação: Pereira, D., Oliveira, R., & Kim, H. S. (2021). Classification of Abnormal Signaling SIP Dialogs through Deep Learning. IEEE Access, 9, 165557-165567. https://doi.org/10.1109/ACCESS.2021.3135195
Resumo: Due to the high utilization of the Session Initiation Protocol (SIP) in the signaling of cellular networks and voice over IP multimedia systems, the avoidance of security vulnerabilities in SIP systems is a major aspect to assure that the operators can reach satisfactory readiness levels of service. This work is focused on the detection and prediction of abnormal signaling SIP dialogs as they evolve. Abnormal dialogs include two classes: the ones observed so far and thus labeled as abnormal and already known, but also the unknown ones, i.e., specific sequences of SIP messages never observed before. Taking advantage of recent advances in deep learning, we use Long Short-Term Memory (LSTM) recurrent neural networks (RNNs) to detect and predict dialogs already observed. Additionally, and based on the outputs of the LSTM neural network, we propose two different classifiers capable of identifying unknown SIP dialogs, given the high level of vulnerability they may represent for the SIP operation. The proposed approaches achieve higher SIP dialogs detection scores in a shorter time when compared to a reference probabilistic-based approach. Moreover, the proposed detectors of unknown SIP dialogs achieve a detection probability above 94%, indicating its capability to detect a significant number of unknown SIP dialogs in a short amount of time.
Descrição: POCI-01-0145-FEDER-030433 UIDB/50008/2020 PRT/BD/152200/2021
Peer review: yes
URI: http://hdl.handle.net/10362/134496
DOI: https://doi.org/10.1109/ACCESS.2021.3135195
Aparece nas colecções:FCT: DEE - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Classification_of_Abnormal_Signaling_SIP_Dialogs_Through_Deep_Learning.pdf1,45 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.