Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/133132
Título: Optical gas sensing with liquid crystal droplets and convolutional neural networks
Autor: Frazão, Jos é.Ledesma
Palma, Susana I. C. J.
Costa, Henrique M. A.
Alves, Cláudia
Roque, Ana C. A.
Silveira, Margarida
Palavras-chave: CNN
Gas sensing
Liquid crystal
LSTM
Volatile organic compound
YOLO
Analytical Chemistry
Information Systems
Atomic and Molecular Physics, and Optics
Biochemistry
Instrumentation
Electrical and Electronic Engineering
Data: 18-Abr-2021
Citação: Frazão, J. É. L., Palma, S. I. C. J., Costa, H. M. A., Alves, C., Roque, A. C. A., & Silveira, M. (2021). Optical gas sensing with liquid crystal droplets and convolutional neural networks. Sensors, 21(8), Article 2854. https://doi.org/10.3390/s21082854
Resumo: Liquid crystal (LC)-based materials are promising platforms to develop rapid, miniaturised and low-cost gas sensor devices. In hybrid gel films containing LC droplets, characteristic optical texture variations are observed due to orientational transitions of LC molecules in the presence of distinct volatile organic compounds (VOC). Here, we investigate the use of deep convolutional neural networks (CNN) as pattern recognition systems to analyse optical textures dynamics in LC droplets exposed to a set of different VOCs. LC droplets responses to VOCs were video recorded under polarised optical microscopy (POM). CNNs were then used to extract features from the responses and, in separate tasks, to recognise and quantify the vapours exposed to the films. The impact of droplet diameter on the results was also analysed. With our classification models, we show that a single individual droplet can recognise 11 VOCs with small structural and functional differences (F1-score above 93%). The optical texture variation pattern of a droplet also reflects VOC concentration changes, as suggested by applying a regression model to acetone at 0.9–4.0% (v/v) (mean absolute errors below 0.25% (v/v)). The CNN-based methodology is thus a promising approach for VOC sensing using responses from individual LC-droplets.
Descrição: UIDB/50009/2020 UIDB/ 04378/2020 SCENT-ERC-2014-STG-639123, 2015-2022
Peer review: yes
URI: http://hdl.handle.net/10362/133132
DOI: https://doi.org/10.3390/s21082854
ISSN: 1424-8220
Aparece nas colecções:FCT: DQ - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
sensors_21_02854_v2.pdf4,97 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.