Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/133127
Título: Generative adversarial networks for data augmentation in structural adhesive inspection
Autor: Peres, Ricardo Silva
Azevedo, Miguel
Araújo, Sara Oleiro
Guedes, Magno
Miranda, Fábio
Barata, José
Palavras-chave: Data augmentation
Deep learning
Industry 4.0
Quality control
Structural adhesive
Materials Science(all)
Instrumentation
Engineering(all)
Process Chemistry and Technology
Computer Science Applications
Fluid Flow and Transfer Processes
Data: 1-Abr-2021
Citação: Peres, R. S., Azevedo, M., Araújo, S. O., Guedes, M., Miranda, F., & Barata, J. (2021). Generative adversarial networks for data augmentation in structural adhesive inspection. Applied Sciences, 11(7), Article 3086. https://doi.org/10.3390/app11073086
Resumo: The technological advances brought forth by the Industry 4.0 paradigm have renewed the disruptive potential of artificial intelligence in the manufacturing sector, building the data-driven era on top of concepts such as Cyber-Physical Systems and the Internet of Things. However, data availability remains a major challenge for the success of these solutions, particularly concerning those based on deep learning approaches. Specifically in the quality inspection of structural adhesive applications, found commonly in the automotive domain, defect data with sufficient variety, volume and quality is generally costly, time-consuming and inefficient to obtain, jeopardizing the viability of such approaches due to data scarcity. To mitigate this, we propose a novel approach to generate synthetic training data for this application, leveraging recent breakthroughs in training generative adversarial networks with limited data to improve the performance of automated inspection methods based on deep learning, especially for imbalanced datasets. Preliminary results in a real automotive pilot cell show promise in this direction, with the approach being able to generate realistic adhesive bead images and consequently object detection models showing improved mean average precision at different thresholds when trained on the augmented dataset. For reproducibility purposes, the model weights, configurations and data encompassed in this study are made publicly available.
Descrição: UIDB/- 00066/2020 POCI-01-0247-FEDER-034072
Peer review: yes
URI: http://hdl.handle.net/10362/133127
DOI: https://doi.org/10.3390/app11073086
ISSN: 2076-3417
Aparece nas colecções:FCT: DEE - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
applsci_11_03086_v2.pdf8,81 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.