Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/132977
Título: Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learning
Autor: Peres, Ricardo Silva
Guedes, Magno
Miranda, Fabio
Barata, José
Palavras-chave: deep learning
Quality inspection
simulation
structural adhesive
synthetic data
Computer Science(all)
Materials Science(all)
Engineering(all)
Data: 2021
Citação: Peres, R. S., Guedes, M., Miranda, F., & Barata, J. (2021). Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learning. IEEE Access, 9, 76532-76541. Article 9438624. https://doi.org/10.1109/ACCESS.2021.3082690
Resumo: The advent of Industry 4.0 has shown the tremendous transformative potential of combining artificial intelligence, cyber-physical systems and Internet of Things concepts in industrial settings. Despite this, data availability is still a major roadblock for the successful adoption of data-driven solutions, particularly concerning deep learning approaches in manufacturing. Specifically in the quality control domain, annotated defect data can often be costly, time-consuming and inefficient to obtain, potentially compromising the viability of deep learning approaches due to data scarcity. In this context, we propose a novel method for generating annotated synthetic training data for automated quality inspections of structural adhesive applications, validated in an industrial cell for automotive parts. Our approach greatly reduces the cost of training deep learning models for this task, while simultaneously improving their performance in a scarce manufacturing data context with imbalanced training sets by 3.1% (mAP@0.50). Additional results can be seen at https://ricardosperes.github.io/simulation-synth-adhesive/.
Descrição: UIDB/00066/2020 POCI-01-0247-FEDER-034072
Peer review: yes
URI: http://hdl.handle.net/10362/132977
DOI: https://doi.org/10.1109/ACCESS.2021.3082690
Aparece nas colecções:FCT: DEE - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Simulation_Based_Data_Augmentation_for_the_Quality_Inspection_of_Structural_Adhesive_With_Deep_Learning.pdf2,82 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.