Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/130979
Título: Automating machine learning pipelines to reduce cost in renewable energy production
Autor: Dethlefs, Frederik Paul
Orientador: Xufre, Patrícia
Reder, Maik
Palavras-chave: Wind energy
Predictive maintenance
Machine learning
Cost analysis
Data de Defesa: 2-Jun-2021
Resumo: Despite the strong world wide growth of the wind power industry, cost-effectiveness re-mains crucial for turbine operators. Un expected wind turbine failures contribute a high share to the total cost for operation & maintenance. By analysing failure data of over 1800 wind turbines, this study identifies the most cost contributing on components and evaluates the possibility of cost reduction with the application of predictive maintenance strategies. The results suggest a high potential of cost savings for maintenance and an even higher potential for down time cost. Further more, this work includes a practical example of ananomaly detection algorithm as a tool for wind turbine failure prediction.
URI: http://hdl.handle.net/10362/130979
Designação: A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2020-21_spring_40866_frederik-dethlefs.pdf1,07 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.