Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/129534
Registo completo
Campo DCValorIdioma
dc.contributor.authorMamede, Rafael-
dc.contributor.authorPereira, Florbela-
dc.contributor.authorAires-de-Sousa, João-
dc.date.accessioned2021-12-20T23:17:55Z-
dc.date.available2021-12-20T23:17:55Z-
dc.date.issued2021-12-
dc.identifier.citationMamede, R., Pereira, F., & Aires-de-Sousa, J. (2021). Machine learning prediction of UV–Vis spectra features of organic compounds related to photoreactive potential. Scientific Reports, 11(1), Article 23720. https://doi.org/10.1038/s41598-021-03070-9-
dc.identifier.issn2045-2322-
dc.identifier.otherPURE: 35481243-
dc.identifier.otherPURE UUID: 4bc87d8e-e54e-44a2-a247-dbd17c36faea-
dc.identifier.otherScopus: 85120945045-
dc.identifier.otherPubMed: 34887473-
dc.identifier.otherPubMedCentral: PMC8660842-
dc.identifier.otherORCID: /0000-0003-4392-4644/work/105095220-
dc.identifier.urihttp://hdl.handle.net/10362/129534-
dc.descriptionNorma transitória DL 57/2016 RaBBiT, PD/00193/2012 PD/ BD/135475/2017-
dc.description.abstractMachine learning (ML) algorithms were explored for the classification of the UV–Vis absorption spectrum of organic molecules based on molecular descriptors and fingerprints generated from 2D chemical structures. Training and test data (~ 75 k molecules and associated UV–Vis data) were assembled from a database with lists of experimental absorption maxima. They were labeled with positive class (related to photoreactive potential) if an absorption maximum is reported in the range between 290 and 700 nm (UV/Vis) with molar extinction coefficient (MEC) above 1000 Lmol−1 cm−1, and as negative if no such a peak is in the list. Random forests were selected among several algorithms. The models were validated with two external test sets comprising 998 organic molecules, obtaining a global accuracy up to 0.89, sensitivity of 0.90 and specificity of 0.88. The ML output (UV–Vis spectrum class) was explored as a predictor of the 3T3 NRU phototoxicity in vitro assay for a set of 43 molecules. Comparable results were observed with the classification directly based on experimental UV–Vis data in the same format.en
dc.language.isoeng-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50006%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50006%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04378%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00068%2F2020/PT-
dc.rightsopenAccess-
dc.subjectGeneral-
dc.titleMachine learning prediction of UV–Vis spectra features of organic compounds related to photoreactive potential-
dc.typearticle-
degois.publication.issue1-
degois.publication.titleScientific Reports-
degois.publication.volume11-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.1038/s41598-021-03070-9-
dc.description.versionpublishersversion-
dc.description.versionpublished-
dc.contributor.institutionDQ - Departamento de Química-
dc.contributor.institutionLAQV@REQUIMTE-
Aparece nas colecções:FCT: DQ - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
sustainability_13_12870_v2.pdf3,34 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.