Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/128948
Título: Raman spectrometry as a tool for an online control of a phototrophic biological nutrient removal process
Autor: Franca, Rita D. G.
Carvalho, Virgínia C. F.
Fradinho, Joana C.
Reis, Maria A. M.
Lourenço, Nídia D.
Palavras-chave: Biological wastewater treatment
Intracellular polymers
Microalgal–bacterial consortium
Nutrient removal
Partial least squares (PLS)
Photo-biological nutrient removal reactor
Raman spectroscopy
Real-time monitoring
Total organic carbon (TOC)
Total suspended solids (TSSs)
Materials Science(all)
Instrumentation
Engineering(all)
Process Chemistry and Technology
Computer Science Applications
Fluid Flow and Transfer Processes
Data: 18-Jul-2021
Citação: Franca, R. D. G., Carvalho, V. C. F., Fradinho, J. C., Reis, M. A. M., & Lourenço, N. D. (2021). Raman spectrometry as a tool for an online control of a phototrophic biological nutrient removal process. Applied Sciences, 11(14), Article 6600. https://doi.org/10.3390/app11146600
Resumo: Real-time bioprocess monitoring is crucial for efficient operation and effective bioprocess control. Aiming to develop an online monitoring strategy for facilitating optimization, fault detection and decision-making during wastewater treatment in a photo-biological nutrient removal (photo-BNR) process, this study investigated the application of Raman spectroscopy for the quantifi-cation of total organic content (TOC), volatile fatty acids (VFAs), carbon dioxide (CO2 ), ammonia (NH3 ), nitrate (NO3 ), phosphate (PO4 ), total phosphorus (total P), polyhydroxyalkanoates (PHAs), total carbohydrates, total and volatile suspended solids (TSSs and VSSs, respectively). Specifically, partial least squares (PLS) regression models were developed to predict these parameters based on Raman spectra, and evaluated based on a full cross-validation. Through the optimization of spectral pre-processing, Raman shift regions and latent variables, 8 out of the 11 parameters that were investigated—namely TOC, VFAs, CO2, NO3, total P, PHAs, TSSs and VSSs—could be predicted with good quality by the respective Raman-based PLS calibration models, as shown by the high coefficient of determination (R2 > 90.0%) and residual prediction deviation (RPD > 5.0), and relatively low root mean square error of cross-validation. This study showed for the first time the high potential of Raman spectroscopy for the online monitoring of TOC, VFAs, CO2, NO3, total P, PHAs, TSSs and VSSs in a photo-BNR reactor.
Descrição: UIDP/04378/2020 UIDB/04378/2020 PD/BD/114574/2016
Peer review: yes
URI: http://hdl.handle.net/10362/128948
DOI: https://doi.org/10.3390/app11146600
ISSN: 2076-3417
Aparece nas colecções:FCT: DQ - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
applsci_11_06600_v2.pdf1,47 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.