Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/125604
Título: High UV and sunlight photocatalytic performance of porous ZnO nanostructures synthesized by a facile and fast microwave hydrothermal method
Autor: Ferreira, Sofia Henriques
Morais, Maria
Nunes, Daniela
Oliveira, Maria João
Rovisco, Ana
Pimentel, Ana
Águas, Hugo
Fortunato, Elvira
Martins, Rodrigo
Palavras-chave: Hydrothermal synthesis
Microwave
Porous nanostructures
Sunlight photocatalysis
Zinc hydroxide carbonate
ZnO
Materials Science(all)
Condensed Matter Physics
Data: 4-Mai-2021
Citação: Ferreira, S. H., Morais, M., Nunes, D., Oliveira, M. J., Rovisco, A., Pimentel, A., Águas, H., Fortunato, E., & Martins, R. (2021). High UV and sunlight photocatalytic performance of porous ZnO nanostructures synthesized by a facile and fast microwave hydrothermal method. Materials, 14(9), Article 2385. https://doi.org/10.3390/ma14092385
Resumo: The degradation of organic pollutants in wastewaters assisted by oxide semiconductor nanostructures has been the focus of many research groups over the last decades, along with the synthesis of these nanomaterials by simple, eco-friendly, fast, and cost-effective processes. In this work, porous zinc oxide (ZnO) nanostructures were successfully synthesized via a microwave hydrothermal process. A layered zinc hydroxide carbonate (LZHC) precursor was obtained after 15 min of synthesis and submitted to different calcination temperatures to convert it into porous ZnO nanostructures. The influence of the calcination temperature (300, 500, and 700 °C) on the morphological, structural, and optical properties of the ZnO nanostructureswas investigated. All ZnO samples were tested as photocatalysts in the degradation of rhodamine B (RhB) under UV irradiation and natural sunlight. All samples showed enhanced photocatalytic activity under both light sources, with RhB being practically degraded within 60 min in both situations. The porous ZnO obtained at 700 °C showed the greatest photocatalytic activity due to its high crystallinity, with a degradation rate of 0.091 and 0.084 min-1 for UV light and sunlight, respectively. These results are a very important step towards the use of oxide semiconductors in the degradation of water pollutants mediated by natural sunlight.
Peer review: yes
URI: http://hdl.handle.net/10362/125604
DOI: https://doi.org/10.3390/ma14092385
ISSN: 1996-1944
Aparece nas colecções:FCT: DCM - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
materials_14_02385_v2.pdf2,68 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.