Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/116904
Registo completo
Campo DCValorIdioma
dc.contributor.authorEsquível, Manuel Leote-
dc.contributor.authorPatrício, Paula Cristiana Costa Garcia da Silva-
dc.contributor.authorGuerreiro, Gracinda Rita Diogo-
dc.date.accessioned2021-05-03T22:55:25Z-
dc.date.available2021-05-03T22:55:25Z-
dc.date.issued2020-12-17-
dc.identifier.citationEsquível, M. L., Patrício, P. C. C. G. D. S., & Guerreiro, G. R. D. (2020). From ODE to Open Markov Chains, via SDE: an application to models for infections in individuals and populations. Computacional and Mathematical Biophysics, 8(1), 180-197. https://doi.org/10.1515/cmb-2020-0110-
dc.identifier.issn2544-7297-
dc.identifier.otherPURE: 28937966-
dc.identifier.otherPURE UUID: 19cc8ff2-21d1-4105-b02a-ab8a1da00014-
dc.identifier.otherScopus: 85102319069-
dc.identifier.urihttp://hdl.handle.net/10362/116904-
dc.descriptionUID/MAT/00297/2020-
dc.description.abstractWe present a methodology to connect an ordinary dierential equation (ODE) model of interacting entities at the individual level, to an open Markov chain (OMC) model of a population of such individuals, via a stochastic diferential equation (SDE) intermediate model. The ODE model here presented is formulated as a dynamic change between two regimes; one regime is of mean reverting type and the other is of inverse logistic type. For the general purpose of defining an OMC model for a population of individuals, we associate an Ito processes, in the form of SDE to ODE system of equations, by means of the addition of Gaussian noise terms which may be thought to model non essential characteristics of the phenomena with small and undifferentiated influences. The next step consists on discretizing the SDE and using the discretized trajectories computed by simulation to define transitions of a finite valued Markov chain; for that, the state space of the Ito processes is partitioned according to some rule. For the example proposed for illustration, the state space of the ODE system referred – corresponding to a model of a viral infection – is partitioned into six infection classes determined by some of the critical points of the ODE system; we detail the evolution of some infected population in these infection classes.en
dc.format.extent18-
dc.language.isoeng-
dc.rightsopenAccess-
dc.subjectInfection modeling-
dc.subjectpopulation dynamics-
dc.subjectOrdinary differentila equations-
dc.subjectStochastic differential equations-
dc.subjectMarkov chains-
dc.titleFrom ODE to Open Markov Chains, via SDE: an application to models for infections in individuals and populations-
dc.typearticle-
degois.publication.firstPage180-
degois.publication.issue1-
degois.publication.lastPage197-
degois.publication.titleComputacional and Mathematical Biophysics-
degois.publication.volume8-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.1515/cmb-2020-0110-
dc.description.versionpublishersversion-
dc.description.versionpublished-
dc.contributor.institutionDM - Departamento de Matemática-
dc.contributor.institutionCMA - Centro de Matemática e Aplicações-
Aparece nas colecções:FCT: DM - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
10.1515_cmb_2020_0110.pdf1,7 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.