Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/114533| Título: | Effect of the Molecular Structure of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (P(3HB-3HV)) Produced from Mixed Bacterial Cultures on Its Crystallization and Mechanical Properties |
| Autor: | Bossu, Julie Angellier-Coussy, Hélène Totee, Cedric Matos, Mariana Reis, Maria A. M. Guillard, Valérie |
| Palavras-chave: | Bioengineering Biomaterials Polymers and Plastics Materials Chemistry |
| Data: | 14-Dez-2020 |
| Citação: | Bossu, J., Angellier-Coussy, H., Totee, C., Matos, M., Reis, M. A. M., & Guillard, V. (2020). Effect of the Molecular Structure of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (P(3HB-3HV)) Produced from Mixed Bacterial Cultures on Its Crystallization and Mechanical Properties. Biomacromolecules, 21(12), 4709-4723. https://doi.org/10.1021/acs.biomac.0c00826 |
| Resumo: | Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-3HV)) copolymer's properties depend on (i) the molar fraction of comonomers, (ii) the overall molar mass, and (ii) the chemical compositional distribution. This work aims at providing a better understanding of the effect of the P(3HB-3HV) molecular structure, produced from mixed cultures and waste feedstock, on copolymer crystallization and tensile properties. Conventional biopolymer characterization methods (differential scanning calorimetry, X-ray diffraction, and polarized optical microscopy) were coupled to both classical one-dimensional (1H and 13C) and advanced two-dimensional (diffusion-ordered spectroscopy (DOSY) and 1H/13C heteronuclear single quantum coherence (HSQC)) nuclear magnetic resonance (NMR) spectroscopy techniques. The obtained results evidenced that (i) a high-quality copolymer could be achieved, even from a waste feedstock; (ii) increasing the 3HV content displayed a positive impact on P(3HB-3HV) mechanical properties only if good interactions between 3HB and 3HV moieties were established; and (iii) the purification process eliminated short-length 3HV-rich chains and promoted homogeneous co-crystallization. Such optimized microstructures enabled the maximal stress and strain at break to be increased by +41.2 and +100%, respectively. |
| Descrição: | grant agreement no. 773375 |
| Peer review: | yes |
| URI: | http://hdl.handle.net/10362/114533 |
| DOI: | https://doi.org/10.1021/acs.biomac.0c00826 |
| ISSN: | 1525-7797 |
| Aparece nas colecções: | FCT: DQ - Artigos em revista internacional com arbitragem científica |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| acs.biomac.0c00826.pdf | 6,3 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











