Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/114329| Título: | Automatic contraction detection using uterine electromyography |
| Autor: | Cardoso, Filipa Esgalhado de Oliveira Gouveia Batista, Arnaldo Mouriño, Helena Russo, Sara Filipa Marques Palma dos Reis, Catarina R Serrano, Fátima Vassilenko, Valentina Ortigueira, Manuel D. |
| Data: | 9-Out-2020 |
| Citação: | Cardoso, F. E. D. O. G., Batista, A., Mouriño, H., Russo, S. F. M., Palma dos Reis, C. R., Serrano, F., Vassilenko, V., & Ortigueira, M. D. (2020). Automatic contraction detection using uterine electromyography. Applied Sciences, 10(20), Article 7014. https://doi.org/10.3390/app10207014 |
| Resumo: | Electrohysterography (EHG) is a promising technique for pregnancy monitoring and preterm risk evaluation. It allows for uterine contraction monitoring as early as the 20th gestational week, and it is a non-invasive technique based on recording the electric signal of the uterine muscle activity from electrodes located in the abdominal surface. In this work, EHG-based contraction detection methodologies are applied using signal envelope features. Automatic contraction detection is an important step for the development of unsupervised pregnancy monitoring systems based on EHG. The exploratory methodologies include wavelet energy, Teager energy, root mean square (RMS), squared RMS, and Hilbert envelope. In this work, two main features were evaluated: contraction detection and its related delineation accuracy. The squared RMS produced the best contraction (97.15 ± 4.66%) and delineation (89.43 ± 8.10%) accuracy and the lowest false positive rate (0.63%). Despite the wavelet energy method having a contraction accuracy (92.28%) below the first-rated method, its standard deviation was the second best (6.66%). The average false positive rate ranged between 0.63% and 4.74%—a remarkably low value. |
| Descrição: | UIDB/00066/2020 UID/MAT/04561/2019 PD/BDE/150312/2019 |
| Peer review: | yes |
| URI: | http://hdl.handle.net/10362/114329 |
| DOI: | https://doi.org/10.3390/app10207014 |
| ISSN: | 2076-3417 |
| Aparece nas colecções: | Home collection (FCT) |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Automatic_Contraction_Detection_Using.pdf | 3,06 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











