Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/112064
Título: Ta2O5/SiO2 Multicomponent Dielectrics for Amorphous Oxide TFTs
Autor: Martins, Jorge
Kiazadeh, Asal
Pinto, Joana V.
Rovisco, Ana
Gonçalves, Tiago
Deuermeier, Jonas
Alves, Eduardo
Martins, Rodrigo
Fortunato, Elvira
Barquinha, Pedro
Palavras-chave: Ta2O5/SiO2
TFTs
anomalous Vth shift
multicomponent dielectrics
high-κ dielectrics
Data: 29-Dez-2020
Citação: Martins, J., Kiazadeh, A., Pinto, J. V., Rovisco, A., Gonçalves, T., Deuermeier, J., Alves, E., Martins, R., Fortunato, E., & Barquinha, P. (2020). Ta2O5/SiO2 Multicomponent Dielectrics for Amorphous Oxide TFTs. Electronic Materials, 2(1), 1-16. https://doi.org/10.3390/electronicmat2010001
Resumo: Co-sputtering of SiO2 and high-κ Ta2O5 was used to make multicomponent gate dielectric stacks for In-Ga-Zn-O thin-film transistors (IGZO TFTs) under an overall low thermal budget (T = 150 °C). Characterization of the multicomponent layers and of the TFTs working characteristics (employing them) was performed in terms of static performance, reliability, and stability to understand the role of the incorporation of the high-κ material in the gate dielectric stack. It is shown that inherent disadvantages of the high-κ material, such as poorer interface properties and poor gate insulation, can be counterbalanced by inclusion of SiO2 both mixed with Ta2O5 and as thin interfacial layers. A stack comprising a (Ta2O5)x(SiO2)100 − x film with x = 69 and a thin SiO2 film at the interface with IGZO resulted in the best performing TFTs, with field-effect mobility (µFE) ≈ 16 cm2·V−1·s−1, subthreshold slope (SS) ≈ 0.15 V/dec and on/off ratio exceeding 107. Anomalous Vth shifts were observed during positive gate bias stress (PGBS), followed by very slow recoveries (time constant exceeding 8 × 105 s), and analysis of the stress and recovery processes for the different gate dielectric stacks showed that the relevant mechanism is not dominated by the interfaces but seems to be related to the migration of charged species in the dielectric. The incorporation of additional SiO2 layers into the gate dielectric stack is shown to effectively counterbalance this anomalous shift. This multilayered gate dielectric stack approach is in line with both the large area and the flexible electronics needs, yielding reliable devices with performance suitable for successful integration on new electronic applications.
Peer review: yes
URI: http://hdl.handle.net/10362/112064
DOI: https://doi.org/10.3390/electronicmat2010001
ISSN: 2673-3978
Aparece nas colecções:FCT: DCM - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
electronicmat_02_00001.pdf3,28 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.