Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/107818
Registo completo
Campo DCValorIdioma
dc.contributor.advisorMainen, Zachary-
dc.contributor.authorVertechi, Pietro-
dc.date.accessioned2020-11-26T13:22:18Z-
dc.date.issued2020-09-15-
dc.date.submitted2020-09-
dc.identifier.urihttp://hdl.handle.net/10362/107818-
dc.description.abstract"Decision-making in the presence of uncertainty is a pervasive computation. Latent variable decoding—inferring hidden causes underlying visible effects—is commonly observed in nature, and it is an unsolved challenge in modern machine learning. On many occasions, animals need to base their choices on uncertain evidence; for instance, when deciding whether to approach or avoid an obfuscated visual stimulus that could be either a prey or a predator. Yet, their strategies are, in general, poorly understood. In simple cases, these problems admit an optimal, explicit solution. However, in more complex real-life scenarios, it is difficult to determine the best possible behavior. The most common approach in modern machine learning relies on artificial neural networks—black boxes that map each input to an output. This input-output mapping depends on a large number of parameters, the weights of the synaptic connections, which are optimized during learning.(...)"pt_PT
dc.language.isoengpt_PT
dc.relationSFRH/BD/105944/2014pt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectanimal behaviorpt_PT
dc.subjectintelligible machine learningpt_PT
dc.subjectmodeling of biological neural networks.pt_PT
dc.subjectbiological and artificial agentspt_PT
dc.titleLatent variable decoding in biological and artificial agentspt_PT
dc.title.alternativeTowards a unified approachpt_PT
dc.typedoctoralThesispt_PT
thesis.degree.nameDissertation presented to obtain the Ph.D degree in Neurosciencept_PT
dc.subject.fosNeurosciencept_PT
Aparece nas colecções:ITQB: LA - PhD Theses

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Thesis Pietro Vertechi.pdf19,06 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.