Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/107435
Título: Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests
Autor: Besnard, Simon
Carvalhais, Nuno
Altaf Arain, M.
Black, Andrew
Brede, Benjamin
Buchmann, Nina
Chen, Jiquan
Clevers, Jan G.P.W.
Dutrieux, Loïc P.
Gans, Fabian
Herold, Martin
Jung, Martin
Kosugi, Yoshiko
Knohl, Alexander
Law, Beverly E.
Paul-Limoges, Eugénie
Lohila, Annalea
Merbold, Lutz
Roupsard, Olivier
Valentini, Riccardo
Wolf, Sebastian
Zhang, Xudong
Reichstein, Markus
Palavras-chave: Biochemistry, Genetics and Molecular Biology(all)
Agricultural and Biological Sciences(all)
General
SDG 13 - Climate Action
SDG 15 - Life on Land
Data: Fev-2019
Citação: Besnard, S., Carvalhais, N., Altaf Arain, M., Black, A., Brede, B., Buchmann, N., Chen, J., Clevers, J. G. P. W., Dutrieux, L. P., Gans, F., Herold, M., Jung, M., Kosugi, Y., Knohl, A., Law, B. E., Paul-Limoges, E., Lohila, A., Merbold, L., Roupsard, O., ... Reichstein, M. (2019). Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests. PLoS ONE, 14(2), Article e0211510. https://doi.org/10.1371/journal.pone.0211510
Resumo: Forests play a crucial role in the global carbon (C) cycle by storing and sequestering a substantial amount of C in the terrestrial biosphere. Due to temporal dynamics in climate and vegetation activity, there are significant regional variations in carbon dioxide (CO2) fluxes between the biosphere and atmosphere in forests that are affecting the global C cycle. Current forest CO2 flux dynamics are controlled by instantaneous climate, soil, and vegetation conditions, which carry legacy effects from disturbances and extreme climate events. Our level of understanding from the legacies of these processes on net CO2 fluxes is still limited due to their complexities and their long-term effects. Here, we combined remote sensing, climate, and eddy-covariance flux data to study net ecosystem CO2 exchange (NEE) at 185 forest sites globally. Instead of commonly used non-dynamic statistical methods, we employed a type of recurrent neural network (RNN), called Long Short-Term Memory network (LSTM) that captures information from the vegetation and climate’s temporal dynamics. The resulting data-driven model integrates interannual and seasonal variations of climate and vegetation by using Landsat and climate data at each site. The presented LSTM algorithm was able to effectively describe the overall seasonal variability (Nash-Sutcliffe efficiency, NSE = 0.66) and across-site (NSE = 0.42) variations in NEE, while it had less success in predicting specific seasonal and interannual anomalies (NSE = 0.07). This analysis demonstrated that an LSTM approach with embedded climate and vegetation memory effects outperformed a non-dynamic statistical model (i.e. Random Forest) for estimating NEE. Additionally, it is shown that the vegetation mean seasonal cycle embeds most of the information content to realistically explain the spatial and seasonal variations in NEE. These findings show the relevance of capturing memory effects from both climate and vegetation in quantifying spatio-temporal variations in forest NEE.
Peer review: yes
URI: http://hdl.handle.net/10362/107435
DOI: https://doi.org/10.1371/journal.pone.0211510
ISSN: 1932-6203
Aparece nas colecções:FCT: DCEA - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
journal.pone.0211510.pdf1,18 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.