Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/187991
Registo completo
Campo DCValorIdioma
dc.contributor.advisorShen, Yufei-
dc.contributor.authorRocha, João Rafael Simão-
dc.date.accessioned2025-09-17T12:08:55Z-
dc.date.available2025-09-17T12:08:55Z-
dc.date.issued2025-01-27-
dc.date.submitted2024-12-17-
dc.identifier.urihttp://hdl.handle.net/10362/187991-
dc.description.abstractThe rise of big data and rapid digitization in the digital media industry have made recommendation systems essential for delivering relevant, personalized content to users. In the music streaming sector, platforms like NetEase face the cold-start problem when recommending content to new users with minimal interaction data. To address this, we developed and compared various techniques, including a User Similarity-Based Recommendation Algorithm, a User Preference Elicitation Recommendation Algorithm, a DeCS-Inspired Recommendation Algorithm, and a Discriminative Frequent Itemsets model. Our findings show that the DeCS-Inspired model performs best in data-rich scenarios, while Demographic-Based methods excel in cold-start situations. To optimize performance, we propose a hybrid approach that combines Demographic-Based techniques for cold-starts and transitions to the DeCS-Inspired model as user data grows.pt_PT
dc.language.isoengpt_PT
dc.relationUID/ECO/00124/2013pt_PT
dc.rightsopenAccesspt_PT
dc.subjectRecommendation systempt_PT
dc.subjectInformation systempt_PT
dc.subjectCold-userspt_PT
dc.subjectMusic streaming servicept_PT
dc.titleImproving personalized recommendations for cold-start users on the NetEase Cloud Music Platformpt_PT
dc.typemasterThesispt_PT
thesis.degree.nameA Work Project, presented as part of the requirements for the Award of a Master’s degree in Business Analytics from the Nova School of Business and Economicspt_PT
dc.identifier.tid203962605pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2023_24_Fall_59170.pdf1,04 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.