Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/179733
Título: Refining IEFP´s recommender systems: a comparative exploration of project based learning and a modernized framework
Autor: Mogen, Silje Marie Oestberg
Orientador: Xufre, Patrícia
Lavado, Susana
Palavras-chave: Recommender system
Jaccard
Similarity
Skills
Job recruitment
Data de Defesa: 22-Jan-2024
Resumo: This study explores an alternative approach to skill-based recommender systems to match job candidates and opportunities, avoiding the usage of dimensionality reduction methods on skills. Using several evaluation metrics, it compares the results of this new approach with results obtained by the previous models. The proposed approach of splitting the skills data into one dataset per major group of a job proves to be more efficient when comparing to the previous methods. Despite modest evaluation results, the model shows promise. Overall, this research concludes that such a recommendation system has great potential to enhance matching diversity within Public Employment Centers.
URI: http://hdl.handle.net/10362/179733
Designação: A Work Project, presented as part of the requirements for the Award of a Master’s degree in Business Analytics from the Nova School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
FALL24_53322_Silje_Mogen.pdf543,35 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.