Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/172347
Registo completo
Campo DCValorIdioma
dc.contributor.advisorPreguiça, Nuno Manuel Ribeiro-
dc.contributor.authorSørensen, Frederikke Bruhn-
dc.date.accessioned2024-09-25T08:45:53Z-
dc.date.available2024-09-25T08:45:53Z-
dc.date.issued2023-01-23-
dc.date.submitted2022-12-16-
dc.identifier.urihttp://hdl.handle.net/10362/172347-
dc.description.abstractThere is a growing demand for statistical data analysis as it is being adopted by many businesses for a variety of purposes. For that reason, there has been a lot of attention recently focused on the concept of differential privacy as a standard model for ensuring privacy when personal information is used and sold for secondary purposes. In this work, we explore the available privacy-preserving mechanisms and test one of the more mature techniques in an experiment. In the end, we present the findings and conclude on the practicality and accuracy of the technique.pt_PT
dc.language.isoengpt_PT
dc.relationUID/ECO/00124/2013pt_PT
dc.rightsopenAccesspt_PT
dc.subjectCryptographypt_PT
dc.subjectStatistical datapt_PT
dc.subjectEpsilonpt_PT
dc.subjectDifferential privacypt_PT
dc.titlePrivacy-preserving data analysis with differential privacypt_PT
dc.typemasterThesispt_PT
thesis.degree.nameA Work Project, presented as part of the requirements for the Award of a Master’s degree in Business Analytics, from the Nova School of Business and Economics.pt_PT
dc.identifier.tid203316118pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2022_23_Fall_49721_Frederikke_S_rensen.pdf2,78 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.