Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/102627
Registo completo
Campo DCValorIdioma
dc.contributor.advisorRibeiro, Gonçalo Sommer-
dc.contributor.authorAfonso, Miguel Pardal-
dc.date.accessioned2020-08-20T11:14:19Z-
dc.date.available2020-10-13T00:30:46Z-
dc.date.issued2020-01-13-
dc.date.submitted2020-08-20-
dc.identifier.urihttp://hdl.handle.net/10362/102627-
dc.description.abstractIn a time when algorithmic trading accounts for over 50% of US equities’ traded volume, this work project proposes a holistic approach to the implementation of Machine Learning in the Stock Picking process of the Nova Students Portfolio. The presented algorithms can help investors in the identification of the features that drive stock returns and results show that our predictive algorithm provides an edge in the selection of outperforming stocks. An investor using our method from 2006 to 2019 would have achieved an annualized return of 4.8% in excess of the S&P 500 and an Info Sharpe gain of 0.2.pt_PT
dc.language.isoengpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/UID%2FECO%2F00124%2F2013/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FECO%2F00124%2F2019/PTpt_PT
dc.relationSocial Sciences DataLab, Project 22209pt_PT
dc.relationLISBOA-01-0145-FEDER-007722pt_PT
dc.rightsopenAccesspt_PT
dc.subjectMachine learningpt_PT
dc.subjectStock pickingpt_PT
dc.subjectPortfolio managementpt_PT
dc.titleImplementing machine learning in the stock picking process of Nova students portfoliopt_PT
dc.typemasterThesispt_PT
thesis.degree.nameFinanças (mestrado internacional)pt_PT
dc.identifier.tid202495396pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2019-20_S1-26208-36-Miguel_Afonso.pdf738,13 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.