Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/102627Registo completo
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.advisor | Ribeiro, Gonçalo Sommer | - |
| dc.contributor.author | Afonso, Miguel Pardal | - |
| dc.date.accessioned | 2020-08-20T11:14:19Z | - |
| dc.date.available | 2020-10-13T00:30:46Z | - |
| dc.date.issued | 2020-01-13 | - |
| dc.date.submitted | 2020-08-20 | - |
| dc.identifier.uri | http://hdl.handle.net/10362/102627 | - |
| dc.description.abstract | In a time when algorithmic trading accounts for over 50% of US equities’ traded volume, this work project proposes a holistic approach to the implementation of Machine Learning in the Stock Picking process of the Nova Students Portfolio. The presented algorithms can help investors in the identification of the features that drive stock returns and results show that our predictive algorithm provides an edge in the selection of outperforming stocks. An investor using our method from 2006 to 2019 would have achieved an annualized return of 4.8% in excess of the S&P 500 and an Info Sharpe gain of 0.2. | pt_PT |
| dc.language.iso | eng | pt_PT |
| dc.relation | info:eu-repo/grantAgreement/FCT/5876/UID%2FECO%2F00124%2F2013/PT | pt_PT |
| dc.relation | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FECO%2F00124%2F2019/PT | pt_PT |
| dc.relation | Social Sciences DataLab, Project 22209 | pt_PT |
| dc.relation | LISBOA-01-0145-FEDER-007722 | pt_PT |
| dc.rights | openAccess | pt_PT |
| dc.subject | Machine learning | pt_PT |
| dc.subject | Stock picking | pt_PT |
| dc.subject | Portfolio management | pt_PT |
| dc.title | Implementing machine learning in the stock picking process of Nova students portfolio | pt_PT |
| dc.type | masterThesis | pt_PT |
| thesis.degree.name | Finanças (mestrado internacional) | pt_PT |
| dc.identifier.tid | 202495396 | pt_PT |
| dc.subject.fos | Domínio/Área Científica::Ciências Sociais::Economia e Gestão | pt_PT |
| Aparece nas colecções: | NSBE: Nova SBE - MA Dissertations | |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| 2019-20_S1-26208-36-Miguel_Afonso.pdf | 738,13 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











