1	The di-iron RIC protein (YtfE) of Escherichia coli interacts with the DNA-binding
2	protein from starved cells (Dps) to diminish RIC-protein-mediated redox stress
3	
4	Liliana S.O. Silva ¹ , Joana M. Baptista ¹ , Charlotte Bately ² , Simon C. Andrews ² , and Lígia
5	M Saraiva ^{1,*}
6	¹ Instituto de Tecnologia Química e Biológica NOVA, Av. da República, 2780-157 Oeiras,
7	Portugal
8	² School of Biological Sciences, Knight Building, University of Reading, Reading RG6
9	6AJ, UK
10	
11	*Corresponding author:
12	Lígia M. Saraiva
13	Av. da República, 2780-157 Oeiras, Portugal
14	Phone: +351-214469328; Fax: +351-214411277
15	E-mail: lst@itqb.unl.pt
16	
17	
18	

Abstract

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

19

The RIC (Repair of Iron Clusters) protein of E. coli is a di-iron hemerythrin-like protein that has a proposed function in repairing stress-damaged iron-sulphur clusters. To further understand the mechanism of action of RIC, we performed a Bacterial Two Hybrid screen of RIC-protein interaction partners in E. coli. As a result, the E. coli Dps was identified and its potential interaction was confirmed by further BACTH assays and by Bimolecular-Fluorescence-Complementation assay. The ric and dps single mutants displayed sensitivity to NO and H₂O₂ induced stress, respectively, whereas the ric dps double mutant displayed sensitivity to both stresses at similar levels to those seen for the corresponding single mutants. The activity of the Fe-S-containing aconitase enzyme was assayed as an indicator of cellular Fe-S cluster damage. Results showed significant loss of activity under non-stress conditions for the two single mutants, however, the double mutant displayed no loss of aconitase activity with respect to the wild type. Furthermore, complementation of the ric dps double mutant with multicopy ric led to a severe loss of aconitase activity, but this effect was not observed when a gene encoding a di-iron site variant of the RIC protein was employed. In addition, the dps mutant exhibited a large increase in ROS levels, but this increase was eliminated when ric was also inactivated. Absence of other iron-storage proteins, or of peroxidase and catalases had no impact of RIC-mediated redox stress induction. In summary, the results indicate that Dps and RIC proteins interact to counter RIC-protein-induced ROS.

40

Importance

42

The mammalian immune system produces reactive oxygen and nitrogen species that kill 43 bacterial pathogens by damaging key cellular components such as lipids, DNA and 44 proteins. However, bacteria possess detoxifying and repair systems that mitigate such 45 deleterious effects. The E. coli RIC (Repair of Iron Clusters) protein is a di-iron 46 hemerythrin-like protein that repairs stress-damaged iron-sulphur clusters. E. coli Dps is an 47 iron-storage protein of the ferritin superfamily with DNA-binding that protects cells from 48 49 oxidative stress. We show that the RIC and Dps proteins interact in a fashion that counters 50 RIC-protein-induced ROS. Altogether, the results unveil the formation of a new bacterial 51 protein complex and reveal a novel contribution for Dps in bacterial redox-stress 52 protection.

53

54

55

56

Keywords

E. coli, di-iron RIC protein, YtfE, Dps, oxidative stress, nitrosative stress

5758

59

Running Title

60 Di-iron RIC protein interacts with Dps

61

Introduction

63

During the infection process, bacterial pathogens are able to survive aggressive 64 environments through the activation of specific stress-resistance genes. One such example 65 of a stress-induced gene is ric. This gene encodes the 'Repair of Iron Centre' (RIC) protein 66 67 that contains a di-iron centre and contributes to the protection of bacterial pathogens such 68 as Escherichia coli, Haemophilus influenzae, Salmonella spp., Yersinia spp. and 69 Clostridium spp. during exposure to nitrosative and/or oxidative stress (1). ric is induced 70 upon exposure to either oxidative or nitrosative stress and in E. coli, Staphylococcus 71 aureus, Neisseria gonorrhoeae, H. influenza and Cryptococcus neoformans the RIC protein 72 is thought to confer stress resistance through maintenance of the activity of various Fe-S 73 containing enzymes (1-3). Such an effect is well demonstrated for E. coli and S. aureus where RIC proteins restore the activity of oxidatively and nitrosatively-damaged Fe-S 74 75 clusters in the TCA cycle enzymes, fumarase and aconitase (1, 4). In E. coli, the RIC 76 protein also acts under non-stress conditions to maintain aconitase and fumarase activities 77 (5). Further, the E. coli RIC protein delivers iron (most likely in the ferrous state) for the assembly of Fe-S clusters in spinach apo-ferredoxin and in the E. coli Fe-S cluster-78 assembly scaffold protein, IscU (6). The RIC protein also contributes to the survival of S. 79 80 aureus and H. influenzae in activated macrophages, and is required for full virulence in S. 81 aureus when infecting the wax moth larva infection-model, Galleria mellonella (3, 7). Thus, the RIC protein has an apparent role in bacterial pathogenicity through mediation of 82 Fe-S cluster stability during exposure to redox- and/or nitrosative-stress. 83 84 The RIC proteins of E. coli and S. aureus contain di-iron centres of the histidine/carboxylate type within a four-helix-bundle fold (8). The UV-visible spectrum of 85

oxidized RIC protein exhibits a broad band at ca. 350 nm and Electron Paramagnetic Resonance (EPR) spectroscopy indicates that the principal g-values are below 2 (g=1.96, 1.92 and 1.88), which is indicative of a S=½ spin state in a mixed valence and anti-ferromagnetically coupled Fe(III)-Fe(II) binuclear iron centre. Mössbauer spectroscopy showed that the mixed-valence Fe(III)-Fe(II) di-iron centre of the RIC protein is more labile than that of the u(oxo)-diferric form (6). RIC proteins possess several highly-conserved amino acid residues of which some have been shown to influence the properties of the di-iron centre and/or function of the protein.

been shown to influence the properties of the di-iron centre and/or function of the protein. In particular, substitution of residues His129, Glu133 or Glu208 of the *E. coli* RIC protein abrogated its ability to protect the Fe-S cluster of aconitase. Moreover, two μ -carboxylate bridges contributed by Glu133 and Glu208, linking the two di-iron site atoms, were shown to be required for the assembly of a stable di-iron centre (9). These studies also demonstrated the important contribution of the conserved His84, His129, His160, His204, Glu133 and Glu208 residues in ligating the di-iron centre within the four-helix bundle fold, and these di-iron coordination roles were recently confirmed by X-ray crystallographic structural studies (10).

In the work reported here, we sought to identify proteins that interact with, and support the function of, the RIC protein of *E. coli*. For this purpose, an *E. coli* library was screened for RIC protein interaction partners using the Bacterial Adenylate Cyclase Two Hybrid system (BACTH). Potential interacting gene products were further tested by BACTH and Bimolecular Fluorescence Complementation (BiFC) assays. Our protein-protein interaction studies revealed that the RIC protein interacts with the <u>D</u>NA-binding <u>protein</u> from <u>starved</u>

cells (Dps). Dps is a symmetrical dodecameric iron-storage protein of the ferritin superfamily that contains a di-iron ferroxidation centre located at the interface between subunits (11–13). Dps sequesters ferrous iron, which is oxidized preferentially by hydrogen peroxide at its di-iron centre and then deposited for storage as Fe(III) oxyhydroxide in the central cavity as an iron core; the sequestered iron can subsequently be released by reduction (13, 14). The ferroxidase activity, DNA-binding and iron-sequestration properties of Dps confer cells with protection from oxidative stress and nutrient deprivation, as judged by the reduced survival of *dps* mutants under stress conditions including starvation, oxidative stress, metal toxicity, and thermal stress (15). The physiological relevance of the interaction between the RIC protein and Dps was examined and the results revealed that Dps modulates the function of RIC.

Results

129

130

131

128

Identification of novel potential RIC-protein-interaction partners by screening a

bacterial two-hybrid *E. coli* library

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

We used a genetic approach to further assess the physiological role of RIC in E. coli, in which a bacterial two-hybrid (BACTH) system (16) was employed to screen the E. coli genome for gene products that could interact with RIC. For this purpose, RIC was fused to C-terminal of B. pertussis adenylate cyclase T25 fragment and used as 'bait' to screen previously constructed partial-Sau3A-digested E. coli DNA random libraries that express fusions to the N-terminal of B. pertussis adenylate cyclase T18 fragment (17). We isolated 22 positive recombinant Lac⁺ colonies, from which plasmids were purified and then transformed into E. coli DHM1 harbouring either pKT25-RIC or the empty vector pKT25 (control), and the β -galactosidase specific activities were determined (Figure 1). Seven pKT25-RIC transformants, harbouring plasmids A to G, exhibited significant βgalactosidase activity indicative of a specific interaction (Figure 1). Nucleotide sequencing followed by BLAST analysis was used to identify the genes within the inserts of these plasmids. Sequencing data revealed that plasmids A to C contain an ~2 kb E. coli DNA fragment upstream of the T18 Cya domain, and all contained the complete efp and ecnA genes, and part of the ecnB gene. The efp gene encodes the elongation factor EF-P, a translation factor that facilitates the *in vitro* the formation of the first peptide bond during translation (18, 19). The gene cluster ecnAB expresses two small cell-membrane associated entericidin lipoproteins, forming EcnAB a toxin-antitoxin module that regulates a

antidote for the bacteriolytic entericidin, EcnB (20).

The other four plasmids D to G also contained a ~2 kb insert located upstream of the T18 Cya domain, but in these cases the inserts carried the entire *rhtA* gene), encoding an innermembrane transporter involved in resistance to homoserine/threonine (21), and the *dps* gene, encoding the DNA-binding and iron-storage protein from starved cells (11). Like RIC, *E. coli* Dps has been implicated in oxidative-stress protection, which raises the possibility of a functional association between these two proteins which might be dependent on their direct interaction. For this reason, the potential interaction between the two proteins was investigated further in order to establish its validity and determine its physiological purpose.

programmed bacterial cell death under high osmolarity conditions, with EcnA acting as the

The E. coli RIC protein interacts with Dps

To determine whether the interaction between the RIC protein and Dps, as identified through the screening of the pUT18 library, is indeed genuine, further BACTH experiments were performed. To enable such experiments, the gene encoding the RIC protein was cloned into pUT18C and pUT18 vectors (to create T18-RIC and RIC-T18 fusions), and the *dps*-coding region was introduced into the pKNT25 vector (to give Dps-T25 fusions), following which the β -galactosidase activities of the corresponding co-transformants were measured. High β -galactosidase activities were recorded for both sets of the RIC-Dps BATCH combinations tested, with activities 4-6 times greater than those of the controls (Figure 2), indicative of interaction between the RIC protein and Dps within the cytosol of *E. coli*.

A second approach was also used to test the proposed RIC-Dps interaction, which involved using the Bimolecular Fluorescence Complementation (BiFC) assay. In this method, one of the two proteins of interest is fused to the N-terminal half of the green fluorescent protein (GFP), and the other protein of interest is fused to the C-terminal half; the assay depends upon an interaction between the two proteins that promotes the reassembly of the two halves of GFP such that emission of fluorescence is restored (22). Thus, GFP fusions (both the N- and C-terminal domains) were generated for both the RIC protein and Dps, and the fluorescence intensity of the corresponding E. coli cells containing plasmids coexpressing the RIC and Dps fusions was measured (Figure 3). The data show that cells expressing RIC^{C-GFP} and Dps^{N-GFP} exhibited an approximately six-fold higher fluorescence relative to the control, although transformants expressing RIC^{N-GFP} and Dps^{C-GFP} presented fluorescence levels similar to that of the control samples. The RIC protein consists of two domains: a short N-terminal 'ScdA N' domain of ~60 residues of unclear function with a highly-conserved pair of Cys residues (10); and a larger C-terminal 'hemerythrin' domain of ~140 residues that forms a di-iron centre. Therefore, we tested the BiFC interaction between Dps and a truncated form of RIC that lacks the socalled first Scd N domain to determine which of the two RIC protein domains is responsible for the observed interaction with Dps. The results showed that the degree of interaction between the truncated RIC protein and Dps is similar to that observed when using the full-length protein (Figure 3). Thus, the interaction observed here between the RIC protein and Dps appears to be mediated through the C-terminal hemerythrin domain of the RIC protein.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

Dps modulates the function of the RIC protein in maintaining Fe-S cluster status

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

The RIC protein has been linked to the resistance of E. coli to nitrosative and oxidative stresses as its inactivation decreases the survival of E. coli upon exposure to hydrogen peroxide or nitric oxide donors (4). Due to the interaction of the RIC and Dps proteins shown above, we questioned whether Dps could contribute to the stress protection afforded by the RIC protein. To test this possibility, a $\Delta dps \Delta ric$ double mutant was constructed and the growth of E. coli wild type, Δric , Δdps , Δdps Δric mutants under oxidative and nitrosative stress conditions was tested (Figure 4). The growth experiments showed that inactivation of ric resulted in impaired growth under stress conditions imposed by 4 mM H₂O₂ or 250 μM spermine NONOate (Figure 4), which is consistent with previous reports (4). However, the *dps* mutation had little impact on growth under these conditions. Combining the Δdps mutation with the Δric mutation did not result in any further growth reduction under the same stress conditions, i.e. the Δdps Δric strain grew similarly to the Δric strain under the oxidative and nitrosative stress conditions employed (Figure 4). Thus, Dps does not notably compensate for the lack of the RIC protein under peroxide or NOinduced stress. Another characteristic of the E. coli ric mutant is a reduced endogenous activity of Fe-S cluster-containing proteins, such as aconitase, that possess exposed Fe-S clusters exhibiting a marked sensitivity to redox and nitrosative stress (4). Therefore, the possible contribution of Dps to this phenotype was explored by comparing the aconitase activity of the Δdps and $\Delta dps \ \Delta ric$ strains to that of the wild type and Δric mutant. The results showed that the Δdps mutation caused a 50% reduction in aconitase activity in log phase (Figure 5A), consistent with a role for Dps in maintaining Fe-S cluster status. As expected, a similar effect was seen for the Δric mutant, although the activity reduction (30%) was only approximately half as great as that observed for the Δdps mutant (Figure 5A). Surprisingly, the Δdps Δric mutant exhibited aconitase activity that was higher than that of the corresponding single mutants and similar to that of the wild type (Figure 5A). These observed aconitase-activity effects were apparent in both the early-log and the post-exponential phase (OD₆₀₀ 0.6 and 2, respectively; Figure 5A and B), suggesting that the phenotype is independent of growth stage (note that dps is stationary-phase induced). The observed restoration of aconitase activity resulting from the combination of the dps and ric mutations suggests that the negative impact of lack of the RIC protein on such activity is dependent on the presence of Dps (and vice-versa), and this in turn indicates a hitherto unrecognised functional interdependence for these two proteins.

The association of the above aconitase-activity effects with the RIC protein was confirmed by complementation using a multicopy plasmid bearing the wild type ric gene under control of its natural promoter. Complementation of the single Δric mutant led to the recovery of aconitase activity to levels similar to those of the wild type (Figure 5C). More importantly, provision of a wild type version of ric (in multicopy) caused a large (60%) and significant reduction in the aconitase activity of the Δdps Δric double mutant (Figure 5C). Thus, as anticipated, the ric-complemented double mutant exhibited the same phenotype as the dps mutant. This confirms that the RIC protein is responsible for decreasing aconitase activity in a dps-background.

To confirm that the role of the RIC protein in lowering aconitase activity in the *dps* mutant is dependent on a biochemically-functional version of the RIC protein, the ability of a RIC protein variant (lacking a complete di-iron site due to an E133L substitution; (9)), was used

in the complementation experiments (Figure 5C). The resulting activity data clearly show that the non-functional Glu133Leu-RIC variant does not lead to a notable decrease in aconitase activity when expressed in the Δdps Δric strain (Figure 5C).

In summary, the above data suggest that in the absence of Dps, the RIC protein has a deleterious effect on aconitase activity, but that such an effect is not exhibited when Dps is present. This would imply that the interaction between Dps and the RIC protein, as revealed here, acts to ensure that neither of these two proteins can participate in processes that negatively impact the activity of aconitase.

RIC does not interact with other *E. coli* iron-storage proteins

E. coli Dps is an iron-sequestering protein composed of 12 identical subunits forming a shell surrounding a central cavity where up to ~500 ferric iron atoms can be sequestered. As E. coli encodes two other iron-storage proteins, namely bacterioferritin (Bfr) and ferritin (FtnA), the possibility that the RIC protein might also interact with these other iron-storage proteins was also investigated. Thus, corresponding BiFC experiments were performed in cells carrying recombinant plasmids that express the RIC protein with either Bfr or FtnA, as N- or C-terminal fusions to GFP domains. The resulting fluorescence intensity data failed to support any protein-protein interaction between the RIC protein and Bfr or FtnA (Figure 6A).

In a second set of experiments, the aconitase activity of wild type, Δric , Δbfr , $\Delta ftnA$, Δbfr Δric and $\Delta ftnA$ Δric strains, grown to the exponential phase (OD₆₀₀ of 0.6), was determined. Similarly to the Δdps strain, the Δbfr and $\Delta ftnA$ strains both displayed ~50% lower aconitase activity levels (Figure 6B). But contrary to the effect of combining the Δdps and Δric mutations, the combined absence of the RIC protein and the Bfr or FtnA proteins resulted in aconitase activities similar to those present in the correspondent single mutant strains (Figure 6B). Thus, the lower aconitase activity caused by the Δric mutation is not additive with respect to lower activity of resulting from the Δbfr or $\Delta ftnA$ mutations. Further, it can be concluded that (unlike Dps) Bfr and FtnA do not tightly interact with the RIC protein, and that their absence does not result in a RIC-protein dependent decrease in aconitase activity.

The RIC protein increases intracellular ROS levels when Dps is absent

Dps protects cells from oxidative stress due to its ability to couple the reduction of hydrogen peroxide to water with the oxidation of free-ferrous iron to sequestered-ferric iron. In addition, its association with DNA helps to prevent ROS-induced DNA damage (23). This suggests that the role of Dps in preventing RIC-protein induced inhibition of aconitase activity may arise from the ability of Dps to detoxify ROS that might be produced by the di-iron centre of the RIC protein (e.g. through binding and reduction of oxygen). Therefore, the ROS content of Δric , Δdps and Δdps Δric strains were compared with those found in the wild type to determine whether the presence of the RIC protein, in the absence of Dps, results in raised levels of ROS (Figure 7). The results show that the wild type and

 Δric mutant contain similar amounts of ROS while the Δdps strain had significantly higher (~2-fold) levels (Figure 7). This is as expected given the known role of Dps in redox-stress resistance (23). However, introduction of the ric mutation into the dps mutant eliminated the increased intracellular ROS levels of the single Δdps mutant (Figure 7). This suggests that the raised ROS levels of the dps single mutant are a consequence of an increase in RIC-protein-dependent ROS production which thus supports a role for Dps in interacting with the RIC protein to restrict its release of ROS species.

To discover whether other elements of the redox-stress resistance response might also act to lessen RIC-protein induced ROS production, the Δric mutation was introduced into a strain (Δhpx) lacking capacity to degrade hydrogen peroxide due to inactivation of both catalase genes as well as the alkyl-hydroperoxide reductase genes (Table 1; (24, 25) . Assay of the resulting aconitase activity levels showed that the Δhpx Δric quadruple mutant has activity levels similar to those determined for the Δric and Δhpx mutants (Figure 8), which shows that the three major peroxidases (KatE, KatG, AhpCF) of *E. coli* are not involved in countering any RIC-protein mediated ROS production, at least under conditions where Dps is active.

Discussion

Aconitase and fumarase are enzymes of the TCA cycle that are prone to oxidative stress damage. We previously showed that the di-iron RIC protein repairs these enzymes and is able to transfer iron to Fe-S containing proteins (4–6). In the work described here, we screened an *E. coli* BACTH library in order to identify proteins that interact with the RIC protein and thus might be required to assist its function. As a consequence of our screening, Dps emerged as a RIC protein interaction candidate. This suggested interaction was supported by generation and analysis of additional Dps and RIC protein BACTH constructs and by a GFP complementation assay. Dps belongs to the ferritin superfamily which led us to investigate the possible interaction of RIC with the two other ferritins present in *E. coli*, namely ferritin and bacterioferritin. However, neither of these proteins were found to interact with the RIC protein or to influence its activity *in vivo*.

We also observed that inactivation of the RIC protein resulted in lower aconitase activity, which is consistent with previous findings indicating that this protein contributes to the protection of solvent accessible Fe-S clusters from ROS damage under aerobic growth conditions (5). Similar results were herein obtained for the single mutant strains of *dps*, *ftnA* and *bfr*, indicating that lack of any of these gene products results in lower endogenous aconitase activity. The role of FtnA and Bfr in aconitase protection was previously demonstrated as the two ferritins promote the reactivation of aconitase activity following stress damage in *Salmonella enterica* serovar Typhimurium (26). In contrast with our findings with *E. coli*, no loss of aconitase activity was observed for *S. enterica ftnA* or *bfr* single mutants in the absence of stress; this discrepancy may be related to the different function and regulation of ferritins in *Salmonella* and *E. coli* species (26, 27).

A surprising result was the finding that the defective aconitase activity of the Δdps and Δric single-mutant strains was reversed when these two mutations were combined in the Δdps Δric double mutant, such that activity was restored to that seen in the wild type. This result, together with the lower amounts of ROS observed in the $\Delta dps \Delta ric$ mutant compared to the Δdps mutant, suggests that the RIC protein is responsible for the generation of ROS, but only in the absence of Dps and, thus, that the interaction of Dps and the RIC protein serves to enable Dps to restrict ROS release (which is presumed to damage the Fe-S cluster of aconitase and hence lower the observed activity of this enzyme in a dps mutant) by the RIC protein. Interestingly, other redox-stress resistance components (KatE, KatG and AhpCF) failed to impact the RIC-protein-mediated inhibition of aconitase activity (at least in the presence of Dps). These results suggest that the effect of Dps on the ROS-generation activity of the RIC protein is one that is highly specific and not replicated by the other peroxide-consuming cytosolic factors examined. Indeed, the findings relayed here indicate that a direct interaction is required to enable Dps to quench the ROS-generating activity of the RIC protein. The exact mechanism involved in the apparent quenching of RIC-proteinmediated ROS production by Dps is unclear; such understanding will require in vitro reaction studies combining the Dps and RIC proteins. However, two possible processes by which Dps could exert a ROS-quenching action upon the RIC protein can be considered: Dps might sequester iron released from the di-iron site of the RIC protein and thus restrict Fe-driven Fenton chemistry; or Dps could consume hydrogen peroxide (or hydroxyl radicals; (14, 28)) generated by the RIC protein through reaction at its di-iron site with molecular oxygen.

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

The absence of the RIC protein also reduced aconitase activity, but only in the presence of 352 353 Dps. However, lack of RIC protein had no impact on ROS levels when Dps was present. 354 The reason for this effect is unclear but may indicate a role for the RIC protein in supply of 355 iron from Dps for Fe-S cluster repair and/or synthesis. The proposed role of the RIC protein (4) is to repair damaged Fe-S clusters of [Fe-S]-356 357 proteins, such as aconitase and fumarase, by donating iron from its di-iron centre leading to the formation of an intermediate mononuclear iron centre that is prone to react with oxygen 358 359 to generate ROS such as hydrogen peroxide. In this process, the interaction with Dps would 360 fulfil two roles, namely by trapping ROS released by the RIC protein and providing a sink 361 for iron liberated from the di-iron centre of RIC. In conclusion, we report an interaction between the Dps and RIC proteins of E. coli which 362 363 represents the first example of a protein that interacts with the ferritin-like Dps protein. In addition, our results indicate that the Dps-RIC protein interaction contributes to the 364 function of RIC, which is one of the few known bacterial repairing proteins. 365

366

367

368

369

370

Materials and Methods

373	Bacterial strains and growth conditions
374	Escherichia coli strains used in this work are listed in Table 1, and all were grown at 37 °C.
375	E. coli reporter strain DHM1 non-reverting adenylate cyclase deficient (cya) was used for
376	detection of protein-protein interactions and E. coli XL2Blue was used as host strain.
377	Construction of the E. coli double mutant strains was performed by bacteriophage P1-
378	mediated transduction (29), and the corrected mutations were confirmed by PCR using
379	primers listed in Table 2.
380	E. coli cells were grown in LB medium under aerobic conditions in flasks containing a 1/5
381	volume of culture or under anaerobic conditions in rubber seal-capped flasks filled with
382	medium and extensively bubbled with nitrogen prior to growth. For the stress assays, cells
383	were grown, at 37 $^{\circ}\text{C}$ and 150 rpm, in M9B minimal medium (60 mM K_2HPO_4 , 33 mM
384	KH_2PO_4 , 7.6 mM (NH_4) $_2SO_4$, 1.7 mM sodium citrate, 1 mM MgSO $_4$ and 10 μ M MnCl $_2$, pH
385	7) supplemented with 10 $\mu g/mL$ thiamine and 40 $\mu g/mL$ L-arginine, L-leucine, L-proline,
386	L-threonine and 40 mM glucose. Once cultures reached an OD_{600} =0.3, they were either left
387	untreated or exposed to 4 mM H_2O_2 for 6 h or to 250 μM spermine-NONOate for 9 h.
388	
389	BACTH experiments
390	The Bacterial Adenylate Cyclase-based Two-Hybrid (BACTH) system assay (16) was used
391	to identify RIC -interacting proteins. E. coliRIC protein was fused to the C-terminal of

Bordetella pertussis Cya (adenylate cyclase) T25 domain (pKT25-RIC) and used to screen an E. coli MC4100 gene library containing chromosomal fragments fused to the N-terminal of B. pertussis Cya T18 domain. The DNA fragments were obtained by partial digestion with Sau3AI and cloning into the BamHI site of pUT18 plasmids (17). About 1 µg of pUT18BamHI DNA library was transformed together with pKT25-RIC into E. coli DHM1 cells by electroporation. Blue colonies present in Amp^R Cm^R selective plates (L-agar with 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-Gal)) were identified after incubation at 30 °C for 36 h, and cells with the highest β-galactosidade were considered to contain recombinant plasmids harbouring genes encoding polypeptides that interact with the E. coli RIC protein. Twenty two colonies were obtained and the corresponding plasmids were isolated, co-transformed with pKT25-RIC plasmid in E. coli DHM1 and the strength of the protein-protein interactions observed was again estimated by quantification of βgalactosidase activity. Seven isolates considered positive were named 'A' to 'G' (Figure 1) and subject to nucleotide sequencing using primer T18_{Fw} (Table 2). The sequences obtained were screened against the E. coli K-12MG1655 genome using BLAST to identify the encoded genes. Genes coding for the RIC protein and Dps were PCR amplified from E. coli K-12 genomic DNA using the oligonucleotides described in Table 2, and cloned into pKT25 (fused to Cya C-terminal T25 domain), pKNT25 (fused to Cya N-terminal T25 domain), pUT18 (fused to Cya N-terminal T18 domain) and pUT18C (fused to Cya C-terminal T18 domain) plasmids, and the enzyme Pfu DNA polymerase (Thermo Scientific). The resulting recombinant plasmids encoded either Dps or the RIC protein with either a C- or Nterminally linked T25 or T18 domain from the B. pertussis Cya) protein. Two complementary plasmids, one carrying a T25 fragment and the other a T18 fragment, were

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

co-transformed into the *E. coli* DHM1 strain (*cya*⁻). *E. coli* DHM1 cells containing the *ric*-encoding pUT18 or pUT18C plasmids were co-transformed with complementary pKTN25 empty plasmid to provide negative controls.

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

In all cases, false positives were tested by co-transformation of *E. coli* DHM1 with plasmids containing each gene and pKT25-TorD, which expresses *E. coli* TorD that binds non-specifically to a wide variety of polypeptides (30).

For β-galactosidase activity determination (31), at least 3 representative colonies of each transformation plate were inoculated, in duplicate, in LB medium, and following an overnight growth at 37 °C, transformant cultures were re-inoculated (at a 0.01 dilution) into LB with ampicillin (100 µg/mL), kanamycin (50 µg/mL) and IPTG (0.5 mM). When cultures reached an OD₆₀₀=0.5 (approximately after 16 h of growth, at 30 °C), 1 mL of each culture was collected by centrifugation (5 min, 5000 g, 4 °C). The pellets were lysed by incubation with 100 µL BugBuster HT 1x (Novagen) at 37 °C, for 30 min. Cellular debris was then removed by centrifugation and β-galactosidase activity was assayed in 20 μL suspensions in a microplate reader. The assays were initiated by addition of a reaction mixture comprising: 0.27% β-mercaptoethanol (v/v) and 0.9 mg/mL ONPG (o-nitrophenylβ-D-galactopyranoside) in buffer A (60 mM Na₂HPO₄.7H₂O, 40 mM NaH₂PO₄.H₂O, 1 mM MgSO₄.7H₂O₅, 10 mM KCl). Reactions were incubated at 28 °C, and absorbance was recorded at 420 nm at 2 min intervals, for 90 min. The β-galactosidase specific activity was defined in ONP/min/milligram of protein. Interactions were considered positive for those reactions where β-galactosidase activity was at least four times higher than the negative control.

439 BIFC assay was performed essentially as described previously (32). For this purpose, the genes encoding RIC protein, a truncated version of the RIC protein (lacking the first 57 440 amino acid residues in N-terminal (9)) Dps, Bfr and FtnA were PCR amplified from 441 442 genomic DNA of E. coli K-12 using the primers described in Table S2, and the DNA 443 fragments were cloned into vectors (pET11a-link-N-GFP and pMRBAD-link-C-GFP; (32) 444 that express the green fluorescence protein, GFP, to allow formation of corresponding N- or 445 C-terminal GFP fusions. Cloning was achieved using XhoI and BamHI sites (for cloning 446 into pET11a-link-N-GFP) or NcoI and AatII (for cloning into pMRBAD-link-C-GFP) sites, except for Dps for which SphI replaced NcoI. All recombinant plasmids were sequenced 447 448 confirming the integrity of the genes and the absence of undesired mismatches. Cells 449 harboring pET11a-link-N-GFP and pMRBAD-link-C-GFP served as negative control. E. coli BL21(DE3)Gold (Stratagene) was co-transformed with the resulting recombinant 450 451 pET11a-link-N-GFP and pMRBAD-link-C-GFP vectors, in various combinations (RIC/Dps, truncated-RIC/Dps, RIC/Bfr and RIC/FtnA), and plated on selective LB-agar. 452 453 Colonies were inoculated in LB medium, grown overnight, at 37 °C and 150 rpm, and 454 plated in inducing medium containing 20 µM IPTG and 0.2 % of arabinose. After an overnight incubation at 30 °C followed by two days incubation at room temperature, 455 colonies were suspended in PBS and spread on 1.7% agarose slides. Cells were examined 456 for green fluorescence in a Leica DM6000 B upright microscope coupled to an Andor 457 458 iXon+ camera, using 1000x amplification and a FITC filter. The images were analysed using the MetaMorph Microscopy Automation and Image Analysis Software. 459

Aconitase activity assays and determination of endogenous ROS

All E. coli strains were grown, from an overnight inoculum, in LB medium under aerobic conditions and 37 °C, until reaching an OD₆₀₀ of either 0.6 or 2, as indicated. Cells were collected, washed in reaction buffer (50 mM Tris-HCl, 0.6 mM MnCl₂, pH 8) and frozen in liquid nitrogen. Cell extracts were prepared under anaerobic conditions, by suspending the cell pellets in reaction buffer containing 0.5 mg/mL lysozyme and 0.2 mg/mL DNAse, and then incubating on ice for 10 min. Supernatants were obtained by centrifugation at 9600 g for 10 min at 4 °C, and aconitase activity was then determined in by reaction with 200 µM NADP⁺, 1 U isocitrate dehydrogenase and 30 mM sodium citrate (9) by following the formation of NADPH at 340 nm. Wild type and Δric , Δdps and Δdps Δric strains of E. coli were transformed with either pUC18, pUC18-RIC or pUC18-RIC-E133L (described in (9)) and were similarly tested for endogenous aconitase activity. Endogenous reactive oxygen species content was determined in wild type, Δric , Δdps , Δdps Δric , Δbfr , Δbfr Δric , $\Delta ftnA$, $\Delta ftnA$ Δric strains E. coli (Table 1). Cells were grown aerobically to an OD₆₀₀=0.6, collected by centrifugation, resuspended in PBS, and

distributed in 96-well microtitre plates. Following the addition of dichloro-dihydro-fluorescein diacetate (10 μ M DCFH-DA,), fluorescence was evaluated ($\lambda_{ex}=485$ nm and $\lambda_{em}=538$ nm) for 2 h in a spectrofluorimeter Varian Cary (Agilent). The Fluorescence

Intensity (FI) was normalized in relation to the optical density of each culture at 600 nm.

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

480

482	Ackr	nowledgments
483		
484	We t	hank Professor Hirotada Mori (Graduate School of Biological Sciences, Nara Institute
485	of S	cience and Technology, Ikoma, Nara, Japan) for provision of the Keio mutant
486	colle	ction, and Professor James Imlay (Department of Microbiology, B103 CLSL, 601 S
487	Good	Iwin Ave, Urbana, IL 61801, USA) for the Hpx mutant.
488	The	work was funded by Fundação para a Ciência e a Tecnologia (FCT) project
489	PTDC/BBBBQB/5069/2014 and by the FCT fellowship SFRH/BD/118545/2016 (L. Silva).	
490	The funders had no role in study design, data collection and interpretation, or the decision	
491	to submit the work for publication.	
492		
493		
494		
495		
496	Refe	rences
497		
498	1.	Overton TW, Justino MC, Li Y, Baptista JM, Melo AMP, Cole JAa, Saraiva LM.
499		2008. Widespread distribution in pathogenic bacteria of di-iron proteins that repair
500		oxidative and nitrosative damage to iron-sulfur centers. J Bacteriol 190:2004–13.
501	2.	Chow ED, Liu OW, O'Brien S, Madhani HD. 2007. Exploration of whole-genome
502		responses of the human AIDS-associated yeast pathogen Cryptococcus neoformans
503		var grubii: nitric oxide stress and body temperature. Curr Genet 52:137–148.
504	3.	Harrington JC, Wong SMS, Rosadini C V, Garifulin O, Boyartchuk V, Akerley BJ.

- 505 2009. Resistance of *Haemophilus influenzae* to reactive nitrogen donors and gamma
- interferon-stimulated macrophages requires the formate-dependent nitrite reductase
- regulator-activated *ytfE* gene. Infect Immun 77:1945–1958.
- 508 4. Justino MC, Almeida CC, Teixeira M, Saraiva LM. 2007. Escherichia coli di-iron
- YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters. J Biol
- 510 Chem 282:10352–9.
- 511 5. Justino MC, Almeida CC, Gonçalves VL, Teixeira M, Saraiva LM. 2006.
- Escherichia coli YtfE is a di-iron protein with an important function in assembly of
- iron-sulphur clusters. FEMS Microbiol Lett 257:278–84.
- 514 6. Nobre LS, Garcia-Serres R, Todorovic S, Hildebrandt P, Teixeira M, Latour J-M,
- Saraiva LM. 2014. *Escherichia coli* RIC is able to donate iron to iron-sulfur clusters.
- 516 PLoS One 9:e95222.
- 517 7. Silva LO, Nobre LS, Mil-Homens D, Fialho A, Saraiva LM. 2018. Repair of Iron
- 518 Centers RIC protein contributes to the virulence of *Staphylococcus aureus*.
- 519 Virulence 9:312–317.
- 520 8. Todorovic S, Justino MC, Wellenreuther G, Hildebrandt P, Murgida DH, Meyer-
- Klaucke W, Saraiva LM. 2008. Iron-sulfur repair YtfE protein from Escherichia
- *coli*: Structural characterization of the di-iron center. J Biol Inorg Chem 13:765–770.
- 9. Nobre LS, Lousa D, Pacheco I, Soares CM, Teixeira M, Saraiva LM. 2015. Insights
- 524 into the structure of the diiron site of RIC from Escherichia coli. FEBS Lett
- 525 589:426–431.
- 526 10. Lo F-C, Hsieh C-C, Maestre-Reyna M, Chen C-Y, Ko T-P, Horng Y-C, Lai Y-C,

- 527 Chiang Y-W, Chou C-M, Chiang C-H, Huang W-N, Lin Y-H, Bohle DS, Liaw W-F.
- 528 2016. Crystal structure analysis of the Repair of Iron Centers Protein YtfE and its
- interaction with NO. Chem A Eur J 1–10.
- 530 11. Almiron M, Link J, Furlong D, Kolter R. 1992. A novel DNA-binding protein with
- regulatory and protective roles in starved *Escherichia coli*. Genes Dev 6:2646–2654.
- 532 12. Grant R, Filman DJ, Finkel SE, Kolter R, Hogle JM. 1998. The crystal structure of
- Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol 5:294–303.
- 534 13. Calhoun LN, Kwon YM. 2011. Structure, function and regulation of the DNA-
- binding protein Dps and its role in acid and oxidative stress resistance in *Escherichia*
- 536 *coli*: a review. J Appl Microbiol 110:375–86.
- 537 14. Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND.
- 538 2002. Iron and hydrogen peroxide detoxification properties of DNA-binding protein
- from starved cells. A ferritin-like DNA-binding protein of *Escherichia coli*. J Biol
- 540 Chem 277:27689–96.
- 541 15. Karas VO, Westerlaken I, Meyer AS. 2015. The DNA-Binding Protein from Starved
- Cells (Dps) utilizes dual functions to defend cells against multiple stresses. J
- 543 Bacteriol 197:3206–15.
- 544 16. Karimova G, Pidoux J, Ullmann A, Ladant D. 1998. A bacterial two-hybrid system
- based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A
- 546 95:5752–5756.
- 547 17. Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, Sargent F. 2004.
- Coordinating assembly and export of complex bacterial proteins. EMBO J 23:3962–

- 549 72.
- 550 18. Blaha G, Stanley RE, Steitz TA. 2009. Formation of the first peptide bond: The
- structure of EF-P bound to the 70S ribosome. Science 80 325:966–970.
- 552 19. Ganoza MC, Aoki H. 2000. Peptide bond synthesis: function of the *efp* gene product.
- 553 Biol Chem 381:553–559.
- 554 20. Bishop RE, Leskiw BK, Hodges RS, Kay CM, Weiner JH. 1998. The entericidin
- locus of *Escherichia coli* and its implications for programmed bacterial cell death. J
- 556 Mol Biol 280:583–596.
- 557 21. Livshits VA, Zakataeva NP, Aleshin V V., Vitushkina M V. 2003. Identification and
- characterization of the new gene *rhtA* involved in threonine and homoserine efflux in
- *Escherichia coli*. Res Microbiol 154:123–135.
- 560 22. Magliery TJ, Wilson CGM, Pan W, Mishler D, Ghosh I, Hamilton AD, Regan L.
- 561 2005. Detecting protein-protein interactions with a green fluorescent protein
- fragment reassembly trap: Scope and mechanism. J Am Chem Soc 127:146–157.
- 563 23. Chiancone E, Ceci P. 2010. The multifaceted capacity of Dps proteins to combat
- bacterial stress conditions: Detoxification of iron and hydrogen peroxide and DNA
- binding. Biochim Biophys Acta 1800:798–805.
- 566 24. Park S, You X, Imlay JA. 2005. Substantial DNA damage from submicromolar
- intracellular hydrogen peroxide detected in Hpx- mutants of *Escherichia coli*. Proc
- 568 Natl Acad Sci U S A 102:9317–9322.
- 569 25. Seaver LC, Imlay JA. 2004. Are respiratory enzymes the primary sources of
- intracellular hydrogen peroxide? J Biol Chem 279:48742–50.

- 571 26. Velayudhan J, Castor M, Richardson A, Main-Hester KL, Fang FC. 2007. The role
- of ferritins in the physiology of *Salmonella enterica* sv. Typhimurium: A unique role
- for ferritin B in iron-sulphur cluster repair and virulence. Mol Microbiol 63:1495–
- 574 1507.
- 575 27. Abdul-Tehrani H, Hudson AJ, Chang YS, Timms AR, Hawkins C, Williams JM,
- Harrison PM, Guest JR, Andrews SC. 1999. Ferritin mutants of *Escherichia coli* are
- iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol
- 578 181:1415–1428.
- 579 28. Bellapadrona G, Ardini M, Ceci P, Stefanini S, Chiancone E. 2010. Dps proteins
- prevent Fenton-mediated oxidative damage by trapping hydroxyl radicals within the
- protein shell. Free Radic Biol Med 48:292–297.
- 582 29. Lennox ES. 1955. Transduction of linked genetic characters of the host by
- bacteriophage P1. Virology 1:190–206.
- 584 30. Pommier J, Mejean V, Giordano G, Iobbi-Nivol C. 1998. TorD, a cytoplasmic
- chaperone that interats with the unfolded trimethylamine N-oxide reductase enzyme
- 586 (TorA) in *Escherichia coli*. J Biol Chem 273:16615–16620.
- 587 31. Thibodeau SA, Fang R, Joung JK. 2004. High-throughput β-galactosidase assay for
- bacterial cell-based reporter systems. Biotechniques 36:410–415.
- 589 32. Wilson CGM, Magliery TJ, Regan L. 2004. Detecting protein-protein interactions
- with GFP-fragment reassembly. Nat Methods 1:255–262.
- 591 33. Justino MC, Vicente JB, Teixeira M, Saraiva LM. 2005. New genes implicated in
- the protection of anaerobically grown Escherichia coli against nitric oxide. J Biol

593 Chem 280:2636–43. 594 34. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, 595 596 single-gene knockout mutants: the Keio collection. Mol Syst Biol 2. 35. Seaver LC, Imlay JA. 2001. Alkyl hydroperoxide reductase is the primary scavenger 597 598 of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173-81. 599 36. Jang S, Imlay JA. 2010. Hydrogen peroxide inactivates the Escherichia coli Isc iron-600 sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol 78:1448-1467. 601

602

604 Table 1 –Strains and plasmids used in this study

E.coli	Description	Source
Strains		
DHM1	F', cya-854, recA1, endA1, gyrA96 (Nal ^R), thi1,	Euromedex
	hsdR17, spoT1, rfbD1, glnV44(AS)	
Wild type	K-12 ATCC 23716	ATCC
Δric	K-12 Δric::cat	(33)
Δdps	JS091 Δdps::kan	(34)
$\Delta b f r$	JW3298 Δbfr::kan	(34)
$\Delta ftnA$	MC4100 ΔftnA::spc	(27)
$\Delta dps \Delta ric$	K-12 Δdps::kan, Δric::cat	This study
$\Delta b f r \Delta r i c$	K-12 Δbfr::kan, Δric::cat	This study
$\Delta ftnA\Delta ric$	K-12 ΔftnA::spc, Δric::cat	This study
MG1655	F WT	(35)
SJ90	BW25113 Δric::cat	(36)
LC106 (hpx)	$\Delta ahpCF'kan::'ahpF, \Delta(katG17::Tn10)1,$	(25)
	$\Delta(katE12::Tn10)1$	
$\Delta hpx\Delta ric$	LC106 Δ <i>ric1</i> ::cat	This study
XL2 Blue	recA1, endA1, gyrA96, thi-1, hsdR17, supE44,	Stratagene
	$relA1$, lac [F' $proAB^+$, $lacIqZ\Delta M15$ Tn 10 (Tet r)]	
BL21Gold(DE3)	E. coli B, F, ompT, hsdS (r _B m _B), dcm ⁺ , Tet ^r ,	Stratagene

Plasmids		
pUT18/pUT18C	Vector that allows construction of in-frame	(16)
	fusions at the N-terminus/C-terminus of T18	
	fragment (amino acids 225-399 of CyaA)	
pKT25/pKNT25	Vector that allows construction of in-frame	(16)
	fusions at the N-terminus/C-terminus of T25	
	fragment (amino acids 1-224 of CyaA)	
pUT18/pUT18C-ric	RIC fused to T18 fragment in N/C-terminal	This study
pKT25/pKNT25-ric	RIC fused to T25 fragment in N/C-terminal	This study
pUT18/pUT18C-dps	Dps fused to T18 fragment in N/C-terminal	This study
pKT25/pKNT25-dps	Dps fused to T25 fragment in N/C-terminal	This study
pUT18-Zip	Leucine zipper fused to T18 fragment in the N-	(16)
	terminal	
pKT25-Zip	Leucine zipper fused to T25 fragment in the C-	(16)
	terminal	
pUT18-TorD	TorD fused to T18 fragment in N-terminal	(17)
pKT25-TorD	TorD fused to T25 fragment in C-terminal	(17)
BamHI	pUT18 plasmid that contains chromosomal	(17)
	fragments obtained by partial digest of the	
	MC4100 chromosomal DNA with Sau3A1 and	
	cloned into de BamHI site	

pUC18	Expression vector	ATCC
pUC18-ric	Vector for expression of RIC	(4)
pUC18-RIC-Glu133Leu	Vector for expression of RIC-Glu133Leu	(9)
pET11a-link-GFP	Vector for expression of fusions with N-	(32)
	terminal fragment of GFP	
pMRBAD-link-GFP	Vector for expression of fusions with C- terminal	(32)
	fragment of GFP	
pET11a-ric-GFP	RIC fused to N-terminal GFP fragment	This study
pMRBAD-ric-GFP	RIC fused to C-terminal GFP fragment	This study
pET11a-dps-GFP	Dps fused to N-terminal GFP fragment	This study
pMRBAD-dps-GFP	Dps fused to C-terminal GFP fragment	This study
pET11a-bfr-GFP	Bfr fused to N-terminal GFP fragment	This study
pMRBAD-bfr-GFP	Bfr fused to C-terminal GFP fragment	This study
pET11a-ftnA-GFP	FtnA fused to N-terminal GFP fragment	This study
pMRBAD-ftnA-GFP	FtnA fused to C-terminal GFP fragment	This study
pET11a-ricTrunc-GFP	Truncated RIC fused to N-terminal GFP	This study
	fragment	
pMRBAD-ricTrunc-GFP	Truncated RIC fused to C-terminal GFP	This study
	fragment	

Table 2 – Oligonucleotides used in this study

Primer Name	Sequence
Construction of pl	asmids used in BACTH
ric_Fw	GAGGTGTCGACTATGGCTTATC
ric_Rv	CTTTTAGGATCCTCACCCGCC
dps_Fw	GTTAATTACTGGGATCCAACATCAAGAGG
dps_Rv	TCCTGTCAGGTACCCGCTTTTATC
T18_Fw	CATTAGGCACCCCAGGCTTTAC
T18_Rv	GAGCGATTTTCCACAACAAGTC
T18C_Fw	CATACGGCGTGGCGGGAAAAG
T18C_Rv	AGCGGGTGTTGGCGGGTGTCG
T25_Fw	ATGCCGCCGGTATTCCACTG
T25_Rv	CGGGCCTCTTCGCTATTACG
NT25_Fw	CACCCCAGGCTTTACACTTTATGC
NT25_Rv	CAATGTGGCGTTTTTTCCTTCG
Construction of pl	asmids used in BiFC
ric_xhoFw	GAATGAGGT <u>CTCGAG</u> TATGGCTTATC
ric_bamRv	GCGCAATG <u>GGATCC</u> AGCTTTTAGA
ric_ncoFw	GAGGTATCAG <u>CCATGG</u> CTTATCG
ric_aatRv	CCAGCTTTTA <u>GACGTC</u> TCACCC
dps_xhoFw	CGTTAATTA <u>CTCGAG</u> CATAACATCAAG
dps_bamRv	GTACTAA <u>GGATCC</u> GCACCATCAGC

dps_sphFw CAAGAGGATAT<u>GCATGC</u>ATGAGTACCGCTA

dps_aatRv CATCAGCGATGGGACGTCTCGATGTTAG

bfr_xhoFw GAGTGGAAGCG<u>CTCGAG</u>TCAAAAAATG

bfr_bamRv GGAGGGTTCTGGATCCCGACACG

bfr_ncoFw GAAGGAGTCAAA<u>CCATGG</u>AAGGTGATAC

bfr_aatRv CGGACGTCCCTTCTTCGCGGATC

truncric_xhoFw CTTTAAGAAGG<u>CTCGAG</u>ACATATGGCTG

truncric_ncoFw GGAGATATAC<u>CCATGG</u>CTGAACAAC

ftna_xhoFw CAAATATAACCTTT<u>CTCGAG</u>CACTATC

ftna_bamRv TGAAACGGATCCAGTAAACCTGC

ftna_ncoFw GAGCACTA<u>CCATGG</u>TGAAACCAGAAAT

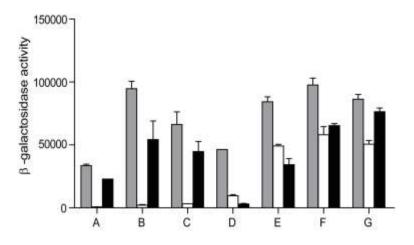
ftna_aatRv CGGAGAG<u>GACGTC</u>TTTTGTGTGTC

Double mutant construction confirmation

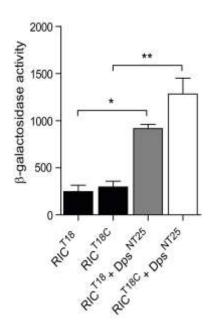
Conf_dps_Fw CAGAATAGCGGAACACATAGC

Conf_dps_Rv GATGCACTAAATAAGTGCGTTG

Conf_bfr_Fw CTCTTCAAAGAGTGGAAGCG


Cof_bfr_Rv GATCTCTTATTAACCGGGAGG

Conf_ftnA_Fw CAAATTATAGTGACGCCACAG


Conf_ftnA_Rv ACCGATCAGAGTAAGATTTGC

Conf_ric_Fw AAGAATGAGGTATCACATATGGCTTATCGC

Conf_ric_Rv GGCTGTTTATTGGTAAGAATTCGGCTGCTG

Figure 1: *E. coli* **RIC interactions analysed by BACTH.** β-Galactosidase activities of *E. coli* DHM1 cell lysates expressing, separately, plasmids A to G, which were extracted from two different *BamH*I libraries, and co-transformed with the pKTN25-RIC (grey bars), pKTN25 empty plasmid (white bars), and pKTN25 fused to TorD (black bars). Each bar represents the mean value \pm standard error from results of at least three independent cultures.

Figure 2: Assessment of the interaction of the *E. coli* **RIC and Dps proteins using the bacterial two-hybrid assay.** The interaction of the RIC protein, fused to the C- (white bar) or N-terminus (grey bar) of the T18-Cya domain and expressed from pUT18 or pUT18C, respectively, was evaluated in *E. coli* DHM1 co-transformed with pKTN25 containing a Dps fused to the N-terminus of the T25-Cya domain. *E. coli* cells harbouring simultaneously empty pKTN25 and pUT18/pUT18C vectors expressing *ric* fusions served as negative controls (black bars). Values are means (± standard error) of at least three independent cultures analysed in duplicate. *p<0.05; **p<0.005 (One-way ANOVA multiple comparison test).

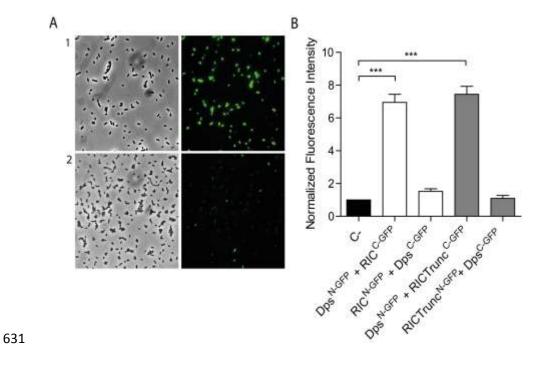


Figure 3: Analysis of the interaction the *E. coli* RIC and Dps proteins by BiFC. Cells were co-transformed with vectors expressing either RIC^{C-GFP} (pMRBAD-link-C-GFP-RIC) or RIC-Truncated^{C-GFP} (pMRBAD-link-C-GFP-RICTrunc) with Dps^{N-GFP} (pET11a-link-N-GFP-Dps). Dps-RIC protein interactions were assessed by BiFC assay. The inverse configurations were also included. A) Cells expressing RIC^{C-GFP} and Dps^{N-GFP} analysed by light microscopy (bright field, left upper panel) and fluorescence microscopy (right upper panel). Lower panels depict images of cells co-transformed cells with empty vectors. Images were acquired using a 100x objective and a FITC filter was used for the acquisition of the fluorescence images. B) Fluorescence quantification was achieved using MetaMorph Microscopy Automation and Image Analysis Software. Fluorescence values for negative control (empty plasmid vectors) were normalized to 1. Values are means ± standard error of at least three independent cultures analysed in duplicate ***p<0.0005 (One-way ANOVA multiple comparison test).

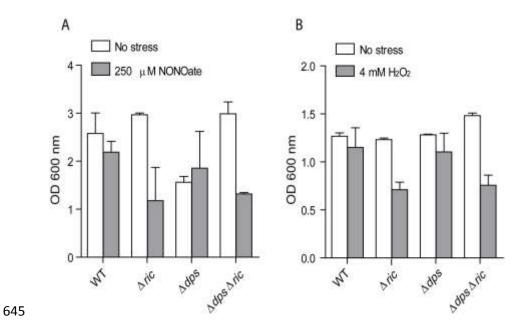


Figure 4: Growth impairment caused by nitrosative and oxidative stress is related to *ric* absence. *E. coli* wild type, Δric , Δdps and $\Delta dps\Delta ric$ strain were grown under anaerobic (A) and aerobic (B) conditions. At an OD₆₀₀=0.3, cells were left untreated (white bars), treated (grey bars) with 250 μ M spermine NONOate for 7 h (A), or treated with 4 mM H₂O₂ for 5 h (B). Error bars are \pm SD for experiments carried out at least three times.

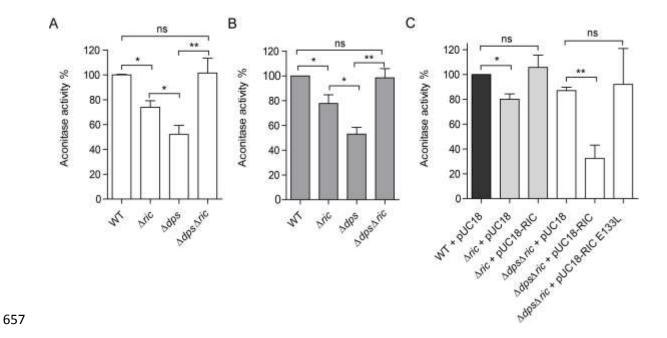
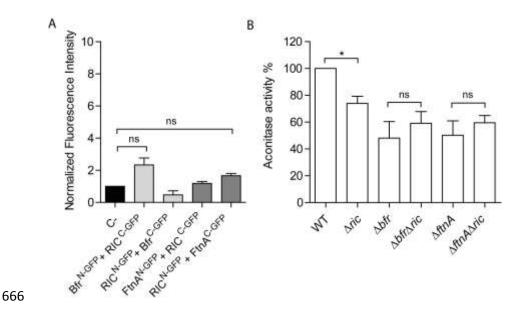



Figure 5: Effect of Δdps and Δric mutations on aconitase activity. Aconitase activity of *E. coli* wild type, Δric , Δdps and Δdps Δric strains grown aerobically to OD_{600} 0.6 (A, C) or 2.0 (B). Complementation experiments (C) were performed for the Δric and Δdps Δric strains by transformation with pUC18 or with pUC18 encoding the RIC protein or Glu133Leu-RIC (a RIC protein where glutamate 133 was site-directed mutated by leucine (9)). Values are represented as normalized to the aconitase activity of wild type cells. Values are means (\pm standard error) of at least two independent cultures analysed in duplicate. *p<0.05; **p<0.005; ns: not significant (unpaired Student's t-test).

668

669

670

671

672

673

674

675

676

677

678

679

680

Figure 6: Analysis of interaction between the iron-storage proteins, Bfr and FtnA, and the RIC protein, and impact of iron-storage proteins on the RIC-protein dependence of aconitase activity. (A) Possible protein interaction between RIC and Bfr ant FtnA was analysed by fluorescence microscopy and quantified by MetaMorph Microscopy Automation and Image Analysis Software. Cells were co-transformed with vectors expressing RIC^{C-GFP} (pMRBAD-C-GFP-RIC) and Bfr^{N-GFP} (pET11a- N-GFP-Bfr) or FtnA^{N-} GFP (pET11a-N-GFP-FtnA). The inverse conformations were also tried. Fluorescence values for negative control (empty plasmid vectors) were normalized to 1. Values are means ± standard error of at least three independent cultures analysed in duplicate. ns: not significant (One-way ANOVA multiple comparison test). (B) E. coli cells of single (Δric , Δbfr , $\Delta ftnA$) and double mutant strains ($\Delta bfr \Delta ric$, $\Delta ftnA \Delta ric$) were grown aerobically, collected at OD=0.6 and its aconitase activity determined. Values are represented as normalized to the aconitase activity of wild type cells. Values are means \pm standard error of at least two independent cultures analysed in duplicate. *p<0.05; ns: not significant (unpaired Student's t-test

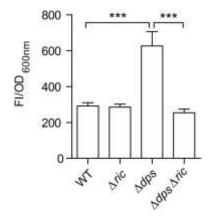


Figure 7: Impact of Δdps and Δric mutations on intracellular ROS levels. The *E. coli* wild type and isogenic Δric , Δdps and Δdps Δric mutant strains were grown to OD 0.6 and the intracellular ROS levels were measured by incubation of cell suspensions with 10 μ M DCFH-DA for 2 h. Fluorescence intensity was normalized according to the final OD (FI/OD). Values are means (\pm standard error) of at least three independent cultures analysed in duplicate. ***p<0.0005 (unpaired Student's t-test).

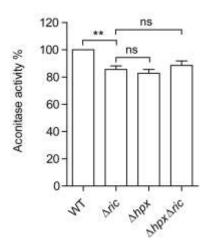


Figure 8: Effect of combining the Δhpx and Δric mutations on aconitase activity. Aconitase activity of the *E. coli* wild type, Δric , Δhpx ($\Delta ahpCF$ $\Delta katE$ $\Delta katG$), and Δhpx Δric strains cultured aerobically to log phase (OD₆₀₀=0.6). Values are represented as normalized to the aconitase activity of wild type cells. Values are means (\pm standard error) of at least two independent cultures analysed in duplicate. ***p<0.0005; ns: not significant (unpaired Student's t-test).