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Summary

We study a two periods model of incomplete markets with nominal assets unse-
cured by collateral, where agents can go bankrupt but there are no bankruptcy penalties
entering directly in the utility function. We address two cases: first, a proportional reim-
bursement rule under bounded short sales and limited liability and, secondly, a nonpro-
portional reimbursement rule, favoring smaller claims, without bounds on short-sales,

but assuming that liability approaches total garnishment as debt goes to infinity.



INTRODUCTION

In the past ten years, a few papers have studied default in the context of the gen-
eral equilibrium incomplete markets model. The pioneering work was done by Dubey-
Geanakoplos-Shubik (1989) in a two-period model where defaulters suffer utility penal-
ties and anticipate that asset returns are discounted according to the average repayment
rate. In this model, default occurs when the marginal utility of incomne, in a particular
state of nature, exceeds the marginal penalty of defaulting in a specific asset. Zame
(1993) discussed efficiency properties of a single-good, countable states, version of this
model and Araujo-Monteiro-Pascoa (1996, 1998) extended the model to an infinite-tree
with a continuum of states at each node. However, the current decreasing deterrence
role of penalties tends to question the approach. More recently, collateral was brought
into the default model, by Dubey-Geanakoplos-Zame (1995). When assets are backed
by collateral and utility penalties are absent, adverse selection problems are immedi-

ately ruled out, since all lenders know what to expect to receive in each state of nature
| (and this is the minimum between the value of the claim and the value of the exoge-
nously fixed collateral). There is even no need to suppose that lenders deal indirectly
with borrowers, through a pool of mortgages, in order to rationalize the hypothesis that
returns are discounted using the average repayment rate. However, when collateral be-
comes endogenously chosen by borrowers this pooling step may be required again (see

Araujo—OrrilIo—Pascoa (1998)).

In the present paper we addresss bankruptcy, instead of default, in the context
also of the general equilibrium incomplete markets model. By bankruptcy we mean a

situation where an agent has no means to pay back lis debt, or more precisely, that his



garnishable wealth and income do not cover his debt. Bankruptcy is a very important
institutional arrangement that offers protection to agents on thé basis of the concept of
limited liability. When agents are liable only up to some fraction of their wealth and
income, it is in their interest to go bankrupt when the debt exceeds that fraction of their
estates. Creditors will then be reimbursed using the garnished estates. This procedure
should not be confused with default, which is plainly a situation where debtors fail to

honor their commitments, even when they could afford to do it.

If éll claims were secured by collateral, bankruptcy would become uninteresting,
since it could never offer the debtor a protection putting at risk the reposession of the
collateral by the lender. There are, however, many promisses not backed by collateral.
To simplify the analysis we will concentrate actually on a model where all claims are
unsecured. A more complex version could be worked out, taking into account the
priority of secured claims in the partition of the garnished estate of a bankrupt agent
(or, possibly, only after tax authorities and employees were reimbursed). We assume
also that bankrupt agents do not suffer any penalties entering directly in the utility
function. Legal punishments are no longer contemplated in the bankruptcy laws of
many countries, although reputation punishments, related to future access to credit, are
clearly relevant and could still be represented in the form of subjective utility penalties,
which should be taken into account when filing for bankruptcy. However, we do not

attempt to model these asymmetric information aspects of the problem.

We develop a two-periods model where uncertainty may affect endowments and
preferences in the second period, through the realization of S states of nature. Assets
have nominal payoffs and are not secured by collateral. For each state of nature, an
agent goes bankrupt when his financial surplus is negative and its absolute value ex-
ceeds the value of the garnishable endowments. We assume that some liability rule has

already determined the fraction of the endowments that creditors can garnish in case of
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bankruptcy. This structure for sccond-period budget constraints: introduces a noncon-
vexity in the consumer’s budget set of bundles and portfolios (actually, in the latter).
This difficulty is overcome by considering a continuum of consumers and appealing to
Liapunov’s theorem.

Our portrait of bankruptcy was contemplated in Araujo-Pascoa (1994) and has
some similarities with the one used by Modica-Rustichini-Tallon (1995) in the context
of an interesting temporary equilibrium model, but it differs from the latter since we
assume limited liability and do not restrict bankruptcy only to unforeseen states (to
which the consumer attaches zero subjective probability). We model bankruptcy as a
predictable and less dramatic contingency: it may be in the consumer’s interest to pick
a portfolio that provides interesting transfers of wealth across periods and states, in
spite of the known risk of leading to bankruptcy and the resulting partial confiscation

of estates in some states of nature.

In the first part of the paper (section 2) we assume proportional reimbursement
to creditors. That is, the garnished estates of bankrupt agents are partitioned among
lenders proportionally to the claims involved. Since we model transactions anonymously,
assuming that lenders deal with a pool of borrowers, the above proportional rule implies
that, in a rational expectations equilibrium, lenders should discount future returns using
the average repayment rate (the ratio of effective payments to promissed payments). We

show that, under bounded short-sales, a bankruptcy equilibrium will exist.

Bounded‘ short-sales is a convenient but arguable assumption, avoidable when
assets are nominal, both in the no-default model and in the default model with penalties
or collateral. However, in our model, as in the real assets no-default model, the rank
of the returns matrix depends on endogenous variables, which are the repayment rates,

taking into account bankruptcy by other agents. Besides, the nonconvexity of the



budget set prevents us from establishing that consumer demand is differentiable (since
the Jacobian of first order conditons can not be shown to be nonsingular). This difficulty

seems to rule out any attempt to use-differential topology approaches in the existence

argument.

In the second part of the paper (section 3) we discuss implications of deviations
from proportional reimbursement to creditors. There are frequent real life deviations
from the propdrtional rule and some arc actually contemplated by law in the form of
seniority criteria (giving priority to tax authorities, employees, secured creditors and
some among the unsecured éreditors). Theoretical work has also questioned the interest
of proportional rules. The bargaining approach by a Aumann-Maschler (1985) suggested
equal division up to the minimum of the smallest claim and the estate (due to cqual
bargaining positions when the estate is smaller than any claim) and a more complex
rule, according to ecqual-division of contested additional claims, in gencral (coinciding

with the nucleolus of the cooperative game played by the creditors).

We examine a reimursement rule that tends to favor smaller claims, by making
the reimbursement rate decrease with the size of the claim. The resulting strict con-
cavity of positive returns, contrasted with the linearity of negative returns, forces the
financial surplus to go to —oo0, as budget-feasible portfolios become unbounded along
many of the possible directions (avoiding linear positive returns of non-defaulting as-
sets). Ou the other hand, we assuie, in this part of the paper, that agents are required
to provide increasing liability as the debt goes to infinity. Such a liability rule should be
seen as a mechanism intended to discourage irresponsible borrowers. This assumption,
together with Inada’s condition an utility, makes financial surplus bounded from below
by some negative amount. The existence argument is carried out by taking a sequence
of equilibria of truncated economies and appealing to a multi-dimensional version of Fa-

tou’s lemma which requires the sequence of allocations to be uniformly bounded (or at
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least uniformly integrable). The above reimbursement rillé, together with the liability

assummption, imply non-arbitrage conditions that allow us to uniformly bound portfolios
of assets subject to default.

In this second part of the paper, the nonlinearity of returns requires nonlinear
pricing for assets. The portfolio cost includes, in addition to the usual linear compo-
nent, a spread which‘is a discounted expectation of the future net default (i.e., the
difference between default given and default suffered), for some endogenously deter-
mined, in equilibrium, measure on states. That is, agents more prone to go bankrupt
end up selling assets at lower prices (i.e., borrow at higher interest rates). Also, lenders
receive discounts when‘ buying assets due to future expected default (and these discounts
are nonlinear, due to the above nonlinear retuirns scheme). This structure for the spread
plays a crucial role in guaranteeing that, when markets clear, default is also correctly

anticipated (i.e., net aggregate default is zero).

We close the paper with a short section discussing the constrained efficiency

properties of eciuilibria:

2. PROPORTIONAL REIMBURSEMENT

2.1 The model

We consider a two period general equilibrium model. In the first period A nominal
assets and L physical goods are traded. In the second period, there are S of nature
which may affect asset returns and the consumers’ endowments and preferences over L

physical goods.

The continuum of consumers is modelled as the Lebesgue measure space (1,3,X)

of the unit interval I = [0,1]. Preferences are time and state separable and given
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: S
by a utility function u”':IRJI;(SH) — R of the form u"(z") = 3 ul(z") for h € I.

=0

: L(S+1
Endowments are vectors w” € R +(+ +1)

, for h € I. We allow for bankruptcy: agents
will not pay by their entire debt if this exceeds the value of the alienable endowment.
That is, consumers have limited liability in the sense that, in case of bankruptcy, only

same share v,¢ € [0, 1] of the endowment of gbod ¢ in state s may be confiscated by the

‘ ' L
creditors. If the total nominal return is lower then — 3 pss yse wfe , at some spot price
=1

vector p; € RE | then consumer h will decide to pay the latter instead.

Default by others is anticipated according to a proportional reimbursement rule.
Denote consumer h’s portfolio by y* € R and assume that the returns matrix has
nonnegative elements Tsa. Lect 85, be the mean reimbursement rate, to be formally

defined below. Discounted returns Gsq(rsq Ya) are given by

rsa ya [} lf ya < 0
Gsa ('rsa ya) = {

OsaTsaYa , otherwise

We can now write down the budget constraints of consumer h, given asset price
vector ¢ € R'j} and spot price vector ps € RY. Consumption plan z* € R‘i[‘ and

portfolio y" € R4 must satisfy the following first period budget constraint
M | po- (ab —wf) +4-4" =0.

In each state s of the second period the budget constraint is

a=1

L
(2) ps - (2" — wh) = max (Z GsalTsa Ya), — Zpsg Vst wf;;) = fh
’ : /=1



INSERT FIGURE 1

Fig. 1

Figure 1 illustrates the shape of the function f; .
When consumer h goes bankrupt, the total amount available to partially reim-

burse creditors will be Zpsp Yse why + Z h Y*. This amount will be allocated across

assets sold by agent h according to the weights " = re.(y")~/ Z Tsa(Up) ™

Default is correctly anticipated in each asset market provided that
3 [ (St + (G5 a)
TBy Ny b

- (l,,,) dA(h) = / (G" Y dA(h)

137

thre B“ = {h': f'{) = - Zpsi’ Yse wgf}-
I

The above equation states that the aggregate payments, by defaulters and non-
defaulters, related to asset a, should match aggregate revenues due to this assct, in any
state s.

Notice that the left hand side of equation (3) can be rewritten as v, [, (y2 )t d(A(h)—

f (= Z Gh' )™ dX(h). The mean reimbursement ratio is defined by (3) above, since



the right hand side is 0sa [, (yMy* dA(h), or equivalenty by:

[ (fh - ZG’ TR dA(h)
@ P = vsa1(ya>+dx(h) '

There is no need to contemplate the possibility of selling short and buying a same
asset, since this action would be dominated (Gsq(0) > —Tsa¥a +8saTsa¥a ) for.H,a < 1).
An ecjﬁili.brium is a vector (:v,y,Ap, q,0) € L'(I, RS_SH)L x R4 x RS,,SH)LJré X
[0,1]54 such that
e (z",§") maximizes u® subject to (1) and (2), for ae h el
e markets clear, i.e. [I(:v" - wh)dA(h) =0 and [,y dA(h) =0
¢ (3) holds, for any (s,a). '

2.2 The result .

Theorgm 1. Suppose the endowment allocaiton w is uniformly bounded, from above
and from below, and asset short-sales are required to be bounded from below, by ¢ €
RA

say.. Then, an equilibrium exists.

Proof: C‘oﬁsider a sequence of economies E™ with truncated consumption sets L, =
[0,7)(5+1) and truncated pbrtfolio sets K, = [—d,n]A. Define, for each n, a generalized
game played by the continuum of consumers and S + 1 + SA additional players. Each
consumer maximizes his utility on L, x I, subject to the budget constraints (1) and
(2), given (g,p,0). The additional players are as follows

(i) S auctioneers choose p, € AL~} in order to mziximize Ds - Iy (¥ —whydA(h)

(ii) one auctioneer chooses (pg, q) € AFt4=1 in order to maximize

e /(:10 Wi YdA(h) + q - /y"’dz\(h‘)

9



(iii) SA additional agents choose 85, € [0, 1] according to (3’) above (which is

equivalent to (3)).

Lemma 1. A pure strategies noncooperative equilibrium of the generalized game of a

truncated economy is an equilibrium for this economy, for n sufficiently large.

Proof: At an equilibrium of the gaine, the optimality conditions of consumers’ problems

“and of problems (i) and (ii) imply that
[ (et -ubiar<o, [var<o,
Jr o Jr

and, therefore, by (iii), aggregating (3') over assets, we have

/f"dA(h /ZG’ dA(R) +Z(1— sa)Tsa /(ya )* dA(h) = R, /y dA(h)

then, \ . ,
P / (ol — wh)dA(h) = / FrdA(h) < R, / yhdA < 0.
JI I JTI

Now, pse > 0, for any s = 0,1,...,s and any £ = 1,...,h, for n sufficiently
large. Otherwise, every consumer would choose mi‘, = n, implying that [, z hodh=n>

f, why dX, forn > esssup w,e. But when por > 0 we must have f, (2%, ~ wv,.)d)\(h)

since E poz Toe — why)dA(R) + Z q; f ;Y dA(h) is a null sum of non positive terms,
é=1

hence a sum of null terms.

. Moreover, q; > 0, for any j = 1,..., A. Otherwise, every consumer would choose
y; = n, inplying [, y.;-"‘d)\(h) = n > 0. But when ¢; > 0 we must have [,y dA(h) =0,
by the argument above. ' o

Finally, since_ [, f} dA(h) = R, [ ; Yh dA(h) and the latter is zero, it follows that
ps - [ (b — wh)dA( (h) = I 1 d/\(h = 0 and therefore [,(m',? — wh)dA(h) = 0, for n
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sufficiently large. In fact, we showed that p, > 0 and therefore excess supply is ruled

L ;
out in any spot market, since 3 pse [, (z?, — w%)dA(h) is a null sumn of h nonpositive
) ' =1 . ‘

terms, hence a sum of L null terms. O
To show that the game has an equilibrium we have to solve the difficulties created

by the nonconvexity of the budget set.

Lemma 2. The generalized game of a truncated economy has a noncooperative equi-

librium, in pure strategies. . .

Proof: First, let us extend the game to allow for consumers’ mixed strategies in port-
folios. Let p* be a regular probability measure on the Borel sets of K,,. We replace

budget constraints (1) and (2) by the extended budget constraints

/ q-y"dp"(y") = po - (wh —2h) -

L

po(at - = [ fhapren)

We also replace, in problem (ii), f,y"dA(h) by [, _/'K"(id)dp"‘(yh‘)d/\(h) and
Ji £ dAR) by f) [io fJ dp"(y")dA(h).

Let us replace, in problem (iii) 8,, by

1= [ [ (- 6h) a6t fra [ [ Gt astbianm
JIJK, b o JIJ[—-nn] .

Moreover, let us replace, in problems (i) and (ii), [, (z?—w!)dA(h) (s =0,1,...,5)
by [, [x. (dh(y") — w")dp" (y*)dA(h), where d"(y") = argmax{u” : 2" satisfies the con-

straints (1) and (2), given the portfolio y"}. In this framework, consumers choose pf;irs
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(2", p™) of bundles and mixed strategies over portfolios and other agents choose (p, ¢, )
given the consumers’ profile of mixed strategics over portfolios. Even though onec miglht
argue that an equilibrium of this extended game is not a mixed strategies equilibrium,
all that matters for our purpose is the fact that a degenerate equilibrium of the extended
game is an cquilibrium of the original game.

The extended game has an equilibrium, possibly in mixed strategies over port-
folios. In fact, the best response correspondence of agents (i), (ii) and (iii) is upper
semicontinuous on the profile of consumers’ probability measures on K, (with respect
to the weak* topology on the dual of L!(I,C(Kp,))) and the profiles set is compact (for
the same topology).

‘Now, it is possible to show the existence of a pure strategies equilibrium. First,
notice that the functions in problems (i), (ii) and (iii) depend on the profile of mixed
strategies (o), only through finitely many m indicators of the form
I Tk, zM (y™)dp" (y")dA(h), where z; € L' (I,C(K,)), for j=1,...,m.

Secondly, let B" be the mixed strategies (in portfolios) best response correspon-
dence of consumer h, given by p € B*(p, q,0) if there exists x € [O, n]HS+Y) guch that

(z, p) maximizes u" sub ject to the extended budget constraints, given (p,q,6). Now :
[ ] st ehaam = [ [ et B @haaw),
JrJk, J1Jk,
for 2 = (21,...,2m) € L'(1,(C(Kn))™), since
con / Zh.(yh)d ext Bh‘(yh') — / Zh'(’yh)ch(yh) Q'R7n
JK, JIK,.
and theorem 1.D.4 in Hildenbrand (1974) applies.

Then, given a mixed strategies (in portfolios) equilibrimn profile (p");,, there

exists a portfolio profile (3"), such that the Dirac mecasure at y” is an extreme point of
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B" (evaluated at the equilibrium levels of the variables chosen by the atomic players) and
(y")n can replace (p")n and keep all equilibrium conditions satisfied (without changing
the equilibrium levels of the variables chosen by the atomic players buf replacing the
former equilibrium bundles by d*(y")). 0O

Therefore, each truncated economy has an equilibrium (z,v,p,4,0).

Let Z,, = (Zn, Yn,Pn,qn,0n) be an equilibrium sequence for E™ and let y;;h =

max(0, y,) , y;n’" = max(0, -y}, ).

Fatou's lemma, part I (on functions mapping into the positive orthant of a
finite-dimensional space, see appendix), allows us to infer from the convergence of
(x”j ,yt? y=h)dX (passing to a subsequence if necessary, since the sequence is bounded
Ji\ T Yn n g q y
by ([, w"d),t,t)) that there exists an integrable function z,y",y~) mapping into
Jr g g

RE(SHO+24 gueh that [ yth y™MdA = lim [ (2}, yt", y;")d) and, for ae.

h,, -—h.)‘

(zh,y*", y~") is a cluster point of (z!, y ",y

Claim: (2", y") = (2", yt" —y~") is an optimalAsolution of consumer h'’s problém at
the cluster point (p, g, 9).

Suppose (", j) satisfies the budget constraints at (p,q,8) and u" (") > u"(z").
Lower hemi-continuity of the budget correspondence (by lower hemi-continuity of its
interior and result 4 in Hildenbrand (1974), page 26) implies that there is a sequence
(zh, 4" converging to (", §") such that ("™ 7" satisfies the budget constraints at
(p™ q",6™). Then u"(z"") > ul(z""), for n sufficiently large. Moreover, the quantity
constraints of the truncated economies are satisfied, since ("™, §"") converges. This
would contradict optimality of (z"™,y""). O

Then the cluster point (p,q,8) must satisfy (p,q) > 0, which is a necessary

optimality condition for the consumers’ problems, in the untruncated economny (where

consumption and asset purchases are not hounded). Hence, ['I(n:"‘ — wM)dA(h) = 0 and
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I y" = 0, since the sequences of allocations (" (y")*) became uniformly bounded

(and part II of Fatou’s lemma applies): z! , < (ES?S;lp why/poe) +t >_q; and (na)* <
£ J
(esis;lp wly/qa) + tZ q- - u
J

3. NONPROPORTIONAL REIMBURSEMENT

3.1 The model _

We assume now that reimbursement ratios decrease with the size of the claim.
This nonproportional reimbursement scheme will be crucial for our result on existence
of equilibria which dispenses with bounded short-sales. Discounted returns are given by
Gsa(Tsa Ya)- The function G, coincides with the identity map on (—o0, 0] and is strictly
concave on [0, +00) when other agents default on asset a in state s. More precisely, let
050 be the mean reimbursement re.te. For 654 = 1, Gy, is still the identity map on
[0, +00), but, for 85, < 1, the derivative of G’sa is equal to 1 at‘ the origin and tends
to zero as y, — +o0o. Actually, we assume the precise form of the function G,, is
endogenously determined within the .family of functions of the form Gsa(2) = gsa(z)2~
where the reimbursement ratio is given by g,a(2) = 1 — exp(—62z~7"). The parameters §
and <y are related to the inflection point (c, d) of the curve g by v = [1 — ¢n(1 — d)]~!
and § = (1 -+)/v. Now d = 0, and c is to be determined endogenously. Notice that

85 — 1 implies g5 —» 1 and that dG/dc > 0, d*G/dc? < 0, for 85, < 1 (see appendix).

INSERT FIGURES 2 AND 3

Fig. 2 Fig. 3
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We assume also that the liability coefficients s tend to one as the debt goes
to —oo. More precisely, suppose there are minimal liability coefficicuts 45, € (0,1}

and that the actual liability ratios are given by Yoo = Yse + (1 — Fso)p ZGm where
@:R — [0,1] is such that ¢(z) = 0 for 2 > =) pseVse wh, and ¢(z) — 1 as z — —oo0.
4

This specification for the liability structure together with Inada’s condition on utility
will imply the existence a lower bound on the debt. Figure 4 illustrates the shape of

the function fs.

INSERT FIGURE 4

Fig. 4

The second-period budget constraints are given by (2) as before, where G4, has
this new specification.

In the first period, we add to the linear cost of the portfolio ¢ - y" a spread which
is a discounted cxpected value of the difference between t‘he default given by agent h

and the default suffered by this agent. Formally, the first period constraint is written

as

S
(1) g-y" +t> n(fl - Ry") +po- (af —wf) = 0.

s=1

Here f! - Ry = fI - Y. Gy — <Rsy" - ZGS,,) is the difference between
a a B

default given by agent h in state s and default suffered by this agent in this state. The



discount factor t € Ry and the probability measure 7 € AS~! are to be determined
endogenously.

In equilibrium, (¢,7) will be such that aggfegate net default is nonpositive, that
is, the mean of the map h — (f — R,y) is nonpositive, for each state s. To ensure that,
for each asset default is correctly anticipated, requires, in addition, the endogeneous
adjustment of the abcisses cyq of the inflection point of the reimbrusement schedule
Gsa -

Equation (3), requiring default to be correctly anticipated, still holds. Now, the

mean reimbursement ratio #,, is defined by

o _ LGl A
= Tea LBV OA(R)

and, therefore, (3’) still holds also.

We did not contemplate the possibility of b‘uying and setting short in a same
asset, since this action would be dominated in terms of second period returhs (due)
to the strict concavity of G,;) and would lead to no gains in the first period either,
assuming that the negative part of the spread (that is, the compensation for default |

suffered, given by t Y"1, (3. Gs; — Rsy)) is calculated on the basis of the net holdings
s J
of each asset.
We can now define an equilibrium. Given an economy (w, R, %) € L*(I, ]RiLSH)'L) X
R$4 x [0,1]5L, a vector (Z,§,p,q,t,1,¢,0) € L‘(I,Rf“)L) x LY(I,RA) x RgSH)L X
R4 x R4 x A5~ x R%54 is an equilibrium if
e (2", ") maximizes u" subject to (1') and (2), for a.c. he I

e markets clear, i.e. [,(z" — w")dA(h) =0 and 1 y" dA(R) = 0

16



e (3) holds, for any (s,a).

3.2 The result

Theorem 2. Suppose
(Al} uh is C! on RE, and ||Vul(zh)|]| - 00 aszl — 0
(A2) {u"}y and {Du*}, are equicontinuous |
(A3) the endowment allocationw € L(I,RE(5*1) is continuous and uniformly bounded
from above and from below |
(A4) for ("z" "y") satisfying the budget constraints, at (p™,q",8",t", 9", c"), we have

IVab (el (FR)(S Gag(reg™y)) = +00 when Y- Gij(ryj™y") — —oo (and
1 3

therefore "z — Q), for any h

Then, an equilibrium exists.

Assumptions (A2) and (A3) introduce compactness on the set of consumers’
characteristics. Assumption (A4) says that, as the debt becomes unbounded, in some
state, and therefore, consumer’s income and consumption tend to zero (since the liability
coeflicients approach one), the marginal utility of income will go to +oo faster than the
derivative of the alienable endowment (with respect to the debt) tends to zero. We
knew already that marginal utility of income would go to +00 as income approaches
zero, as the endowment of a defaulter is eventually totally confiscated. We knew also
that this endowment is being confiscated at a decreasing rate, as the debt incrcases. We
now assume the former dominates the latter, so that the indirect rﬁarginal utility, with

respect to portfolio returns, explodes as the debt becomes unbounded.
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The following four sections present the proof of the theoremn.

3.3 Equilibria of truncated economies

As in the proof of Theorem 1 above, consider a sequence of turncated economies
D"™. Consumption sets are L, = [0,n}X(5+)) as before, but portfolio sets are now
K, = [-n,n]. For each n, the generalized game is now played by the continuum
of consumers, the S + 1 + SA fictitions agents contemplated earlier (choosing prices
and mean reimbursement rates) and, now, also SA additional agents choosing csa =
[0, 754m] in order to adjust the reimbursement schedules. These last SA players maximize
min(0, [, (Gh, (rsaya. csa)) ™ dA(h) — OsaTsa [;(y4) T dA(R)). These last SA players are
refered to as the schedulers.

Lemma 1 ca.n‘ be redone. to show that a pure strategies equilibrium of the gener-
alized game is an equilibrium for the truncated economy, for n sufficiently large. Notice
| that, at a strategic equilibrium, f,(z§ —wf)d) <0, [, y"d)X < 0and f,(f§ - R.y™)d) <
0 (by the optimality of the strategy of the first period auctioneer and Walras’ law). Then,
ps - [(zf —w§)dA = [, fPdA < R, [;y"d) < 0.

Notice that at, an optimum of the problem of the SA schedulers, the objective
function always takes value zero and [, (G )* d)\ — 05a7sa [;(y2)t dX > 0. Since we
knew already that [ 1 ( f;’ — Rsy")dA < 0 it follows that equation (3) holds, for any (s,a),
and [, f1dA(R) = B, [,y dA(R).

In fact, [,(fF - GITh dX\ = (1-050)rsa [, (y2)* d), by definition of 65, . Now

7 ;
[1(GG)* dA 2 Osarsa [, ()T dX implies () [, (f ~ Z Gl X > 1oa f,(y2)F dA ~
: 2
_/'I(G‘Qa)*’.d/\, for any (s,a).-On the other hand, [,(f# — R,y")dA < 0 is equivalent to
a5 [;(fE =2 Ghydx < [(Ray" - > G%.)dX. Now (I1) implies that (1) must hold as

J )
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an equality, for any a, since 3" 7% = 1.
a .

As in the proof of Lemnma 1, p > 0 and q > 0 for n large enough, implying that
commodity and asset markets will not be in excess supply either.

Lemma. 2 can also be reduce to show the existence of a price strategia equilibrium.
The extended game, over mixed strategies,. is as in Lemma 2, except for the extended
first period budget constraint and the extended problems of the SA schedulers. The

former is now [, [q-y" + S Bs(fP — Ryy™)do"(y") = po - (wf — zbh), where p" is, as

before, a probability measure on Borelians of K,, . In the latter, [,(ys)* d) should be
‘replaced by f; [_pmy@d)* dpl dX and [,(G%,)* dA by [, | - (Gh)* dpl d), where pl

is the marginal on coordinate a. The argument follows as in Lemma 2, and therefore,

each truncated economy has an equilibrium (zn, Yn, Pn, gn, tn, 7n, 0n), where t, = 5 57
M 8

and 7, = "/t, .

3.4 A default barrier

Before discussing the properties of the sequence of truncated equilibria, as n —
o0, we need to show that, at each vector of parameters of a consumer’s problem, the
debt will be bounded, and then use this fact to derive a set of nonarbitrage conditions,

which will be satisfied by the equilibrium sequence, beyond a certain order.

Lemma 3. For each vector (p,q,0,t,7,c) and each state s, esshinf, > ng > —00 on
J ’

the set of portfolios which are admissible and undominated in consumers’ problem.

Proof: Suppose that for some consumer there is a sequence y, of portfolios which
satisfies the budget constraints and ||yn|| — +00. Looking first at the subsets J* and

J~ of assets bought and sold which diverge at the fastest rate, we assume that the
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set Sy = {s: 14i6si — Y. Tsi < 0} is nonempty, for és; = 1 when 0,5 = - 1 and
jeJF jeJ-

6s; = O otherwise. If S; were empty, for any pair (J*,J ‘), we were done. Consider

also Sy = {s: T 1~ 3 vy =0} and Sy = {s: 3 16— 3 7y >0}
jeJ+ S jed- jeJt i€
Notice that for s € Sy, ZG — —o0 and f} — 0, whereas for s € S3, Y. G;; — +o0

J

and fs — 1. For s € Sy, if there exists 7 € J* such that 6,; < 1 for some s € Sy, then
> G’s_,- — 400 and f/ — 1 in this state; otherwise, ) G; stays bounded in Sy.
J o s :

Consider now the problem of utility maximization over bundles, at the financial
income derived from a given portfolio. That is, max{u” : z"* satisfies (1) and (2),.

given y"}. The indirect utility function v" is differentiable on portfolios. We claimn

that 3 .+ gv Z g_v goes to —oo, when the pair (J*,J~) is such that S, 76 0.
Yi  jes- OYj

This would imply that such a sequence y, would never be chosen. Let us evaluate this
- directional derivative, denoting by A, (s =0,1,...,s) the multipliers of the constraints

~and by r, the difference . rej6e; — Do sy

jeJ! j€J—
S o oy =S M )
jegr OYi eJ— Yi s jest
0.;<1
/\O[Zq, Zq,ﬂznsfs(r + Y @ ) ths<er,—Zr“)]
jeJt Jj€J— jedt jEJ+ . jeJ-
0.;<1

Now tlie expression inside squared brackets tends to

Zq.f— qu—t Z Ns Z 7'.5;1—tz713<2rs,-— er,) = N.

JjeJt JEJS s€85USy  jedti0 <t . s€S, jeJ+t jeJ-

If N <0, then gy + t> ns(fs — Rsy) would go to —oo and zg to +o0, implying that
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Ao = || Vaoll/1|pol] would stay bounded (possible converge to zero). That is, N negative

is incompatible with Ao becoming unbounded (as a result of zo tending to zero).

Now, let us look at the second period terms. For s € Sz, o + > G;j tends

jeJt
0.;<1

to rs > 0, but A\,f, stays bounded (since } Gs; — +oco and z; — +o00). For
j

s € S, e+ ), Gj; tends tor, < 0 and Asfi — 400, by assumption (A4), as ‘

jeJ*t
6,.;<1

Zst — —00, fs — —psw, and T, — 0.
3 :

Fors € S2, rs+ Y. Gi; — rs = 0. Now, if (a) slower diverging assets determine

jeJt

that 3 Gy; — +oo (or if there is j € J* such that 6,; < 1), then A, f; stays bounded

' J ‘

(as in S3). When (b) slower diverging assets determine that }_ Gs; — —oo, we have
. 3 ,

As = o0 and f/ — 0. If in these states there are no fastest bought assets for which

6,5 < 1, the term A fi{rs + >, GY;] will be zero throughout the sequence. Otherwise,

jeJt
0.;<1

>~ G,; might tend to —oo in these states (when the slower assets follow a sequence n
J

and the faster ones follow n®, with a < 1/(1 — 7)), but at lower rates than in states
belonging to S;. Hence, even if A\;fy 3. G|; would tend to 400 for some states in
jeJt
0.i<1

Sy, we could still claim that these terms would be dominated by Y. A, f!r,, which
s€S)

tends to —oco. Finally, when (c) >_ G; stays bounded, ), f; will stay bounded also and
. Y

Afl T Gl 0.

i€d?
0.;<1
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Then 3, —(-)—U- — —(?l}— — —o0 and this implies that the sequence y, leads to
‘ ierv 0 jeg- 9y; ,

unbounded utility losses, even if there were other assets, outside of J* U J~, diverging

at lower rates.

The equicontinuity assumption on utility and marginal utility, together with the

continuity assumption on endowments, imply that the lower bound on 3 G’;j is uniform
I '
on consumers. In fact, let L* = inf 3" G*; and pick Lh < LP, for each h. Now, for each
i _
k, there exists € > 0, such that for b’ € (h — ", h + ") we still have 3 Gi‘; > Lh,
) J ’

Passing now to a finite subcover {(h — e" h +¢")}/1_, we find a uniform lower bound

ony Gh. O
i .

Remark 1: Suppose (6™) is such that rs(6™) = Jz;rs',-égj - JZ T5; < 0, for some state

s and some pair (J*,J™) of subsets of as.sets, but at § = li7zln 0" we get rs(o) =0

(that is, rs suffers a positive jump at the limit point of §*). Let y"™ be consumer h’s
N

choice at (p™, g™, 6", t", "™, c*). Then, we can still claim that the sequence 3~ G;(y?™)
' : J

, ' ovt ovh
is uniformly bounded from below. If it were not bounded, then >~ — — 35~ — would
g% Oy; 52 Oy,
tend to —oo. The uniformity of the bound follows from equicontinuity of utility and
marginal utility, together with continuity of endowments, as in the proof of the lemma

above.

3.5 Nonarbitrage conditions

Let us examine now the conditions that asset prices ¢, , mean reinbursement rates
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#.. and spread coefficients (t,n) must satisfy to rule out the possibility -of arbitrage.

Given y € R4, let fo(y) =t Y ns(Rsy — fs(y)) — g - y. In the context of our model,
s=1 ’

by arbitrage we mean the existence of a sequence (y,) C R4 of portfolios, satisfying
the budget constraints, such that f,(yn) — +o00, for at least one s (s =0,1,...,s), and
fs(yn) stays bounded for other states. Let § be the S - A matrix whose elements arc

given by 0s; = 1, when 05; = 1, and ésj = 0, otherwise.

Lemma 4: g€ R4, 6 ¢€[0,1)54, t € Ry and n.€ AS~! do not allow for arbitrage only.
if

(1) g =t 3 msrsi, when 8, # 1.
s:0,._,-<l

(ii) g; > 0, when 0; =1

(iii) for each pair (J*, J™) of subsets of assets, such that 8; # 1 for some j € J*, when

s
( D Tsibai— ), Ts.f) > 0, we have ) (qj“t 2. 7787'3.1')— >, ¢ >0

jeJ+ jE€EJ- s=1 jeJt 5:0,i<1 jEJ—

(iv) for each pair (J*,J7) of subseets of assets, such that 6, = 1, Vj € J*, when

S
( Y b~ ¥ ) 20, wehave 3 g;— 3 ¢;>0.

jeJt JjE€EJ s=1 ~ jeJt Jj€EJ-

Proof: The first period budget constraint can be written as g-y+¢3_ 1, ( fs=> Gs,-) -
. . . s J ‘

t 3 3 (rgyi — Gsi) = po - (wo — zq). By‘ lemma 3, f; — Y G,; is bounded,
J :

J1;>08:0,;>0

Vs. Now, suppose (i) does not hold and let y; — +o0o. Then, f; — +o0o for some

S, (q.,‘ -t Y nsrs_,-) y; — —oo and G4 — +00 (s = 1,...,5). By L'Hopital's rule,
§:0,;<1 ' ,

lim fo(y) = [lim { g¢;—t Y nere; Jy;| {1+lim |¢ Yo nsG .q-—t NeTs;
» \ s 3 1

5:0,,;<1 s:0,;<1 s:04;<1
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= 400, since G,; — 0 in states where 8,; < 1. Then, (¢,6,t,m) would allow for
arbitrage. We have shown (ii) earlier (in the proof of lemma 1).
Suppose now that (iii) does not hold and let y7 =n for j € J + and y; = —nfor

j € J-. When n — 400, lim f,(y") = 400, for same s € {1,...,s} where Y T5j0ui —
. 1. J-G_,,

> jes-Tsi > 0or 05 # 1 for some j € J* (since 3_ G,; would go to +oo, even if the
: : b}

linear terms would cancel out). Now, lirrln fo(y™) = — [lirlln ( Z (qj—t Z UsTs,j)n-—

jeJ*+ 3:0;._1'<l
> an)]{l +lim [t >y nsGQ;f/( > .(‘1‘7' -t ) ’7””') -2 qj)]} E
j€J- "L st sog<t jeJt. 8:0,5<1 " deJ- |

+00 and arbitrage is allowed.

If (iii) does not hold, it must be the case that > rg; — 5° ry; > 0, for some
J€JT - jed- :

state s = 3. Otherwise, the rank of R could not be A. Now, let yi = n, for JE Jt,

and y; = —n, for j € J-. Whenn — oo, f3 = +o00. If )} ¢; — Y g¢; <0, then

jeJt jeJ~
lim fo(y™) = —um( doai- ) q.,-)n = +ooand if 3 ¢; = Tjes- g5, Solu™)
n n ieJ '

jeJt jeJ~
‘would stay bounded. In either case, arbitrage is allowed.

Notice that, by lemnma 3, the pairs (J*, J) for which Y 1sibsi— Y 755 <0
- j€J= jeJ-

in some state are of no interest. [

3.6 Asymptotic properties of truncated equilibria

If n is sufficiently large, the equilibrium values of (q, 0, ¢, n) in a truncated econ-

omy 5" are nonarbitrage veetors. Otherwise, every eonsmmer would chioose :'1:’:,. = n (for
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some's = 0,1,...,s and some £ = 1,...,L) and fea.sibility would fail f{or n sufficiently
large.

Now, (pZ,q",B") C AFHA+S=1 where g = t"q", (p§) € AV (s =1,...,5)
“and o" € [0,1)54. Then these sequences have cluster points (po,q, 8), (ps);=1 and 8.

We would like to infer that (g,8,t,) is of nonarbitrage (for t = 3 0,1 = 8/t).

Lemma 5: A cluster point (q, 6,t,n) of the equilibrium sequence (g™, 0™,t", ™) of the

truncated economies is still a nonarbitrage vector.

Proof: Suppose not. Then either (a) there is a pair (J*, J7) such that ) r4;67; — > 7's;
. ‘ JV e

is riegative for some state along the sequence but becomes zero at the cluster point, which

- might not satisfy > (q',- -t Y nsrsj) > 5" g4, since this inequality was not required
J+ 5:0.3;<1 J- .

along the sequence, or (b) there is a pair (J*,J~) such that 8§} — 1,Vj € J+, and

(Z roj = 3 rs-,') > 0 and (E reibl — 3 rs_,) > 0 along the sequence. In case (b),

J+ J- J- - s

by (iii) in lemma 4, we know that > q} —~ 2,47 > 0, but, at the cluster point we know
, e ,

only that the weak inequality holds, whiéh, by (iv) in lemma 4, is not enough to prevent
arbitrage. All the other cases, lead to-the fullfilment of the desired weak inequalities at
the cluster poiAnt.‘

Now, in case (a), (y5;) is bounded, for any consumer h, by the remark following
lemma 3, and let y”' be its cluster point. In case (b), we can try to find a cluster point for
(y") by inverting a Cramer subsystem of budget cohstraints (since §; =1 for j € J*),
provided that we already know that (2) has itsclf a cluster point. v

Fatou’s lemma, part 1, establishes the existence of an integrable function v map-

. (S - - . " . .
ping into Ri( ") such that _/, 2" dA < lim / a dX (passing to a subsequence if ncc-

n
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essary) and 2 is a cluster point of (x”) for a.c. h. Then, in case (b), we can pick
#JT + #.J- states and solve the respective Cramer system of budget constraints:

ps- (b —wh)y= 1"3_,»3/;-" — 3= G™, unoticing that the last terin is bounded,

857
jEI VYT~ jgJtug- _
by absence of arbitrage opportunities involving these assets. The solution (y';")je JiuJ-

is a cluster point of the sequence (37™);c+uy- -

In fact, apply the implicit function theorem to the system of # J* U# J~ equa-

tions fu( > Gh+ X GP) — po - (e — we) = 0. We know that at the clus-
jeJtud— T gqgJlud-

ter point (p,q,'G,t,'r), c¢) this system has a solution at which the Jacobian with respect
toy;, 5 € J* UJ7, is nonsingular. Hence, therc is a continuous function ¥ map-

ping a neighborhood V of <p,. g,0,t,n,c, > Gh

sj?
JgJruJ-

x) into a neighborhood U of
Yi).c1+1,,~ and this function describes the. unique solution of the system in thcse
Yi jeJtuyg ;

neighborhoods. Now, for n sufficiently large, (p", q, et et Y. GZ‘,’-", a:"') €
~ - jgJtug-
V and we must have (y;-""‘)je J+uy— given by . The continuity of ¢ implies that

(y';,').')'GJ*'UJ- is a cluster point of (y.;m)jeﬁu.l— .

We want to show that (z",4") is an optimal solution of consumer h's problem
and that, therefore, the cluster point (q,6,t,7) does not allow for arbitrage. Budget
feasibility follows by closed graph of the budget correspondence and optimality uses the
lower hemi-continuity of this correspondence (as in the proof of Theorem 1). O

We are now rcady to infer that the sequence of equilibria allocations of the

truncated econommies is uniformly bounded, which will allow us to apply Fatou’s lemma

(part II, see appendix).

Lemma 6. If (p™,q™, 0™ t", ", c") converges to (p.q,0,t,m,¢) and both the sequence
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(¢",6",t";n™) and its limit point are contained in the set of nonarbitrage vectors, then

the sequence of demanded bundles and portfolios (2", 4»") is uniformly bounded.

Proof: Let fo(y;q,6,t,m,¢) = —q-y—t)_ n.(fs — Rsy). Suppose (y"™) is not uniformly

bounded. Then esssup(y™) — oo, for some j € {1,...,4}. By lenmma 3 we can
h '

decompose the nonuniformly bounded assets iuto a pair (J*,J~) of subsets of assets

such that Y, 75i0s; ~ Y 7s; > 0, Vs. Now, esssupfo(y"™) — —o0, either because
J- h.

condition (iii) in lemma 4 holds in the limit and esssupty., S 7,Gs; — +oo or
h JFs:0,<1

because condition (iv) in lemma 4 holds in the limit. Then, —fo(y*™;q,0,tn,¢) >

sup ess supw,’,"[ , for h belonging to a set H of consumers of positive measure and n. > V.
4 h ’ C

Then, — fo(y""; ¢, 6™, t"’,ﬁ"’,c”) > supesssupw’, , for h € H and n sufficiently large,
¢ h ' .

contradicting budget feasibility along the sequence. O

Lemma 7. There exists an integrable function_'(x,y) mapping into Ri(sﬂ) x RA
such that [, z"dA(h) = [, w"dA(h), [,y"dA(h) = 0, (2",y") is a cluster point of

(.’E’m, yh.'n.)’ for a.e. h., and (3) holds.

Proof: By lemma 6, we can apply Fatou’s lemma (part II, see appendix) to the se-
quence (Z"') = (mn,yn,zn) where " = ((yf)1).,r1).’ G'n,, (G+)n,f'n., (f‘;w, _ Z G;):j),r:.j _
‘ — Tsills.
(1- 0;’:1)1'3.1(3,* I (G:j)" — B5;7s; (yj+)"'). Then, there is-an integrable function z such
that [, z(h)dA(h) = lim / z"(h)dA(h) and, for almost every h, z(h) is a cluster point
7.

of (z’i'(}l)). Now, z(h) = (x(h), y(h), 2(h)) dnd, by continuity of the functions involved,
z(h) must be equal to (y*,7,G,G*, 1, (f. — 2Ge)Ty — (1 - 951)1'5.,-,1/;', GJ, — 0,14 ;1/?’)

evaluated at-y(h). This implies that markets clear and cquation (3) holds, for any (s, a).
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Moreover (2:(h), y(h)) is an optinal solution, as in the end of thie proof of lemma 6. T

This complectes the proof of the theorem. We close this section with two remarks

on the role of some assumptions.

Remark 2. Without assumption (A4), the default barrier established in lemma 3
would not exist and one of the nonarbitrage conditions would be as follows. For any pair

(J*, J7) of subsets of assets, such that (i) Y~ 7,6,;— Y 7s; =7, is negativefor s €
jeJ+ i€

S1 # 0, positive for s € S3 # 0 and possibly zero for s € Sy, but (ii) 6s; = 1, VieJt,

s € S U S3, we must have Y q; — > ¢; > t( Yo ms Y Tsi— N . 7'5.,-).

jeJt jeJ= s€ES2US2  jeJt s JEJ~
This strict inequality condition would create a problem when we would try to redo
lemma 5, since the condition accommodates a case where bought assets do not reimbursc
completely (i.e., 85; < 1), for some s € S;. In fact at a cluster point, only the weak
inequality is guaranteeed to hold, but we might not find a Cramer subsystem of‘ budget

constraints to solve for (y;+,¥;-).

Remark 3. If the returns function G,; were piecewise linear (that is, if G; were given
by 85,755y, for y; > 0, as in the proportional reimbursement scheme adopted by Dubey-
Geanakoplos-Shubik and Araujo-Monteiro-Pascoa), the nonarbitrage conditions (under
assumption (A4) and a default barrier established as in lemma 3) would be as follows.
For any pair (J*, J7) of subsets of assets, such that Y Tsibei— Y 1o =120, for
jeJ+ jeJ- »
any s, and 5 > 0, for some s, we must have 3 (q,— ¢ Yo oms(1 - 93,7‘)) > > qj-
jedt : 1€J-
This strict inequality would create a problem when we would try to redo lemma 5. In

fact, at a cluster point only the weak incquality is guarallteed to hold, but we might

not find a Cramer subsystem of budget constraints to solve for (y,+,y,-), if 0,; were
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less than one for some j € J*. This is a case of ex-post redundancy of assets, duc to

default.

4. CONSTRAINED EFFICIENCY

We will discuss now the efficiency properties of equilibria. We will show in
Proposition 1 that an equilibrinun allocation is always weakly constrained cfficient and
in Proposition 2 that, generically, it will not be strongly constrained efficient. Since
proofs are a bit harder for tlie nonproportional reimbrusement model, we deal only with

this case in the proofs.

Proposition 1. Let (Z,7,p,q,6) be an equilibrium (together with a vector (£, ], &) in
de case of section 3 above). The allocation (7, §) is efficient among all allocations (z, y)
such that
(1) [, a"dA(h) = [, w" dA(h) and [, y" dA(R)
L

(i) ps - (xh - Wt = freh) = max( S Gy (Tsiv5),s Z pvspwfs"p>, for any s =
i=1

1,...,5and ae. h
(iii) po - (2h —wWd)+q-y"+T" =0, for ae. h, where
(iv) T € L'(I,R) is such that [, ThdA(h) = 0.

Proof: Suppose there exists an allocation (z,y) which, together with a transfers.func-
tion T', satisfies conditions (i) through (iv) and u"(2") > u/(z") for a.e. a. Then the

first period budget constraint must be violated, that is,

]7()‘("’)' w())+r1 y +fZ7;q "-R 1/")>() hel.
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Now, aggregating,
/(10 —w)dA\Rh) +q- / ytdA(h) + r‘Zm /(fs — RayMd\(h) >

But we know that [, (zf —w()dA(h) =0, [, y" dA(h) = 0 and R [, y" dA(h) = 0. Then,
ZTIs ; flrdA(h) > 0 and, therefore, there is a state s for which [, P da(h) > 0. Now,

by (11) we must have /]("Ls, — wh)dA(h) > 0 for some ¢ = 1,..., L, contradicting (i).

O

Remark 4. It is intercsting to notice the role played by the sprcad in Proposition
1. The weakly constrained efficient transfer afnong agents is given by the equilibrium

spread " 7 (f — R.#"), which is a discounted expected value of the difference between

the consumer’s default and the default suffered by the consumer.

Our default model can be scen as a model of externalities, where default by
others decreases returns according to the function G,;. The inefficiency introduced by
this externality can be corrected when a market for the externality is created, assuming
that legal rights stipulate that agents are entitled to full reimbursement of claims. In
our model, therc is a market for the externality in cach state and the respective price
is given by tn.. As suggested by Coase (1960), the resulting market equilibrium is free
from the inefficiency caused by the externality.

\There is, however, another source of inecfficiency, which is the incompleteness of
markets. We will exainine now the performance of the equilibrium allocations in the

light of a stronger efficiency criterion.

The above weak constrained efficiency property of equilibria is analogous to the
propertics found in the incomplete markets model without default and also in the col-

lateral model (without utility penalties) of Geanakoplos-Zame-Dubey. As in these two
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models, the equilibria of our model will, generically, be dominated when prices are no

longer assumed to be kept constant at the equilibrium levels.

Proposition 2. Generically (in endowments and utility functions), equilibrium alloca-

tions are ineflicient among the allocations (z, y) for which there exist a transfer function
T € L'(I,R) and prices (p,q) € IR:‘_(SH) x R{ satisfying
(i) f,a"dA(h) = [, w"dA(h) and [, y"dA(h) =0

(i) po - (¥ - wh) = Fi(y") = max (stm.ﬂ/j), - zpsmwiu), for any s =
¥ ¢

I,...,S and a.c. h
(iii") po- (af —wl) +q - y" +T" =0, for a.e. h,

(iv) [, ThdA(h) = 0.

Proof: It is enough to show that an equilibrium allocation does not satisty the necessary

first order condtions of the following welfare maximization problem, given a € L'(I,Ry),

max /(Lh'u”'(n:h')d,/\(h,)
1

(., T\p.q) .

subject to (i), (ii’), (iii’) and (iv’).
Let p” be the Lagrange multiplier of constraint (i) ¢ and let pf be the Lagrange
multiplier of constraint (iii’), . Then, setting the derivative of the Lagrangean with

respect to pge equal to zero we obtain the following equation:
(1) [ Al = )+ vl JaAR) = 0

\VhCI‘(;‘ B-* = {h’: fqh - - Eps(’)/x(’wff}‘
. ¢

Let us clieck if this necessary condition for cfficicncy can be satistied in cquii-

librium. Notice that the first order conditions with respect to (@, y) arc satisfied at



an equilibrium (i,gj,ﬁ,(j,é,f,ﬁ,é} (answer already know, by Proposition 1), when we

set the multipliers of the commodity-feasibility constraints equal to fijsps and pl! =

h
X;;; — s (s = 1,...,5), where A? = ||[Vul(@D)||/||ps|] (s = 0,1,...,S). Replacing in
equation (4) we obtain:

g )\h, ~
/] T L@ = wip) + vswgexip, |dN(s) =
. 0

(5) . / (& — wly)AA(R) + Feyer / Wty dA()
Jr J B,

Notice that the first integral on the right hand side is zero and that when B

is of mecasure zero the equation becames [, é(ig’, - wi’k)d)\(iL), which was the necc-
essary condition for efficiency in the incomplete markets model without default (see
Geanakoplos-Polemarchakis (1986) and ‘Magill-Shalfer (1990)). Just like this condtion
was generically (in endowments and utility functions) violated in equilibria of the model
withont default, now equation (5) will not hold, generically, in equilibria. (since the LS
equations (5), together with the equilibrium equations, constitute an overdetermined

systeni). O

APPENDIX
Fatou’s lemma (in m-dimension)

I) Let (f,) be a sequence of integrable fimctions of a measure space (€2, A, ) into
R7T . Suppose that lim [ f, dv exists. Then therc is an integrable function
T
- I

oot @ into R} snch that f(w) is a cluster point of (f, (w)), for a.c. w, and
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fq fdv <lim / £ dv.
moJQ

II) Let (f,) be a uniformly integrable sequence of integrable fﬁnctions of a measure
(2, A,v) into R™. Suppose also that 111131 'f,,, dv exists. Then there is an inte-
grable function f of §2 into R} such that.f(w) is a cluster point of (f,,(w)), for
a.e. w, and [ fd) = lirxln /Q fndv (see Arstein (1979) or Hildenbrand-Mertens
(1971)).

Lemma: Let G:Ry — R given by G(z) = 2(1 — exp(—0z7")), where
§=c"(1~%)/v, v€(0,1) and ¢ > 0. Then dG/dc > 0 and d*G/dc? < 0.

Proof:
%G— =zexp(=8z Mz "y N1 -7)/y>0
c
LC o ( LY exp(-sem)(-2) + exp(- 217 4G
—z = |7 7 ) exp(=éz z exp )
d2
now —— = Yy = 1) 2(1 — fy)/’y < 0 and therefore
d*G oy (d6\? . oy d26
e z{ —z <—d—c- exp(—027") + exp(—d27")z )
is negative.
References

Araujo, A. and M. Pascoa, “Real Determinacy, Financial Markets and Default”, So-
ciedade Brasileira de Econometria, Anais XVI, 57-87, 1994 (reprinted in Economie

Mathématique et Finance Mathématique, E. Jouini (ed.), ENSAE, 1994).

33



Araujo, A., P. Monteiro and M. Pascoa, “Infinite Horizon Incomplete Markets with a

Continuum of States”, Mathematical Finance, 6, 119-132 (1996).

Araujo, A., P. Monteiro and M. Pascoa, “Incomplete Markets, Continuum of States and

Default”, Economic Theory, 11, 205-213 (1998).

Arstein, Z., “A Note on Fatou's Lemma in Several Dimensions”, Journal of Mathemat-

ical Economics 6, 177-282 (1979).

~Aumann, R. and M. Maschler, “Game Theoretic Analysis of a Bankruptcy Problem
from the Talmud”, Journal of Economic Theory 36, 1955-213, (1985).

Coase, R., “The Problem of Social Cost”, Journal of Law and Economics (1960), 1—44..

Dubey, P., J. Geanakoplos and M. Shubik, “Default and Efficiency in a General Equilib-

rium Model with Incomplete Markets”, Cowles Foundation Discussion Paper, 1989.

Geanakoplos, J. W. Zame and P. Dubey, “Default, Collateral and Derivatives”, Yale

University, mimeo, 1995.

Geanakoplos, J. and H. Polemarchakis, “Existence, Regularity and Constrained Subop-
timality of Competitive Allocations wlen the Asset Market is Incomplete”, in W.
Heller, R. Starr and D. Starrett (edit.), Essays in honor of K. Arrow, Cambridge
University Press, 1986.

Geanakoplos, J., “Promises Promises”, Yale Urﬁversity, mimeo, 1996.

Hildenbrand, W. “Core and Equilibria of a Large Economy”, Princeton University Press,

1974.

~ Hildenbrand, W. and J.F. Mertens, “On Fatou’s Lemma in Several Dimensions”, Z.

Wahrscheinkeitstheorie verw. Geb. 17, 151-155 (1971).

Magill, M. and W. Shaffer, “Incomplete Markets”, in W. Hildenbrand and H. Sonnen-
shiein (edit.), Handbook of Mathematical Economics, vol. IV, North-Holland, 1991.

34



Modica, S., A. Rustichini and J.M. Tallon, “Unawareness and Bankruptcy: a Cen-
cral Equilibrium Model”, Economic Theory, forthcoming, revised version of CORE
discussion paper 9573 (entitled “A Model of General Equilibrium with Unforeseen
Contingencies”), 1995. \

Zame, W. “Efficiency and the Role of Default when Security Markets are Incomplete”,
American Economic Review, 83, 1142-1164, (1993).

35



