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Abstract

Concavifiable preferences are representable by a function which is
twice differentiable almost everywhere, by Alexandroff’s [1] theorem.
We show that if the bordered hessian determinant of a concave utility
representation vanishes only a null set of bundles, then demand is
countably rectifiable, that is, except for a null set of bundles, it is
a countable union of C! manifolds. Given this property, equilibrium
prices will be locally unique, for almost every endowment. We given
an example of an economy satisfying these conditions but not the
Katzner- [6] - Debreu [2], [3] smoothness conditions.



1 Introduction

Smoothness of consumer demand, as required in Debreu’s [2] semninal work
on determinacy of equilibria, is a strong condition. In general, even for C?
preferences, demand will be smooth only on a generic set of prices and in-
comes, which is the preimage of the set of bundles where indifference surfaces
have nonzero curvature (see Debreu [3],[4] and Katzner[6]). Differentiability
of demand in almost every price and income is the most that can be expected
in general and Rader [9] showed that this property together with Lusin’s con-
dition on demand (that the function maps null sets into null sets) are enough
to guarantee determinacy of equilibrium prices, for almost every endowment.
Rader [9] [10] showed that the first requirement is satisfied by concavifiable
preferences with income - Lipschitzian demand or by D? utility, whereas the

second requirement holds for analytic utility.

Contemporary is the geometric measure theory approach of Kleinberg {7,
who established an alternative sufficient condition which is the approximate
differentiability of demand, outside of a countable set. This condition was

‘shown to hold for C! utility functions such that the normalized gradient ad-
mits, except on a countable set, an approximate derivative bounded from

below.

Our paper examines the contribution of concavifiability of preferences to
the issue of determinacy of equilibria, using also a geometric measure theory
approach. We dispense with Kleinberg’s [7] assumption that utility is of class
C! and appeal to a theorem by Alexandroff 1] establishing that concave
functions are twice differentiable almost everywhere. We assume that the
bordered hessian matrix of the concave utility representation is nonsingular
almost averywhere and show that, except for a null set of bundles, demand
is a countable union of C! manifolds. This rectifiability property is weaker
than Rader’s [9], since it does not imply differentiablity almost everywhere,
but it suffices for determinacy of equﬂibria, in almost every endowment.



where e(é)/s converges to zero as s — 0, uniformly on the directions y
and also independently of the choice of the extension u;. Moreover, the ma-
triz H(z) = [Aui(x) ... Aua(x)] is uniquely determined, independent of the
choice of the extension and is ¢ symmeiric negative semidefiniisve malriz.

Actually, the matrix H(zx) exists only at points where u is at least once
differentiable (see Alexandroff [1] pp. 5 and 6) but not necessarily at any
such point. Furthermore, any concave function admits at almost every point
z a second-order Taylor expansion and the matrix of the quadratic form in

this expension is the matrix H(z).

2.2. Rectifiability

Recall that a function f: A C R" — R™ is said to be (locally) Lipschitzian
if for any a € A there exist an open ball B.(a) and a constant M such
that | f@) - f@) IS M | z -y |, for any z,y € B.(a). Denote by L"
the Lebesgue measure in ™. We say that a set £ C R" is | - rectifiable
if L™(E) < oo and L" - almost all of E is contained in the union of the
images of countably many 1dcaﬂy Lipschitzian functions from ® to ®". A
set £ C R" is said to be countably [ - rectifiable if L™ - almost all of E is
countained in the union of countably many rectifiable sets. From the point of
view of geometric measure theory, rectifiable sets behave like C! manifolds.
In fact, in the definition of a rectifiable set E' one can take the Lipschitzian
functions to be C! diffomorphisms on compact domains with disjoint images
whose union coincides with E almost everywhere (see Federer [5] 3.2. 18 and
3.2.29).

A measurable subset of R" is said to have density zero at a € R" if
V50,36 > 0 such that L*(Bs(e)N A) < eL™(Bj(a)) for any § < §. Now,
consider an extended real valued measurable function f defined on a mea-
surable set A C R,. The approximate lim sup of f at a € R,, is defined as
ap lim sup,of(z)=inf{teR:{ze€ A: f(x) >t} has density zero at
- a}. Similarly, ap liminf f(z)sa = sup{t e R: {z € A: f(z) < t} has
density zero at a}.




2 Rectifiability of Demand

2.1. Preliminarities

‘The preference relation = is a strictly convex monotone continuous complete
preording on R%. The relation 7 is said to be locally concafiable if for any
compact convex set K C R? there is a concave utility representation ux for
n. Local concavifiability was already implied by Katzner’s [6] conditions, as
Mas-Colell [8] showed.

For technical reasons we want to think of all concave functions as defined
throughout ®* and taking the value —oo outside of the effective domain. The
extended real-valued function obtained this way is called a proper concave
function. Denote by dom u the effective domain of the function « and by
int(dom u) the respective interior. A proper concave function % on R" is
differentiable on a dense subset D of int{dom u) and the complement of D
in int{dom u) is a set of measure zero; moreover, u is actually continuously
differentiable on D (see Rockafeller [11] 25.5). Alexandroff [1] established
that a proper concave function u on R" is also twice-differentiable almost ev-
erywhere on int{dom u}. Since the domain D of the first derivative may have
an empty interior, we should be more precide and recall the exact statement

of Alexandroff’s theorem.

Let u(-;Z-1) : ® — R U {—o0} be the proper concave function given by
u(xi; 1) = u(Z1,..., %1, %, Fis1,. .., Zn). The right derivative u, (-;%_;)
and the left derivative u_(-; ;) are well defined throughout the effective
domain of u and u_(;%-;) < u,(Z_;). Alexandroff [1] defined an ex-
tended partial derivative u; of u as any function satisfying the inequality
u_(2i; %-i) < ui(z) < ut(z; ;) where £ = (z;Z_;). Note that ui(z) coin-
cides with the partial derivative -‘%‘—i(x) when it exists.

Proposition 1 (Alexandroff}:The extend partial derivative u; is differen-
tiable almost everywhere on int (dom u) and at any point x of differentiability,
for any direction y € R*®, we have | u;(z + sy) — u(z) — Aus(z) - sy [< €(s),



From the definition, if the domain A has density zero at a then ap lim
supz_.af(x) = —oo. It is immediate to see that if lim sup exists then it is

equal to the approximate limn sup.

Recall that a function f from A C R" to R™ is said to be pontwiée Lips-
chitzian at a € A if lim sup., || f(z) ~ f(a) || / | £ — e ||< oc. Similary, a
function f: ACR" —> R™issaid to be approximately pointwise Lipschitzian
at a € A if aplim supz—., || f(z) — f(a) | / || z — a |}< 0o. By lemma 3.1.8
in Federer [5), if & function f : A C R" — R™ is approximately pointwise
Lipschitzian then A is a countable union of measurable sets such that the
restriction of f to each set is Lipschitzian. Then, the range of f is a count-
ably rectifiable set. An immediate consequence is that f satisfies Lusin’s

condition.

Now we will establish a result on the.rectiﬁability of the inverse of a dif-

ferentiable function.

Proposition 2 Le S and @ be functions defined on open subsets of R" and
taking values in R"; suppose that the restriction of f to a measurable subset
D admits the restriction of ¢ to f(D) as an inverse funciion. Let a be a limit
point of D and b= f(e). If f is differentiable at a and f'(a) is nonsingular,

then ap lim sup,_.o,tp[,w,Mf—’—HﬁM <t (f@)t].

Moreover, if D is a full measure subset of dom f then the above inéquah’ty
holds as an equalily.

Proof: Inverting the incremental ratio we have, aplim sup,_o || @b+ s) —
p@) /1 sll=inf{teR:{zec(D~a):| fla+z)-fla) i/l z]<1/t}
has density zero at a} = 1/sup{t e R: {x € (D-a):|| fla+z)- fla) || /|l
© z ||< t} has density zero at a } = 1/apliminfe—ayyo) | fl@+z)—fla) I /1|
z {|< 1/liminf,_o || fla+z)— f(a) || / || = || where the last inequality follows
from the following set inclusion: {t € R : {z € (D—a):|| fla+z)~f(a) || / |
z ||< t} has density zeroat a} 2 {t € R: {z € (dom f—a) :|| f(a+2z)—f(a) ||
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/|| z < t} has density zero at al.

If D has full measure in dom f then the two sets in the above set inclusion
are equal and the above inequality holds as an equality. To finish the proof
recall that for a mapping h with nonsingular derivative A’ at a point a, the
lim inf of the incremental ratio of h at a is equal to || (A'(a))™! ||=! (see
Federer [5] p. 209). n

2.3. The Result

Theorem 1 If a continuous, monotone, strictly convex preference relation «
on R is locally concavifiable and for each utility representation the bordered
hessian matriz is singular only in a set of measure zero, then the demand
functiond : int A" x R, — R} is approzimately pointwise Lipschitzian

for almost every value.

In other words, demand is countably rectifiable and, except for a null set
 of bundles, it is t_he union of couniably many pairwise disjoint compact Ct

submanifolds.

Proof: Consider a countable cover of R} by closed cubes. For each closed
cube K C R%, 7 is representable by a concave utility function u with no
critical point, by monotonicity of 7. For simplicity, we assume that u is a
proper concave function with effective domain K. We will consider only the
optimal interior solutions in K, since the boundary of K is a n-null set.

Let N be the null subset of int K where u is not twice-differentiable. Let
é(z) be the bordered hessian determinant of u at z € int K\N, (that is
the determinant of the (n 4+ 1) - (n + 1) matrix which is formed by bordering
D?u(z) with [Yu(z)0] as a last row and its transpose as a last column). Let
CP be the null subset of int K\/N where the bordered hessian determinant
& of u vanishes and let RP be the complement of CP on int K\N.

Recall Debreu’s [3] decomposition of the demand function and adapt
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it to the case where dom Du is just a full measure subset of int K. Let
g : x — vu(z)/ || vu(z) | and §(z) be the vector of the first n — 1 compo-
nents of g(z). The restriction d of the demand function d to d~!(dom Du) is
the inverse of the niap z — (p,y) = (§(x), g(x) - =), which is the composition
of a:x — (§(z),u(x)) and 3 : (B,v) — (B, m(v)), where m(v) = min{p- z:
u(2) > v} |

Let § and & be any extensions of g and «, respectively, obtained using
Alexandroff's extended partial derivatives. The Jacobian determinant of &
at z € int K\N is Ja(z) = -6(x)g"(z)/ | vu(z) ||*, where g"*(z) is the
n* component of g(z). Then J(a)(z) # 0 on RP. The function m has
the same Jacobian determinant as the inverse of the function v given by
s — maz{u(z) : p- z < s}. Now u(s) = vu(z) ||, for = d(p,s). There-
fore J(Bod) = —6(x)un(z)/ | Vu(z) |*+?+# 0 if and only if z € RP.

Now, by Proposition 1 above, for 2° € RP, let (p°, %) = (Boa)(z°) and
we have ap lim supey~@oy0 | dp,y) 4@, 4°) I / 1| (p,v)— (2°,3°) lI< o0,
where d = d |a-1(dom w)- Since dom Du has full measure int K we also have
ap lim supp @y | d@,y) — dE ™) 1 / || (p.%) — (°.3°) < oo, for
®°, 4% = (Boa)(z?),z° € RP. We have proven that the demand function is
] approximately pointwise Lipschitzian on the inverse image of RP and RP
is a full measure subset on int K. To complete the proof, notice that the
countable union of the null complements of each set RP in the respective
cube K is a null subset of ®7%. ]

3 Local Uniqueness

Consider an exchange economy with m consumers and n goods. Let d; :
int A" x R, — R% be the demand function and w; € R%, be the endow-
ment of the 7** consumer j = 1...., m. We keep the demand functions fixed
and parameterize an economy by an endowment vector w = (w,. .., wm)-
Given w € R}7, an element ‘p € A" ! is an equilibrium price vector of the
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economy w if £7%, dj{p,p-w) = L2, w;. Let E(w) be the set of equiIibrium
price vectors of the economy w. We say that equilibrium prices are locally
unique if all elements in E(w) are isolated points of this set.

Theorem 2 If the demand functions d,,...,dm of all consumers are ap-
prozimately pointwise Lipschitzian for almost every demand bundle, then the
equilibrium prices are locally unigque, for almost every endowment vector.

Proof: Let U = int A™ ! x R, x RT 7" and define the function F : U —
R™™ as in Debreu [2] by e = (p, y1, Wa, . . - , Wm) — F(€) = (Fi(e), - .., Fnle)),
where Fi{e) = di(pyyn) + 0, di(p,p - w) — Tin,w; and Fj(e) = w; for
j# 1. Fore € Uyp- Fi(e} = . Also p is an equilibrium price vector iff
{p.v1,w, -, wm) € F71(w). We want to show that for a.ew, every ¢ in
F~Yw) is isolated. Let us start by claiming that the range of F is a m.n-
countably rectifiable set (through Lipschitzian restrictions of F').

Let M; be the full measure subset of ] which is the countable union
U2, Mji of disjoints images of C! diffeomorphic restrictions of d;. Define
My={weR xR D w="F()e = (p,v1,wa, .- ., wm) and di(p, 1) €
M} and My = {w € " x RY™ Y . = F(e),e = (p,y1,wa, ..., Wm) and
di(p,p- w;) € M;},j # 1. We want to show that U2, M is of full measure
in the range of F. '

~ Let p: RY™ — RY™ be defined by pi1(z1,...,Zm) = 71 + ... + Zm and
pi(xiy ..., Zm) =x; (j =1,...,m). Now p is linear and invertible and there-
fore maps full measure sets into full measure sets. Notice that p(S) is of full
measure in R}™ iff p,(S) is full measure in R} for S C R}™. The set M; x
... X Mg, is full measure in R7 and by the above argument p (M) x...x M)
is of full measure in . Now Fi{e) = p1(d(e)) — e_1 - 1. Let ¢ be defined on
R2 x RE™D by ¢1(y1, %) = 11 —¥2- 1 and ¥a(%1,32) = 3. Clearly, ¥ maps
null sets into null sets. Let A = py(d(UR,d;" (M;))) x ®R5™" and notice
that A is of full measure in R7™, since A = p;(M) X ... X Mp) X U™,
Then ¥(RT™\A) is of zero measure in ®* x ™. Therefore, UR, M; is of

10



full measure in the range of F. That is, the range of F' is n.m. - countably

rectifiable through F.

To complete the proof of the theorem, notice that the set F(U) can re-
garded as the union of counta.bly many disjoint m.n. - rectifiable sets Rg by
taking appropriate set differences). Now, one can take the countably many
Lipschitzian functions in the definition of each rectifiable set Ry to be C* dif-
feomorphisms Dy on compact domains with disjoint images, whose union co-
incides with the rectifiable set almost everywhere. Let N = F(UN\UZ., U=,

range D, which is a m.n. - null set.

Now any endowment vector w in F(U)\N is such that E(w) has only
isolated points. In fact, by the C! inverse function theorem, any element
w € F(U\N and any element e € F~!(w) have neighborhoods O,, and 0.,
respectively, that are homeomorphic under the restriction to 0, of some C!
map D;.. Moreover, for each w € F(U)\N, this map D, is uniquely deter-
mined, because the rectifiabe sets are disjoint and the D;;, maps have disjoint
images. Then, for any w € F{(U)\N, any price vector p in E(w) has a neigh-
borhood 0, where there are no other elements of E(w) (this neighborhood 0,
is induced by O, through the one-to-one correspondence between E{w) and -

F~Yw)). ' | u

4 An Example

Now, we will give an example of a pure exchange economy where: utility
functions are concave, but not differentiable, and we still have finiteness of
equilibria, for almost every endowment, although the set of endowments gen-
erating infinite equilibria is dense. Consider an economy with two consumers
with the same concave utility function on ®2, which is constructed so that

an indifference curve is differentiable only at irrational points.

For each ¢, € Q, let f, be characteristic function of the set {y € R, : y >
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gn}- Notice that f, is nondecre_asing and jumps at g,. Let f=3 '21? fowi
now f is nondecreasing, at any ¢, € Q it has a jump of magnitude % and it
is differentiable except at the rationals, with zero derivative.

Now integrate f to obtain a convex increasing function. Since f has a
countable set of discountinuities it is Riemann integrable. Let g: ® — R
be such that g(x) = f§ f(t) dt. The derivative ¢’ exists at every continuity
point of f, that is, at any irrational z. Furthermore, at any rational g, we
have g’ (g.) = f(gz) and g,(gn) = f(gs). Notice that g is strictly convex:
for A € (0,1) we have g(Az + (1 — Ny) = ® f(t)dt + f,{‘:ﬂl_l)” f(t)ydt <
[ f@)dt + J5 ™ f(t)de = Ag(x) + (1 —Ng(y)-

Now let h : R,, — R, be defined by h(z) = g(1/z). The function A
is decreasing, convex, differentiable only at irrational points: it will be used
as an indifference curve. Let the utility function be u : 2, — R given by

u(xy, 29) = x2 — h{zy).

The preferences in this example satisfy the assumptions of theorems 1
and 2 but not the smoothness conditions of Katzner [6] or Debreu [3],[4].
In fact, the bordered hessian determinant of u at (r;,z2) € (R\Q) x R
is equal to A" (z;) = ;l-i;_q"(l/xl)_ — ;2? g (1/z,). Here g is the derivative of
Alexandroff’s extend partial derivative g, = f and therefore g~ vanishes
identically on its domain R\Q. Then &"(z;) = —fg f(1/x) > 0, for any
71 € R\Q and the bordered hessian determinant is nonzero on the full mea-
sure set (R\@Q) x R. Let us examine the demand functions and the equilibria-
of this economy. If (zy,22) € (R44\Q) x Ry then —R'(z1) = p1/pa, im-
plﬁng z1 = (K)"Y(—p1/p2) except at prices associated with points where
h is not differentiable and these prices are elements of the subdifferentials
Oh(gn) = {;1/p2 € Rey : =k, (g2} < p1/P2 < —h_(gs)} and generate de-
mand z3 = (y — p1gn)/P2. We have determined completely the form of the

demand function.

It is easy to see that when the endowment vector (w,w,) is such that w,
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is irrational, then the equilibrium price ratio is equal to —A’ '(wl /2). Forw, ra-
tional, the set of equilibrium price ratios is the interval {—&. (w,/2), ~h_ (w /2)].
That is, almost every endowment generates finite equilibrium prices but the
set of endowments giving rise to infinite equilibrium prices is dense.
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