
Carlos Augusto Costa Garcia

Licenciado em Ciências da Engenharia Electrotécnica e de Computadores

Land Cover Classification Implemented in FPGA

Dissertação para obtenção do Grau de Mestre em

Engenharia Electrotécnica e de Computadores

Orientador: Rui Manuel Leitão Santos-Tavares,
Auxiliary Professor, FCT-UNL

Júri

Presidente: Professor Auxiliar Luís Augusto Bica Gomes de Oliveira, FCT-UNL
Arguente: Professora Auxiliar Anikó Katalin da Costa, FCT-UNL

Vogal: Professor Auxiliar Rui Manuel Leitão Santos-Tavares, FCT-UNL

Setembro, 2019

Land Cover Classification Implemented in FPGA

Copyright © Carlos Augusto Costa Garcia, Faculty of Sciences and Technology, NOVA

University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “novathesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

“If you can’t fly then run, if you can’t run then walk, if you
can’t walk then crawl, but whatever you do you have to keep

moving forward.”

Martin Luther King Jr.

Acknowledgements

I would like to express my thanks to "Faculdade de Ciências e Tecnologia da Universidade

Nova de Lisboa (FCT-UNL)"for these past 5 year. 5 years where I’ve learned so much and

it has been a second house.

To my advisor, Professor Rui Santos-Tavares, for giving me the opportunity to accom-

plish this work, contributing to my academic training, even more in the image processing

area which i like so much. Also, I would like to express my gratitude to Professors Luís

Bica Oliveira and João Pedro Oliveira for the support with the hardware required for the

task and Professors Anikó Costa, Filipe Moutinho and José Fonseca for the guide lines

and always being available to clear issues and doubts.

To my family, who had the most patience with my time away and gave me all the

support to get up every morning to continue the job. Thank you for all you gave me,

not just for this dissertation but for teaching me to become who I am today. Above all, I

wouldn’t have ended my course without them. All the love a family like mine can give,

words cannot express.

This house gave me a lot of good friends who I’ll make sure to keep close. They where

always there for when needed and have traveled this journey too. 5 years don’t sum up

what friends like these will experience. For friends who have been in my life longer than

these 5 years, Mafalda, Filipe, Márcio and Duarte, who gave a slap on my back every time

I needed consolation, please, let’s keep this incredible friendship going.

For the person who shines in my life everyday, who accepts my stubborn, who chew

me out and always corrects me, Beatriz, thank you with all my heart, I will always hope

to give you back what you already gave me. You were there every single day from begin

to end, you made me find my way when I was mostly lost, giving me the strength to keep

on, again, thank you.

Thank you all.

vii

Abstract

The main focus of the dissertation is Land Use/Land Cover Classification, implemented

in FPGA, taking advantage of its parallelism, improving time between mathematical

operations. The classifiers implemented will be Decision Tree and Minimum Distance

reviewed in State of the Art Chapter. The results obtained pretend to contribute in fire

prevention and fire combat, due to the information they extract about the fields where

the implementation is applied to.

The region of interest will Sado estuary, with future application to Mação, Santarém,

inserted in FORESTER project, that had a lot of its area burnt in 2017 fires. Also, the data

acquired from the implementation can help to update the previous land classification of

the region.

Image processing can be performed in a variety of platforms, such as CPU, GPU and

FPGAs, with different advantages and disadvantages for each one. Image processing can

be referred as massive data processing data in a visual context, due to its large amount of

information per photo.

Several studies had been made in accelerate classification techniques in hardware, but

not so many have been applied in the same context of this dissertation. The outcome of

this work shows the advantages of high data processing in hardware, in time and accuracy

aspects.

How the classifiers handle the region of study and can right classify it will be seen in

this dissertation and the major advantages of accelerating some parts or the full classifier

in hardware. The results of implementing the classifiers in hardware, done in the Zynq

UltraScale+ MPSoC board, will be compared against the equivalent CPU implementation.

Keywords: Accuracy, Performance, Land Use/Land Cover Classifier, CPU, GPU, FPGA,

Zynq UltraScale+ MPSoC.

ix

Resumo

O principal foco da dissertação é a Classificação de Terrenos, implementada em FPGA,

tirando vantagem do seu paralelismo, melhorando o tempo de execução entre opera-

ções matemáticas. Os classificadores implementados são Árvores de Decisão e Distância

Mínima, analizados no capítulo do Estado da Arte. Os resultados obtidos pretendem con-

tribuir na prevenção e combate de incêndios com base na informação que o classificador

retira dos terrenos em que é aplicado.

A região a ser estudada é o estuário do Sado com futura aplicação para a zona de

Mação, em Santarém, inserido no projeto FORESTER, que teve uma vasta área queimada

devido aos incêndios de 2017. A informação proveniente da implementação deve também

atualizar a presente na região de estudo.

Processamento de imagem pode ser desenvolvido sobre diversas plataformas, entre

elas, CPU, GPU e FPGAs, com diferentes vantagens e desvantagens aplicadas aos mes-

mos. Podemo-nos referir a processamento de imagem como o tratamento de grandes

quantidades de informação, aplicado a um contexto visual.

Diversos estudos foram feitos sobre o acelerar classificadores em hardware, mas poucos

no mesmo contexto que esta dissertação. Este trabalho pretende demonstrar as vantagens

de processar grandes quantidades de informação em hardware, tanto em tempo de pro-

cessamento e precisão de resultados.

Como os classificadores conseguem tratar a região de estudo, assim como a preci-

são na sua classificação é revista nesta dissertação e as vantagens em acelerar parte ou

totalmente um classificador em hardware. Os resultados dos classificadores implementa-

dos em hardware, mais concretamente na plataforma Zynq UltraScale+ MPSoC, vão ser

comparados com uma implementação equivalente em CPU.

Palavras-chave: Precisão, Desempenho, Classificação de Terrenos, CPU, GPU, FPGA,

Zynq UltraScale+ MPSoC.

xi

Contents

List of Figures xv

List of Tables xvii

Listings xix

Acronyms xxi

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem and Proposed Solution . 2

1.3 Outline . 3

2 State-of-Art 5

2.1 Land Use/Land Cover Classification . 5

2.1.1 Classification Algorithms . 5

2.1.2 Cloud Free Imagery . 22

2.2 FPGA vs CPU vs GPU . 24

2.2.1 Analyse of Performance Power in FPGA 25

2.2.2 Performance Analysis of FPGA in Image Processing 26

2.3 Classification and Image Processing in Zynq UltraScale+ 31

3 Platform and Software Framework 33

3.1 Xilinx Zynq UltraScale+ MPSoC ZCU102 33

3.1.1 AXI Protocol . 34

3.1.2 Common Blocks . 36

3.2 Development Environments . 36

3.3 Preprocessing Data for Implementation in Zynq UltraScale+ board 37

4 Classification Algorithms for Land Use/Land Cover 39

4.1 Decision Tree . 39

4.1.1 Decision Tree Classifier - Software Support 41

4.1.2 Simulink Model . 42

4.2 Minimum Distance . 45

xiii

CONTENTS

4.2.1 Simulink Model . 46

4.3 Vivado Design Suite - Xilinx UltraScale+ MPSoC Classifiers Implementation 48

5 Results 51

5.1 Accuracy Assessment - Zynq board vs CPU 51

5.1.1 Decision Tree Classifier - Accuracy 52

5.1.2 Minimum Distance Classifier - Accuracy 56

5.2 Processing Speed - Zynq board vs CPU . 57

5.2.1 Decision Tree . 57

5.2.2 Minimum Distance . 59

6 Conclusions and Future Work 61

Bibliography 63

I Annex 71

xiv

List of Figures

2.1 Example of a bimodal membership function, for band 1 [21]. 10

2.2 Methodology Structure. (Based on: [12]) . 12

2.3 Flowchart of the fusion data sets [30]. 16

2.4 PSNR for simulated scenarios with GAN [36]. 23

2.5 Performance comparison of SystemC, native VHDL and CPU implementa-

tions. Based on: [45] . 27

2.6 Performance of two-dimensional filters, CPU vs GPU vs FPGA [40]. 28

2.7 Performance for GPUs, FPGAs and a CPU for Primary Color Correction [48]. 29

2.8 Maximum throughput of 2D convolution for GPUs, FPGAs and a CPU [48]. . 30

2.9 Comparison of Processing Speed for different image size and coding format

[49]. 30

3.1 Validation Platform - Block Diagram . 33

3.2 Zynq UltraScale+ MPSoC - Block Design . 35

3.3 Master/Slave Channel Connections (Based on: [56]) 35

3.4 Simple Block Design with Processor and DDR4 36

3.5 High Level Block Diagram for the Classifiers 37

4.1 Decision Tree Model - Flowchart . 41

4.2 High Level Design System - Classifier, Zynq board and interface with the user 42

4.3 DDR4 RAM Interface Block Design . 43

4.4 Design Under Test . 43

4.5 Classifier Design Block - Decision Tree . 44

4.6 Output of a multiplication implemented in Hardware 45

4.7 Minimum Distance Model - Flowchart . 46

4.8 Classifier Design Block - Minimum Distance 47

4.9 Classifier Design Block - Vivado Project . 49

5.1 COS Mega Classes used as validation and training samples 53

5.2 Output of Decision Tree Classifier with 2 classes - water and non water . . . 53

5.3 RGB Satellite Image . 54

5.4 Output of Decision Tree Classifier with 3 classes - water, forest and everything

else . 55

xv

List of Figures

5.5 Region of Study with 9 classes . 55

5.6 Confusion Matrix - Decision Tree Classifier with 10 classes 56

5.7 Image Classification Execution Time: Decision Tree Classifier - FPGA set to

50 MHZ . 58

5.8 Image Classification Execution Time: Decision Tree Classifier - I7 8750HQ

3.9GHz . 58

5.9 Decision Tree speed comparison between Zynq board and CPU 58

5.10 Decision Tree speed comparison between Zynq board and CPU 59

5.11 Image Classification Execution Time: Minimum Distance Classifier - FPGA

set to 50 MHZ . 59

5.12 Image Classification Execution Time: Minimum Distance Classifier - I7 8750HQ

3.9GHz . 60

5.13 Minimum Distance speed comparison between Zynq board and CPU 60

xvi

List of Tables

2.1 Land Cover Classification Algorithms studied in the literature reviewed. . . 7

2.2 Classes used for Classification. (Based on: [21]) 9

2.3 Accuracy of Classifying the training set using UNINORM, DT and ANN [21]. 10

2.4 Percentage of class presence for the studied region using UNINORM, DT and

ANN. (Based on: [21]) . 10

2.5 Accuracy of classifying the training set with FF-UNINORM, DT, ANN and

K-Means. (Based on: [11]) . 11

2.6 Land Use and Land Cover classification efficiency of different methods [12]. 12

2.7 Overall Accuracy for wavelet decomposition levels with Minimum Distance

approach [13]. 13

2.8 User’s and Producer’s Accuracy values of Generic KNN and Euclidean Dis-

tance and Average Pixel Density based KNN. (Based on: [4]) 14

2.9 Different Scenarios and Input Variables. (Based on: [28]) 15

2.10 Total Accuracy and Kappa Coefficient for all Scenarios [28]. 15

2.11 Number of ROIs and Pixels for different classes in training and validation data

sets [30]. 17

2.12 Classification Accuracy Comparison with different training data sets and meth-

ods. (Based on: [30]) . 17

2.13 Accuracy measurements of supervised and unsupervised classification meth-

ods. (Based on: [7]) . 19

2.14 Land Cover Classification with Pixel and Object-Based strategies and MLC

and SVM classifiers. (Based on: [10]) . 20

2.15 Summary of cases of study and their implemented classifiers. 21

2.16 Results for Spatial Resolution, Multi Spectral, Multi Temporal and Spatiotem-

poral approaches in cloud removal operation [34]. 24

2.17 Comparison of absolute performance and efficiency of random number gener-

ator across platforms. (Based on [43]) . 26

2.18 Processing Speed exact values for different image size and coding format [49]. 31

3.1 Processing Speed exact values for different image size and coding format [54]. 34

4.1 Decision Tree model parameters for Matlab Classification Learner. 40

xvii

List of Tables

5.1 Confusion Matrix for the Decision Tree Classifier 52

5.2 Confusion Matrix for the Minimum Distance Classifier 56

5.3 Decision Tree: Time to Perform Classification - Zynq board 58

5.4 Decision Tree: Time to Perform Classification - I7 8750HQ 3.9GHz 58

5.5 Minimum Distance: Time to Perform Classification - Zynq board 59

5.6 Minimum Distance: Time to Perform Classification - I7 8750HQ 3.9GHz . . 60

xviii

Listings

I.1 Load_Init_Data block code . 71

I.2 DDR_Read_Controller . 75

I.3 DDR_Write_Controller . 78

I.4 Decision Tree Classifier Function . 81

I.5 Minimum Distance Classifier Function . 90

xix

Acronyms

AMBA Advanced Microcontroller Bus Architecture.

ANN Artificial Neural Network.

ARM Advanced RISC Machines.

AXI Advanced eXtensible Interface.

CC Correlation Coefficient.

CIE International Commission on Illumination.

CNN Convolutional Neural Network.

COS Carta de Uso e Ocupação do Solo de Portugal Continental.

CPU Central Processing Unit.

DMA Direct Memory Access.

DT Decision Trees.

DUT Design Under Test.

DWT Discrete Wavelet Transform.

ESTARFM Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model.

FF Fuzzy-Fusion.

FIMICA Fixed Identity Monotonic Identity Commutative Aggragation.

FLAASH Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes.

FPGA Field-Programmable Gate Array.

GAN Generative Adversarial Network.

GLCM Gray-Level Co-occurrence Matrix.

GPGPU General-Purpose Graphic Processing Unit.

GPU Graphic Processing Unit.

HDL Hardware Description Language.

xxi

ACRONYMS

IBM International Business Machines.

IP Intellectual Property.

KNN K-Nearest Neighbors.

LiDAR Light Detection and Ranging.

LUT Lookup Table.

MLC Maximum Likelihood Classifier.

MPPA Massively Parallel Processor Arrays.

mtry number of variables in the random sampling.

NDSM Normalized Digital Surface Model.

NIR Near Infrared.

NMSE Normalized Mean Square Error.

ntree number of decision trees.

NVDI Normalized Difference Vegetation Index.

OOB Out-of-Bag.

PL Programmable Logic.

PS Processing System.

PSNR Peak Signal-to-Noise Ratio.

QUAC Quick Atmospheric Correction.

RGB Red, Green and Blue.

ROI Region of Interest.

SAR Synthetic Aperture Radar.

SDK Software Development Kit.

SIMD Single Instructions Multiple Data.

SoC System on a Chip.

STMRF Spatio-Temporal Markov Random Fields.

SVM Support Vector Machine.

SWIR Shortwave Infrared.

xxii

ACRONYMS

tiff Tagged Image File Format.

UIQI Universal Image Quality Index.

VI Vegetation Index.

WFU Wildland Fire Use.

WLR Weighted Linear Regression.

xxiii

C
h
a
p
t
e
r

1
Introduction

This is an introductory chapter to contextualize the reader of the presented
dissertation. In section 1.1 are presented context and motivation of the work being
developed. In section 1.2 the problem being addressed with the proposed solution.
At least, in section 1.3, a summary of the remaining chapters.

1.1 Context and Motivation

Fires have concerned the general public because of their highly presence in previous years,

not just in Portugal, but in the rest of the world too. Their enormous devastation power

destroys forests, cultivation lands and even buildings that become on their way. Even

though all the effort by wildfire prevention programs, such as Wildland Fire Use (WFU),

to control and put a stop into them, all the help from human and technology source is

welcomed.

From the technology perspective, this dissertation pretends to implement a way to

reduce the devastation power, minimize damages or prevent the start of a fire. The ap-

proach will be a Land Use/Land Cover Classification technique to label the region of

study into different classes. The results obtained can be further used in a fire sensor/al-

gorithm to, for instance, a dry land where fires have higher chance to occur, to be cleared,

or in case of an existing fire, to predict the direction where it may go. The Land Use/Land

Cover Classification technique will be performed using spatial imagery.

Image processing has been a major interest among developers since its potentials in

diverse areas, the most common being automatic reading of printed and handwritten

text, high energy physics, cytology, medical diagnosis, analysis of biomedical images and

signals, remote sensing, industrial applications, identification of human faces profiles,

fingerprints and speech recognition, detection of resources from earth and automatic

1

CHAPTER 1. INTRODUCTION

classification of terrain [1]. This last topic mentioned, automatic classification of terrain,

will be the main focus of the present dissertation.

In image processing there are two main problems that are commonly highlighted, the

accuracy in decision making and the fast implementation [2]. It’s important to under-

stand the trade-offs of each one and what is most crucial to the problem being approached.

The fast response time became a requirement in the real-time system world, as systems

became larger and more complex over time, with most usage in human and robot inter-

action and imaging hardware [3]. In this case of study, it’s prioritized a higher reliability

of the algorithms implemented, compromising the execution speed and response time.

This decision is taken because the algorithms are intended to be accelerated in hardware

platforms for the reasons that will be explained in chapter 2.

As mentioned before, image processing will be applied to terrain classification. Sev-

eral studies have been made on this subject, which will be reviewed latter on. This theme

has been intensely explored for its highly versatile applications. Humans use it for social-

economic proposes in which the map generated by the system helps in the conservation

planning of the location in analysis and in researching the intensity of human activity

[4]. Also, the data extracted from the studies give a lot of support in "comprehension
and analysis of natural phenomena such as climate change; provide a means to assess carbon
stock accountability; and help monitor agriculture development, disaster management, land
planning, defense of biodiversity, etc" [5].

To implement the algorithms required for image classification, several platforms can

be used. Which one to choose depends on the approach been taken and what are the

main system requirements. Also, it’s interesting to see, how a not so conventional plat-

form, Field-Programmable Gate Array (FPGA), can present equivalent or better perfor-

mance than other platforms such as Central Processing Unit (CPU) and Graphic Process-

ing Unit (GPU).

In chapter 2 will be presented what methods are already being applied to Land Cover

Classification, pros and cons of them and the comparison of different platforms to run

the algorithms, such as CPU, GPU and FPGA.

1.2 Problem and Proposed Solution

This work will study the region of Sado estuary with the validation framework residing

in itself. It’s the intention of future application for the classifiers to be applied in Mação,

Santarém district. This choice is made due to Sado estuary regions allocate more diversity

of Land Cover classes as well as more water information in Ocean, River Banks and

Humid Regions. The scope of this work belongs to the project FORESTER, due to the

forest fires of August, 2017, the region had a vast of its area burnt and land data for the

village is no longer accurate.

The propose of this dissertation is to re-qualify and update the data using the above

mentioned methods with further explanation in chapter 2. The goal is to implement

2

1.3. OUTLINE

an algorithm able to correct qualify the land with the possibility to be used not just for

the region of study but also in other scenarios. As mentioned, the results of this land

classification have the intention to be used in future work to prevent a real fire scenario,

before, during and after the event. The results should provide information about the area

to cooperate in prevention, putting out and recovering.

The implementation will be performed in hardware because of its low power con-

sumption and major capabilities in high processing imagery data. The classifiers to be

run are Decision Tree and Minimum Distance. Due to their high accuracy and versatility

(see 2.1.1), these algorithms should perform well in this context.

1.3 Outline

The following document is structured as follows:

Chapter 2 - Presents the algorithms already being used in Land Cover Classification

with comparison between them with the scenarios where they are applied; also a

comparison between platforms that are able to run such algorithms, first a more ab-

stract point of view where the basic performance power of the platforms is analysed

and then, a more contextualized approach for image classification; in the end, was

chosen two algorithms, which will be implemented in the hardware, the literature

reviewed has the objective to check the reliability of the implementation.

Chapter 3 - Describes the platform that will be used to develop the work; also the soft-

wares required to support platform programming with the classifier. In the last

section is presented the preprocessing operation done to the data so that it could be

used in hardware.

Chapter 4 - In this chapter are described in detail the algorithms implemented for Land

Use/Land Cover classification developed in software as well as in hardware. The

two implementations are analyzed in detail with its correspondent models.

Chapter 5 - Presents the results obtained for the implementations. It compares the two

classifiers performed in software and hardware in terms of performance time and

accuracy.

Chapter 6 - This chapter concludes the work with what achievements have been made

and future work to improve not just accuracy of the classifier but also the time to

perform the classification.

3

C
h
a
p
t
e
r

2
State-of-Art

This chapter main focus is to present what methods and platforms are being used to help

in Land Use/Land Cover Classification. Divided in three sections, first, in section 2.1,

different methods and mathematical probabilistic systems are shown to accomplish the

highest accuracy possible. As will be noticed, no algorithm is perfect and there are dif-

ferent scenarios where one or another algorithm should be used, cause it presents better

results for the case of study. Secondly, in section 2.2, a comparison of performance be-

tween CPU, GPU and FPGA analysing the speed and processing power on them with

special attention to image processing. And thirdly, in section 2.3, it’s discussed the possi-

bility of implementing Land Use/Land Cover classification algorithms in hardware taking

the benefits over software, what classifiers to implement and what platform will be used.

2.1 Land Use/Land Cover Classification

When considering Land Use/Land Cover Classification, it’s important to understand the

effects of a good algorithm and the platform where it will be performed. How significant

is the platform is described in more detail in section 2.2. This section focuses on what is

considered a good algorithm. In subsection 2.1.1 are presented what algorithms are nowa-

days being used in Land Use/Land Cover Classification and in subsection 2.1.2, some

methodologies that improve land cover classification, such as removing environmental

phenomena.

2.1.1 Classification Algorithms

For the problem being addressed, processing speed or accuracy should take more signifi-

cance, rather than other factors, to accomplish the requirements of the system. Next will

be presented several approaches in Land Use/Land Cover Classification, more specifically,

5

CHAPTER 2. STATE-OF-ART

different algorithms. When considering an implementation of a classifier, it’s important

to know if it will be a supervised or unsupervised classification. In supervised classifi-

cation, the user has a training data set, in which pixel values/classes are known, then

the computer algorithm labels the pixels to the class with highest probability of mem-

bership [6, 7]. In unsupervised classification, no training data set is required, the user

defines the number of classes that should be presented, and rules based on clustering

algorithms group the data into the classes. Although this implementation is faster than

the previous one, its normal accuracy is less than the supervised classification [7, 8]. The

cross validation between the image classified and ground truth knowledge is usually

made to calculate the accuracy. The most worldwide used spatial sensors to provide high

resolution satellite imagery data are RapidEye, Worldview-2, GeoEye, GF-2 and Land-

sat 8 [9, 10]. In table 2.1 are presented the supervised and unsupervised classification

implementations, found in the reviewed literature, with a brief explanation of each one.

6

2.1. LAND USE/LAND COVER CLASSIFICATION

Ta
bl

e
2.

1:
L

an
d

C
ov

er
C

la
ss

ifi
ca

ti
on

A
lg

or
it

hm
s

st
u

d
ie

d
in

th
e

li
te

ra
tu

re
re

vi
ew

ed
.

A
lg

or
it

h
m

s
E

xp
la

n
at

io
n

Supervised

U
N

IN
O

R
M

T
he

al
go

ri
th

m
im

p
le

m
en

ts
a

su
p

er
vi

se
d

sy
st

em
u

si
ng

an
in

fe
re

nc
e

sc
he

m
e,

ba
se

d
on

th
e

ru
le

s

ap
p

li
ed

,t
he

ou
tp

u
t

of
ea

ch
on

e
re

p
re

se
nt

s
th

e
m

os
t

li
ke

ly
cl

as
s

to
be

as
si

gn
ed

[1
1]

.

D
ec

is
io

n

Tr
ee

It
’s

a
tr

ee
-l

ik
e

m
od

el
,b

u
il

t
u

p
on

co
nd

it
io

na
ls

ta
te

m
en

t
no

d
es

,a
s

d
ee

p
as

it
is

na
vi

ga
te

d
in

th
e

tr
ee

,s
m

al
le

r
su

bs
et

s
ar

e
fo

u
nd

,t
he

tr
ee

en
d

s
w

he
n

th
e

su
bs

et
s

ar
e

ho
m

og
en

eo
u

s
[1

1]
.

A
rt

ifi
ci

al
N

eu
ra

l

N
et

w
or

k

It
le

ar
ns

by
an

al
ys

in
g

ex
am

p
le

s
in

th
e

tr
ai

ni
ng

d
at

a,
th

e
go

al
is

to
d

et
ec

t
p

at
te

rn
s,

ba
se

d
on

p
re

-

vi
ou

s
le

ar
ni

ng
it

cl
as

si
fi

es
d

e
va

li
d

at
io

n
d

at
a

se
ts

[1
1]

.

M
ax

im
u

m

L
ik

el
ih

oo
d

C
la

ss
ifi

er

T
he

go
al

is
to

fi
nd

th
e

p
ar

am
et

er
th

at
m

ax
im

iz
es

th
e

li
ke

li
ho

od
fu

nc
ti

on
,i

n
ot

he
r

w
or

d
s,

in
a

sc
e-

na
ri

o
w

it
h

m
or

e
th

an
on

e
si

gn
at

u
re

,i
t

tr
ie

s
to

as
si

gn
th

e
cl

as
si

fy
in

g
ob

je
ct

to
th

e
hi

gh
es

t
p

ro
ba

bi
-

li
ty

cl
as

s
[1

2]
.

M
in

im
u

m

D
is

ta
nc

e

A
d

is
ta

nc
e

is
d

efi
ne

d
as

an
in

d
ex

of
si

m
il

ar
it

y
so

th
at

th
e

m
in

im
u

m
d

is
ta

nc
e

is
id

en
ti

fi
ed

as
th

e

m
ax

im
u

m
si

m
il

ar
it

y
[1

3]
.

M
ah

al
an

ob
is

D
is

ta
nc

e

T
he

al
go

ri
th

m
as

su
m

es
th

at
th

e
hi

st
og

ra
m

of
th

e
ba

nd
ha

s
a

no
rm

al
d

is
tr

ib
u

ti
on

.I
t

m
ea

su
re

s
th

e

d
is

ta
nc

e
be

tw
ee

n
a

p
oi

nt
P

an
d

a
d

is
tr

ib
u

ti
on

D
,t

hi
s

d
is

ta
nc

e
is

ze
ro

if
P

is
at

th
e

m
ea

n
of

D
an

d

gr
ow

s
as

P
m

ov
es

aw
ay

fr
om

th
e

m
ea

n
[1

4]
.

K
-N

ea
re

st

N
ei

gh
bo

r

T
he

al
go

ri
th

m
as

si
gn

s
th

e
m

os
t

co
m

m
on

va
lu

e
of

th
e

k
ne

ar
es

t
ne

ig
hb

or
s

to
th

e
ob

je
ct

be
in

g

cl
as

si
fi

ed
[1

5]
.

Pa
ra

ll
el

ep
ip

ed

T
he

al
go

ri
th

m
u

se
s

a
si

m
p

le
d

ec
is

io
n

ru
le

,t
he

d
ec

is
io

n
bo

u
nd

ar
ie

s
fo

rm
an

n
d

im
en

si
on

al
p

ar
al

-

le
p

ip
ed

cl
as

si
fi

ca
ti

on
in

th
e

im
ag

e
d

at
a

sp
ac

e.
B

as
ed

on
th

re
sh

ol
d

s,
th

e
ob

je
ct

is
as

si
gn

ed
to

a

cl
as

s
[1

6]
.

7

CHAPTER 2. STATE-OF-ART

Su
p

p
or

t
V

ec
to

r

M
ac

hi
ne

It
’s

a
no

n-
p

ro
ba

bi
li

st
ic

bi
na

ry
cl

as
si

fi
er

,t
he

go
al

of
th

is
m

et
ho

d
is

to
fi

nd
an

hi
p

er
p

la
ne

in
an

n

d
im

en
si

on
al

sp
ac

e,
d

iv
id

in
g

th
e

ca
te

go
ri

es
w

it
h

th
e

w
id

es
t

ga
p

as
p

os
si

bl
e

[1
7]

.

R
an

d
om

Fo
re

st

Is
a

m
et

a
es

ti
m

at
or

th
at

fi
ts

a
nu

m
be

r
of

d
ec

is
io

n
tr

ee
cl

as
si

fi
er

s
on

va
ri

ou
s

su
b

sa
m

p
le

s
of

th
e

1

d
at

a
se

t
an

d
u

se
s

av
er

ag
in

g
to

im
p

ro
ve

th
e

p
re

d
ic

at
iv

e
[1

8]
.

P
ix

el
-B

as
ed

It
ev

al
u

at
es

ea
ch

in
d

iv
id

u
al

p
ix

el
ba

se
d

on
it

s
sp

ec
tr

al
in

fo
rm

at
io

n
[1

9]
.

O
bj

ec
t-

B
as

ed
G

ro
u

p
s

th
e

p
ix

el
s

th
at

ha
ve

si
m

il
ar

p
ro

p
er

ti
es

ac
co

rd
in

g
to

th
ei

r
sp

ec
tr

al
p

ro
p

er
ti

es
[1

9]
.

Unsupervised

K
-M

ea
ns

C
lu

st
er

in
g

It
’s

ob
je

ct
iv

e
is

to
fi

nd
k

gr
ou

p
s

kn
ow

n
a

pr
io

ri
,t

he
al

go
ri

th
m

fo
cu

se
s

in
m

in
im

iz
e

th
e

cl
u

st
er

in
g

va
ri

ab
il

it
y

[2
0]

.

IS
O

D
at

a
T

he
p

ri
nc

ip
le

is
th

e
sa

m
e

as
K

-M
ea

ns
C

lu
st

er
in

g,
bu

t
it

al
lo

w
s

d
iff

er
en

t
nu

m
be

rs
of

cl
u

st
er

s
to

be
ge

ne
ra

te
d

.

8

2.1. LAND USE/LAND COVER CLASSIFICATION

Like no photo and/or classification method is perfect, it can be also observed in the

next literature reviewed, that to choose a land cover class, it is used the method with the

smallest error or highest accuracy. To decrease the error, is also recommended the highest

resolution image possible. Obviously it comes with a cost, so a resolution of 10 by 10

meters per pixel or less it’s good for classifying urban land objects, and a moderate reso-

lution between 10x10m and 250x250m for pixel is suitable for Land Cover Classification

[4].

For a more close look, in [21] it’s proposed the method of "fuzzy-fusion inference ap-
proach for satellite image classification based on a fuzzy process". This method will be com-

pared with Decision Trees (DT) and Artificial Neural Network (ANN) techniques in land

cover classification for the district of Mandimba of the Niassa province, Mozambique. For

this case scenario will be considered seven land cover classes summed up in table 2.2,

and a classifier which uses five spectral bands, blue - band 1, green - band 2, red - band 3,

Near Infrared (NIR) - band 4, Shortwave Infrared (SWIR) 2 - band 7, plus two indices Nor-

malized Difference Vegetation Index (NVDI) and Vegetation Index (VI) 7.

Table 2.2: Classes used for Classification. (Based on: [21])

Class Name Class Description
Waterbody Areas covered by water (e.g. rivers, lakes)
River Bancks Areas nearby water bodies
Bare Areas Areas without vegetation (e.g. rock outcrops)
Croplands Areas covered by crops
Grasslands Areas covered by herbaceous vegetation
Thickets & Shrublands Areas covered by shrubs (closed to open)
Forest & Woodlands Areas with a tree canopy cover greater than 10%

The fuzzy membership functions chosen for the test were an inductive method using

histograms and fitted Gaussian functions, these allowed for a relative area to be classified

based on the frequency of pixel values within a class. To demonstrate the errors that can

occur when creating a membership function, in figure 2.1, is an example of a bimodality

in an histogram, this is due to multiple classes been represented in a single pixel. Another

type of error that can occur is, for instance, considering two classes, and performing the

class membership to them, different bands can assign high values to different classes,

leading to inconclusive results. To help in decision making, aggregation operators are

used to give a positive or negative quotation to the classification: average, minimum, and

two reinforcement ones, Fixed Identity Monotonic Identity Commutative Aggragation

(FIMICA) and UNINORM. These two last ones (FIMICA and UNINORM) present better

results in decision making, being UNINORM the best one with highest accuracy.

Applying the UNINORM to the area in study, and comparing with the two validation

models, DT and ANN, it’s expected, with the proposed implementation, to obtain an

accuracy close to those two. In table 2.3 can be observed what was hoped, being the

overall accuracy not to disparate.

9

CHAPTER 2. STATE-OF-ART

Figure 2.1: Example of a bimodal membership function, for band 1 [21].

Table 2.3: Accuracy of Classifying the training set using UNINORM, DT and ANN [21].

Water
Body

River
Bank

Bare
Area

Crop
Land

Grass
Land

Thickets &
Shrublands

Forests &
Woodlands

Total
Average

UNINORM 100.0% 91.1% 94.5% 97.6% 89.6% 90.7% 93.9% 93.9%
DT 100.0% 100.0% 99.9% 95.1% 97.0% 91.1% 97.9% 97.2%
ANN 98.2% 91.6% 100.0% 99.3% 97.4% 99.1% 97.3% 97.6%

Although ANN got a higher average validation accuracy for the training set, the out-

come should be analysed in more detail, since Bare Areas had 100% accuracy not being

true, cause as shown in table 2.4, acquired from the paper, it says the area to be validated

had no Bare Areas, and in fact, it has. This justifies why the training set for the ANN

has to be big enough so it can learn correctly. UNINORN and DT adapt better for small

training sets.

Table 2.4: Percentage of class presence for the studied region using UNINORM, DT and
ANN. (Based on: [21])

UNINORM DT ANN
Water Body 3.1% 3.1% 3.2%
River Bank 10.3% 13.9% 11.2%
Bare Area 0.4% 0.6% 0.0%
Crop Land 7.7% 6.6% 8.1%
Grass Land 33.9% 26.4% 30.2%
Thickets & Shrublands 29.4% 35.0% 30.6%
Forest & Woodlands 15.4% 14.5% 16.8%
Total 100.0% 100.0% 100.0%

The methodology presented in this paper has better results than DT and ANN when

considering classification of Crop Land, also when considering River Banks, DT classi-

fied them as Bare Areas in awkward regions, UNINORM did not present that kind of

misleading. So, the approach had a good performance for the studied region.

In extension of this work [21], authors propose a study with a time-lapse of three years

10

2.1. LAND USE/LAND COVER CLASSIFICATION

(1989, 2002, 2005) [11]. The aggregation operators, the five spectral bands and the two

vegetation indices (rescaled to a normalized 8-bit unsigned [0,255] scale) to perform the

analysis were kept from the paper [21]. Again seven classes are taken into consideration,

but only five were used, merging Water Body with River Banks, and Bare Area with

Croplands, for comparative results with [22]. The fuzzy membership functions were the

same, histograms and Gaussian functions. An additional validation test was added for

comparison, the K-Means clustering. The comparison of the tests is presented in table 2.5.

It’s expected for the ANN approach to have a good accuracy, since the training set was

good and wide. As mentioned before, ANN does not adapt as well to small training sets,

as the other techniques do.

Table 2.5: Accuracy of classifying the training set with FF-UNINORM, DT, ANN and
K-Means. (Based on: [11])

Year Method Other
Crop
Lands

Grass
Lands

Thickets &
Shrublands

Forest &
Woodlands

Total
Average

1989

FF-UNONRM 99.9% 83.0% 81.5% 69.6% 92.5% 88.2%
DT 100.0% 88.8% 86.0% 87.0% 90.4% 90.2%

ANN 97.7% 99.3% 66.8% 70.8% 98.4% 95.6%
K-Means 91.4% 89.4% 44.0% 67.0% 75.0% 78.8%

2002

FF-UNINORM 99.9% 91.7% 59.9% 63.1% 76.8% 81.5%
DT 100.0% 87.4% 73.4% 69.3% 85.5% 85.5%

ANN 96.5% 99.6% 73.5% 22.4% 94.6% 91.8%
K-Means 92.6% 53.0% 33.3% 41.9% 74.2% 63.0%

2005

FF-UNINORM 99.3% 87.3% 63.8% 67.3% 72.6% 78.1%
DT 100.0% 90.4% 88.4% 78.1% 80.8% 86.4%

ANN 99.7% 98.8% 84.4% 58.5% 94.4% 92.1%
K-Means 94.7% 46.3% 21.0% 38.3% 68.0% 53.7%

The ANN method presented the best results as expected, and more consistency ac-

curacy throughout the years. In analyse to table 2.5, it’s noticeable that the Thickets &

Shrublands class is the one where is harder to get a high correctness, might indicate a

misclassified training set. Further tests presented in the paper showed that Fuzzy-Fusion

(FF)-UNINORM and DT methods are the ones with most similarities and consistency

when class attributing.

In the next case of study are used three other classification methods, Maximum Like-

lihood Classifier (MLC), Mahalanobis Distance and Minimum Distance [12], explained

before. The coverage area are the districts Klang, Petaling, Gombak and Hulu Langat of

Selangor, and the land cover classes taken to test are Water Bodies, Forest, Agriculture,

Urban and Open Land. The images used to perform the classification were acquired

from Landsat 8 satellite and the ground truth was used to verify the identity of class

types attributed to the images and build the overall accuracy of the algorithms. To fully

understand the process, in figure 2.2 is shown the steps taken, since image acquisition

till land cover classification.

Previous studies demonstrated that the MLC is more accurate than the other two

11

CHAPTER 2. STATE-OF-ART

Figure 2.2: Methodology Structure. (Based on: [12])

methods [23], and although Mahalanobis and Minimum Distances have a similar method-

ology, differences shown in table 2.1, Minimum Distance algorithm is slower to classify

the same data. In table 2.6 the advantage of using the Maximum Likelihood method with

an overall accuracy of 88.88% compared to 74.44% and 78.88%, respectively Mahalanobis

Distance and Minimum Distance. Producer Accuracy (PA) is related to the theoretical

validation of the classifier and User Accuracy is related to the validation obtained from

the case studied.

Table 2.6: Land Use and Land Cover classification efficiency of different methods [12].

Class Name
Techniques Maximum Likelihood Mahalanobis Distance Minimum Distance

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)
Water Bodies 50.00 100.00 25.00 100.00 50.00 100.00
Forest 25.00 66.67 25.00 100.00 50.00 80.00
Agriculture 11.11 100.00 25.00 100.00 55.56 62.50
Urban 85.71 85.71 85.71 85.71 85.71 33.33
Open Land 87.50 31.82 87.50 26.92 25.00 100.00
Overall
Classification
Accuracy

88.88% 74.44% 78.88%

In a closer analyse, can be observed that the three different approaches, with a max

accuracy difference of 10%, perform better for certain scenarios. For instance, having

the MLC the highest accuracy, it shows clear difficulties when classifying Forest and

Open Land. On the other hand, considering Minimum Distance with the interim result,

it can classify well these two classes. At least, the Mahalanobis Distance, when classifying

a terrain as Open Land, the results should be doubted cause the leak in accuracy showed

in table 2.6. These results also agree with the k coefficient calculated in the paper, with

Maximum Likelihood achieving 0.8216, Mahalanobis Distance - 0.6982 and Minimum

Distance - 0.7893. The k coefficient is used to measure how certain the algorithm will be

able to identify the classes, using a statistical method for qualitative rating, it takes into

consideration agreements occurring by chance [24]. A k coefficient close to 1 means the

method has a high reliability, conversely, a k coefficient closer to 0 has poor accuracy and

12

2.1. LAND USE/LAND COVER CLASSIFICATION

should not be used as its doubtful classification.

Deeper analysis to the Minimum Distance Classifier, in [13], a different approach

with Discrete Wavelet Transform (DWT) is presented, and as it will be seen, an improve-

ment in the classification accuracy is made. A DWT decomposes the image in its fre-

quency spectrum, in this case, up to eight levels. A wavelet is an oscillation, in which

amplitude begins in zero, increases and decreases, returning in the end back to zero.

A DWT is a discrete time signal obtained by sampling a continuous translation and scale

parameter of a wavelet [25], also it is characterized by its components, the high and low

frequency are detail and approximation coefficients, respectively. In this study, the de-

composition method is Haar wavelet, which turns the wavelet into a square shape form

taking the values 1 for 0 ≤ t < 1/2, -1 for 1/2 ≤ t < 1 and 0 for other values of t.

The performance tests were run to a five class classification, Urban, Fallow Land,

Water, Vegetation and Agriculture and eight levels of image decomposition. The accu-

racy table is presented in table 2.7. To overcome the issues derived from atmospheric

imperfections, an atmospheric correction method was implemented, Quick Atmospheric

Correction (QUAC). It uses the information in the image/scene, visible and near infrared

and shortwave infrared spectrum to adjust the compensation parameters to clear up the

image [26].

Table 2.7: Overall Accuracy for wavelet decomposition levels with Minimum Distance
approach [13].

Wavelet
Decomposition

Level

Overall
Accuracy

(%)

1 75.2693
2 85.9600
3 88.8737
4 93.4666
5 95.0346
6 93.0087
7 92.3187
8 90.8021

The fifth level of decomposition, with 95.0346% of accuracy, had the highest score.

Also to be noticed is that, the first level has approximately the same result as [12], due

to equivalent implementations. The first level implements the method for the original

image, without any decomposition, this being said, the only difference between the two

papers is the region of study. The DWT presents a 20% increase in the overall accuracy,

allowing the method some reliability and the possibility to be executed in other scenarios,

situation that had no chance before, because there was no trust in the classification.

As mentioned before, moderate and high resolution Earth imagery for Land Cover

Classification comes with their inherent costs. In [4], the data is provided by Google

Earth, a free program owned by Google Inc. with a sub-meter pixel resolution, other

satellite images can be paid. The region of study is the city of Bangalore, India and

13

CHAPTER 2. STATE-OF-ART

the land classes to be defined are Water Body, Building, Vegetation, Road Network and

Bare Land. The method to perform this classification and after, comparison of results,

is K-Nearest Neighbors (KNN) with Euclidean Distance and Average Pixel Intensity as

parameters when choosing labeling. Not just the Red, Green and Blue (RGB) colors were

used to identify the classes, but they were converted into Lab. Lab was defined in 1976,

by the International Commission on Illumination (CIE) as a color space [27]. Its purpose

was to convert from a three channel RGB into lightness-L, green/red-a and blue/yellow-b.

This way, in the scenario of [4], the illumination between objects could be identified and

a easier and more accurate analysis made.

It’s pretended to see what is the improvement of a generic KNN method to a Euclidean

Distance and Average Pixel Density based one. The accuracy results for the studied region

are presented in table 2.8.

Table 2.8: User’s and Producer’s Accuracy values of Generic KNN and Euclidean Distance
and Average Pixel Density based KNN. (Based on: [4])

Land Classes
Proposed Method in [4] Generic KNN

Producer’s Accuracy User’s Accuracy Producer’s Accuracy User’s Accuracy
Water Body 94.0% 92.02% 89.02% 91.88%
Building 69.04% 78.06% 70.21% 78.12%
Bare Land 65.03% 66.32% 65.15% 65.04%
Road Network 61.73% 64.02% 60.03% 61.02%
Vegetation 90.03% 88.25% 78.53% 85.05%

As seen in the result table, the overall accuracy went from an average of 75.04% in

the Generic KNN to 76.38% in the proposed method. The reason for the improvement

is, instead of using only one parameter for class labeling, the presented method uses two,

Euclidean Distance and Average Pixel Density. Furthermore, the Generic KNN imple-

mentation had misclassifications with waves of water body and some part of vegetation,

labeling them, respectively, buildings and road network. The method also helped to solve

the problem.

Another classifier is the Random Forest. How it performs can be observed in [28] were

it was put the test in a six class Land Cover Classification scenario, in Xuchang city, Henan

Province, China. The data provided by the GF-2 satellite and an airborne Light Detection

and Ranging (LiDAR) was used together for accuracy improvement. GF-2 providing

spectral features and texture information and LiDAR the three-dimensional coordinates.

To generate seven scenarios to test the effectiveness of the classifier, NVDI, Normalized

Digital Surface Model (NDSM) and Gray-Level Co-occurrence Matrix (GLCM) texture

were used with different combinations of the input variables, described in more detail in

table 2.9.

To properly function, the Random Forest classifier requires two parameters, the num-

ber of variables in the random sampling (mtry) used at each split to grow a decision tree

and the number of decision trees (ntree). To optimize the parameters the Out-of-Bag

(OOB) error grid search approach was used. The OOB is a method applied not just to

14

2.1. LAND USE/LAND COVER CLASSIFICATION

Table 2.9: Different Scenarios and Input Variables. (Based on: [28])

Input Variables

Scenario 1 4 variables generated by the GF-2 (red, green, blue and near-infrared)

Scenario 2 5 variables generated by the GF-2 and NDVI

Scenario 3
85 variables generated by the GF-2, the NDVI and their texture

features (7x7 and 9x9 pixels)

Scenario 4 1 variable generated by the NDSM

Scenario 5
17 variables generated by the NDSM and its texture

features (7x7 and 9x9 pixels)

Scenario 6 6 variables generated by the GF-2, NDVI and NDSM

Scenario 7
102 variables generated by the GF-2, NDVI, NDSM and their texture

features (7x7 and 9x9 pixels)

Random Forest but also to boost decision trees and other machine learning approaches,

and it measures the estimated test error of the bag, this way it’s possible to estimate the

error in a node [breiman1996out, 29].

To fully optimize the accuracy in every scenario, it was used the mtry and ntree

parameters. When the value of the OOB error is low, it indicates a good reliability of the

model. The accuracy results for the seven scenarios are presented in table 2.10, where can

be observed that, seventh scenario had the best accuracy with 93.32% and kappa value of

0.91.

In analysis of the results, can also be seen, that the fourth scenario presents poor

results and should not be used. Again, a confrontation between accuracy and kappa

values, they vary proportionally to each other. In further detail, the easiest class to be

identified was the Cropland, since for all scenarios and producer’s and user’s accuracy it

scored 100% accuracy.

Table 2.10: Total Accuracy and Kappa Coefficient for all Scenarios [28].

Scenario Total Accuracy (%) Kappa Coefficient

1 76.86 0.70
2 77.11 0.71
3 83.33 0.79
4 57.59 0.44
5 80.13 0.74
6 89.97 0.87
7 93.32 0.91

As mentioned, satellite imagery might have a lot of noise, including granularity and

clouds, blocking the possibility to implement a method that can perform a Land Use/-

Land Cover Classification for the studied region. To overcome this problem, in [30], it’s

15

CHAPTER 2. STATE-OF-ART

used a spatial-temporal fusion technique. This is based on acquiring images from dif-

ferent sensors and/or at different times and grouping the data. The fusion model used

is Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) which

compounds Landsat 8 and MODIS data. To extract the information from the imagery and

identify the classes, an object-based strategy is used. An object-based classification not

just considers and analysis the pixel itself but the surrounding ones too, this combines

image segmentation with knowledge-based classification. Image segmentation decreases

the complexity and divides the image into regions, when these become meaningful, they

are considered image objects [31]. According to [32] an object-based approach is able to

achieve higher accuracy than a pixel-based approach. In the paper, the technique used

was provided by the platform eCognition9.0 and "the algorithm is a region growing tech-
nique that starts with a pixel forming an object and merging the neighbouring pixels until the
homogeneity criterion is achieved".

The data used in this paper was acquired from the Landsat 8 and MODIS sensors.

The Landsat 8 OLI imagery acquired three times in the year 2015, had a cloud coverage

less than 1% and a higher resolution than the one from the MODIS sensor. On the other

hand, MODIS imagery (including Red and NIR bands) was acquired with a time span

of 8 days during the year 2015. The fusion of these two helped to remove the effects of

atmospheric interference by correlation of the combined data. The major problem was

the poor resolution of 250m per pixel. As for the training and posterior validation sets,

the data used was from the GF-1 with a resolution of 2m per pixel (2015-09-15) and

Google Earth (2015-09-08). In diagram shown in figure 2.3 is a demonstration how the

time series imagery was created with MODIS and Landsat 8 data sets.

Figure 2.3: Flowchart of the fusion data sets [30].

The studied area was Changsha City, China and the main focus classification tech-

nique was an object-based method, as above explained, with fused Landsat 8 time series.

16

2.1. LAND USE/LAND COVER CLASSIFICATION

Also taken to test and comparison, other three techniques were performed, an object-

based method with OLI images, an object-based method with single date Landsat 8 image

and a pixel-based method with Landsat 8 data set. To verify the accuracy of the tests, a

confusion matrix with ground truth reference data of the studied region was made. A

summary of the training and validation samples for the Region of Interest (ROI) with the

different classes is presented in table 2.11.

Table 2.11: Number of ROIs and Pixels for different classes in training and validation
data sets [30].

Number of ROI
and Pixels

Water Grassland
Cultivated

Land
Dry

Land
Forest Building Barren

Training
Samples

Number of ROIs 196 102 124 95 202 113 92
Number of Pixels 3256 4585 2168 3749 4053 3821 2897

Validation
Samples

Number of ROIs 48 52 58 69 83 52 71
Number of Pixels 1048 1204 850 1426 1987 967 1436

It’s expected for the classes with highest number of training samples, to achieve better

accuracy. This is not always linear, as different classes have lower/higher degrees of com-

plexity in classification methods; other factors, for instance over-fitting, can introduce

errors in the validation test, for not being a classifier able to general use, cause it adapts

and memorizes the training samples and do not learn the method for a correct classifica-

tion. A comparison will be made after the analyse of the accuracy result table 2.12.

Table 2.12: Classification Accuracy Comparison with different training data sets and
methods. (Based on: [30])

(a) Landsat 8 data sets and object-based
method

Cover Types
Producer
Accuracy

%

User
Accuracy

%

Total Classification
Accuracy

%

Water 97.25 97.12

94.38

Grass Land 86.84 85.69
Cultivated Land 88.72 87.26
Dry Land 89.23 88.15
Forest 92.64 93.52
Building 96.38 95.41
Barren 92.69 91.83

(b) Landsat 8 OLI images and object-based
method

Cover Types
Producer
Accuracy

%

User
Accuracy

%

Total Classification
Accuracy

%

Water 95.82 95.02

90.65

Grass Land 83.53 82.32
Cultivated Land 85.68 85.09
Dry Land 84.62 82.73
Forest 90.52 90.18
Building 96.35 95.41
Barren 92.68 91.83

(c) Single Landsat 8 image and object-based
method

Cover Types
Producer
Accuracy

%

User
Accuracy

%

Total Classification
Accuracy

%

Water 96.13 95.24

86.52

Grass Land 78.25 76.28
Cultivated Land 75.59 77.36
Dry Land 79.15 78.47
Forest 88.49 88.46
Building 94.23 93.82
Barren 90.63 89.58

(d) Landsat 8 data sets and pixel-based
method

Cover Types
Producer
Accuracy
%

User
Accuracy
%

Total Classification
Accuracy
%

Water 96.68 96.31

88.62

Grass Land 82.26 81.35
Cultivated Land 83.82 82.69
Dry Land 85.23 84.56
Forest 89.81 90.45
Building 95.64 94.18
Barren 91.59 90.27

The approach presented in the paper, the object-based method with fusion time series

imagery, had the highest accuracy of the four tests, proving that the implementation

17

CHAPTER 2. STATE-OF-ART

and the training data sets are two big factors in image classification, moreover in Land

Cover Classification. When used the same data set, in sub tables 2.12a and 2.12d, it’s

possible to see the main difference between implementations, object-based and pixel-

based, respectively. Considering the pixel itself and the surrounding information, more

features can be extracted from the image, leading to a more accurate analysis. For sub

tables 2.12a, 2.12b and 2.12c, that used the same method, it’s compared the importance

of a good training data set. From the data set obtained by the fusion of images explain

in figure 2.3, to the three images acquired from the Landsat 8 OLI and finally to a single

one also from Landsat 8, it’s clearly seen the difference in accuracy, through the output

results.

In consideration to the accuracy results for the individual classes, regardless of the

implementation, it’s important to notice the influence of enough training samples. The

classes with more training samples are Water, Cultivated Land, Forest and Building, and

in general, Water had the best accuracy. In contrast, Cultivated Land didn’t had a good

accuracy as foreseen, this is due its misclassification as Grass Land and Dry Land to their

similar features.

Some improvements to increase the accuracy are, even better data sets to have a cloud

free imagery and reduce the uncertainty of the ESTARFM fusion model images. A high

resolution imagery would also help to solve the problem of misclassification. When small

regions are attributed with the wrong class by the object-based method, a combination

with spectral mixture analyses would improve the results.

The previous cases of study showed Land Cover Classification based on supervised

methods, except for [11] which briefly presents K-Means clustering. The next paper

explores in more detail unsupervised classification, with ISO-Data and K-Means imple-

mentations, also with other two new supervised methods, Parallelepiped and Support

Vector Machine (SVM). In [7] are presented four supervised classification methods, Max-

imum Likelihood, Minimum Distance, Parallelepiped and SVM and two unsupervised,

ISO Data and K-Means. From the above mentioned studies, the classification method

expected to obtain the highest accuracy was the Maximum Likelihood. The scenario to

perform these tests is Paonta Sahib, Himachal Pradesh, India. Since unsupervised algo-

rithms depend on their rule set for the classification, the accuracy they’re able to achieve

is less than supervised ones which use training data sets in their approach, being much

more flexible for different scenarios. For the Paonta Sahib region were defined seven land

classes, River, Forest, Urban, Mountain, Scrub Land, Crop Land and River Associated

Sand and for the supervised classifiers, the training data sets were restricted to thirty

samples per class. The training data set imagery was acquired from Sentinel 2A and its

resolution depends on the bands, varying between 10x10m and 60x60m per pixel. After

a process of stacking, the final resolution was 10x10m per pixel. The final classification of

the different implementations were compared to a ground truth data, and by a confusion

matrix, the accuracy results obtained are presented in table 2.13.

As seen in the table, again MLC obtained the best accuracy with 89.30%, followed

18

2.1. LAND USE/LAND COVER CLASSIFICATION

Table 2.13: Accuracy measurements of supervised and unsupervised classification meth-
ods. (Based on: [7])

Method
Accuracy

(%)

Kappa

Coefficient
Su

p
er

vi
se

d Maximum Likelihood 89.30 0.8481

Minimum Distance 61.90 0.5031

Parallelepiped 80.07 0.7054

SVM 75.58 0.6546

U
n

su
p

er
vi

se
d

ISO Data 30.03 0.0917

K-Means 22.09 0.0917

by Parallelepiped, SVM and Minimum Distance. The worst two were the unsupervised

methods, as it was anticipated. Between them, the best one with 30.03% is the ISO Data.

In relation with [12], where also the Maximum Likelihood Classifier was putted to the

test, the outcome is really close to which other, proving the consistence of the algorithm.

For a context where no previous imagery of the region is available, and an unsupervised

method is the only way to proceed, the results are doubtful as poor accuracy was obtained.

From paper [7], SVM had a poor accuracy and an aforementioned methodology pixel-

based to object-based approach seemed to increased the accuracy from the pixel-based im-

plementation. It’s in the interest of [10], to combine MLC and SVM classifiers with pixel

and object-based strategy to perceive how they work together and the benefits they bring

to the context. Therefore, for the region of Shandong Province, China were applied four

classifications approaches, pixel-based with MLC, pixel-based with SVM, object-based

with MLC and object-based with SVM. The imagery data was acquired (two adjacent

scenes) from the spatial sensor GF-2 in 2016 with a resolution of 4m per pixel and a cloud

free coverage, even though, an atmospheric correction was applied, the Fast Line-of-Sight

Atmospheric Analysis of Spectral Hypercubes (FLAASH), to fully optimize the process.

For the area addressed were defined five classes, winter wheat, woodland, water, vegeta-

bles and artificial surfaces that covers construction, roads and residential areas. These

classes were chosen because agriculture is very important for the region and knowing the

conditions of the terrain helps farming.

From the imagery data, were selected random pixels, with the help of ENVI version

5.0 software, to constitute the training data set. The total number of pixels used for

training are 2,741 pixels for winter wheat, 4,780 pixels for woodland, 27,162 pixels for

water, 11,816 pixels for artificial surfaces and 3,472 pixels for vegetation.

When performing the object-based, it’s used segmentation to clear separate the objects

identified. Different scales of segmentation can be applied, in the paper was studied a

19

CHAPTER 2. STATE-OF-ART

variation between 10 and 100 levels with the optimum found to be 25. Table 2.14 presents

the results for the four tests.

Table 2.14: Land Cover Classification with Pixel and Object-Based strategies and MLC
and SVM classifiers. (Based on: [10])

Pixel-Based

MLC

Pixel-Based

SVM

Object-Based

MLC

Object-Based

SVM

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Winter Wheat 86.54 83.00 89.16 82.23 85.99 82.85 93.43 85.48

Woodland 83.74 92.86 97.20 84.37 91.05 95.96 99.33 94.77

Water 87.18 97.70 88.32 98.75 91.75 99.32 94.58 98.73

Artificial Surface 87.34 74.61 89.76 79.50 94.47 83.79 94.13 89.74

Vegetables 84.45 61.95 84.71 76.21 85.37 70.99 86.90 84.91

Overall Accuracy 86.67 89.30 91.57 94.33

Kappa Coefficient 0.796 0.836 0.870 0.911

Although MLC was expected to present the highest classification accuracy [33], SVM

had 94.33% for the object-based strategy. In analyse to table data, Water class is correctly

identified in all four approaches. Also an improvement is noticeable between a pixel-

based strategy and a object-based one, being the major difference in the Artificial Surface,

with an almost 10% accuracy increase for both scenarios. SVM also had fewer misclas-

sifications between Woodland and Vegetables. More detailed review, reviled that SVM

performed better than MLC in regions with small area, and with the high resolution sen-

sor used, this difference is nearly 3%. From [7], where the resolution was 10x10m per

pixel, a better resolution demonstrates that other classifier should be used due to highest

accuracy achievements.

In table 2.15 is summed up the cases of study with the classifiers they use in their

approaches, with easy access to what classifiers are research in each study and for a specif

classification technique, what studies approach it.

20

2.1. LAND USE/LAND COVER CLASSIFICATION
Ta

bl
e

2.
15

:S
u

m
m

ar
y

of
ca

se
s

of
st

u
d

y
an

d
th

ei
r

im
p

le
m

en
te

d
cl

as
si

fi
er

s.

A
lg

or
it

h
m

s
A

p
p

li
ed

/

C
as

es
of

St
u

d
y

U
N

IN
O

R
M

D
T

A
N

N
M

LC
M

in
D

is
t

M
ah

D
is

t
K

N
N

Pa
ra

l
SV

M
R

F
P

B
O

B
K

-M
ea

n
s

IS
O

-D
at

a

[2
1]

[1
1]

[1
2]

[1
3]

[4
]

[2
8]

[3
0]

[7
]

[1
0]

21

CHAPTER 2. STATE-OF-ART

2.1.2 Cloud Free Imagery

When considering satellite imagery, one of the biggest concerns is to remove the imperfec-

tions, mainly caused by atmospheric phenomena, namely clouds and fog. According to

[34] there are three major implementations for cloud removal, spatial interpolation based,

multi spectral based and multi temporal based. Spatial interpolation based approach uses

the non cloud parts of the image to reconstruct the affected areas but with low accuracy

results, the multi spectral based approach restore the image using different bands of the

spectrum but it is restricted by thick clouds, the multi temporal based approach fuses

images from different dates to use the good parts of each one, the only trouble being

the time consumption. Previously was mentioned the QUAC approach which uses the

band spectrum to correct the parameters and tries to clean the image. Also a time se-

ries implementation can be used, having different time imagery for the same region and

the correlation of data is made and eliminate the affected areas. The following litera-

ture introduces several implementation where the goal is to achieve a cloud free satellite

image.

In cloud removing procedure, it can be challenging to distinguish what is actually

clouds or cloud-shadow from just bright areas. Even though thresholds can solve the

problem when the difference is noticeable, rarely this happens. To overcome this issue, in

[35] is implemented a mosaicking approach, with cloudy images acquired from IKONOS

and SPOT satellites. The images from the satellite sensors had the influence of different

atmospheric conditions and to correctly perform the mosaicking process it required that

they become the most similarly possible, this means, if the brightness levels are disparate

throughout the images, a gray balance is made to standardize it.

During the process, the classes taken to consideration were Clouds, Vegetation, Build-

ings and Bare Soil and some of the Bare Soil areas were wrongly labeled as Clouds. To

solve this, a different criteria was applied, a three threshold determined from the his-

togram is made, Shadow Intensity, Cloud and Vegetation Intensity. Then, for the non

affected pixels, they were again classified as Vegetation, Open Land and other. Briefly,

the pixels are classified as problematic and non problematic, the non problematic ones

are then classified as Vegetation, Open Land or other, and the problematic ones are clas-

sified as Clouds or Shadows. At this point, the images will be merged. If a pixel was

labeled with the Vegetation class for one image, can be assumed for the other images

where doubtful classification was made that the pixel belongs to the Vegetation class

avoiding discontinuity.

An other implementation of cloud removal depicted in [36], shows an algorithm that

only uses visible bands of the frequency spectrum. The proposed method is Generative

Adversarial Network (GAN). GAN is an artificial intelligence algorithm that uses two

networks, one to generate fake images, which are almost look a like the originals and

the second one, evaluate the previous one [37]. The original application of GAN, used

visible and invisible bands, yet, the paper’s method restricts itself to the visible ones. This

22

2.1. LAND USE/LAND COVER CLASSIFICATION

implementation was taken as the region of study (Paris) is very cloudy and clouds have

high reflectance on NIR band.

The data set training from GAN was derived from Sentinel 2 satellite sensor, compris-

ing twenty cloudy (10 to 100% cloud coverage) images and thirteen cloudless (0 to 5%

cloud coverage). For the initial weights of the learning process of the neural network, a

Gaussian distribution was done. As for the region of study, no complete cloud free im-

agery is available, no real scenario test could be analysed. To check de reliability of GAN

approach a simulated context was made. Taken the imagery available, a Perlin noise

was added to the cloud free images, which has the visual appearance of clouds. A sum-

mary of the five tested images is in graphic of figure 2.4 with Peak Signal-to-Noise Ratio

(PSNR) results, where high result is better, meaning greater relation between cloudless

and cloudy area.

3. TRAINING AND IMPLEMENTATION DETAILS

3.1. Dataset

Our dataset is composed of high resolution Level-1C Sentinel-
2 imagery ranging between the year 2015 till 2017. Sentinel-2
is a multi-spectral dataset, with each spectral band is stored
as a separate image [12]. For our experiments, we choose
images only from visible bands i.e. Blue (B2), Green (B3),
Red (B4) all of which have 10 meters of spatial resolution.

Most of our cloud-free images are selected with 0-5%
cover while for cloudy images we chose range anywhere be-
tween 10 to 100. All the images are downloaded over the
Paris region as it is easy to get quite a range of cloudy images.
We choose 20 cloudy and 13 cloudless images for training.
We then extract 512 × 512 patches from these images. After
filtering of unwanted ones, a total of 1677 patches for each
cloud and cloud-free dataset were extracted while for testing
we had 837 patches. For computational efficiency in training,
we resize them to 256× 256.

3.2. Network Architectures

We imbibe the architecture and the naming convention sim-
ilar to what have been used by [10]. Generator architecture,
uses 6 blocks for 128× 128 training images and 9 blocks for
256 × 256 or higher resolution images. Additionally, a re-
flection pad is imbibed to avoid artifacts. The Discriminator
architecture consists of a 70 × 70 PatchGAN [8], classifying
70 × 70 patches as real or fake data. Thus, it can effectively
be applied to any input size image and has lesser number of
parameters.

3.3. Training

Initialization of weights was done through a Gaussian distri-
bution with mean 0 and standard deviation 0.02. Optimiza-
tion was carried out using ADAM [13], with a batch size of
1 and λ = 10 for all experiments. We perform training from
scratch using a learning rate of 0.0002 up-to 200 epochs. The
learning rate was kept constant for the first 100 epochs after
which it linearly decays to zero until the last epoch. Also, as
illustrated in [10] model oscillations are avoided by using a
history of generated images (50) rather than only one.

4. RESULTS AND DISCUSSIONS

We present the results obtained using Cloud-GAN in Figure 3
(for real clouds) and 4 (for synthetic clouds). Without using
any corresponding Cloud-Free pair for a cloudy image, our
Cloud-GAN efficiently removes thin clouds spread through-
out a scene, as shown in row III, IV, V in Figure 3. More
interestingly, it effectively detects small cloudy patches and
replaces them with the underlying ground details, as depicted
in row I and II in Figure 3. Cloud-GAN interestingly is able

(a) Cloudy Cloud-Free (b) Cloudy Cloud-Free

Fig. 4: Sample images from Synthetic dataset where (a) Scene-5 (b) Scene-4

to retain finer details like patches of urban settlements, river,
fields (row IV) while getting rid of the cloudy film. In some
cases e.g., row II, the generated image from our method is
more natural and visually more pleasing than the original im-
age which is a byproduct of our method.

We cannot report any quantitative results on the real
dataset since we lack paired cloudy-cloud-free images. How-
ever, to compensate for that, we report results on 5 synthetic
scenes, composed by addition of Perlin noise to cloud free
images. We provide the corresponding PSNR results in Fig-
ure 5. We observe that even though we trained our model
on real dataset, our model substantially outperforms on all
synthetic scenes by a significant margin. Figure 4 shows two
of these test scenes. Note that we do not provide comparison
with [9], due to the unavailability of their code and dataset.

We additionally show some special instances of thick
cloud (Figure 6) where our model fails to yield credible re-
sults. In Figure 6 row I, we see that the model contends by
generating an over-smoothed image when the clouds are too
opaque. In Figure 6 row II, the model fails completely to
produce an image as the clouds have occupied most of the
visible area. One of the reasons can be that the network finds
no closest sample in the target dataset and hence predicts
a spatially smooth region under the cloud or some random
noise. The only way to solve this is by the addition of an ex-
tra source such as SAR images which can penetrate through
these clouds and give us details of the underlying ground
details.

Scene-1 Scene-2 Scene-3 Scene-4 Scene-5
22
24
26
28

PS
N

R
(d

B
)

Cloudy Cloud Free

Fig. 5: Quantitative results on Synthetic Scenes

5. CONCLUSIONS

We have proposed a novel technique to remove thin clouds
from Sentinel-2 imagery. Our cloud removal technique

����

Figure 2.4: PSNR for simulated scenarios with GAN [36].

The cloud free imagery, after GAN been run, has more than 4dB in the relation treated

and original images, proving the efficiency of the method. The application of GAN with

only visible band usage has its limitations, for an image with significant cloud coverage,

the result can be an over smoothed image or a complete fail performance.

A more detailed analyse to the three aforementioned approaches is presented in [34].

It studied the difference between results of the implementations and proposes a comple-

mentary multi source methodology to be added into multi temporal. When considering

multi temporal image fusion, it’s convenient that the imagery data acquired is done in

the shortest time possible, so the land coverage do not suffers changes. As high resolution

satellite images acquisition has limited periodicity, multi source will be performed and

final results discussed. The multi source data derive from a low resolution spatial sensor

but with much higher frequency of image acquirement.

The concept behind this is, in a high resolution image, if there is an affected area by

means of a cloud, the images acquired from the lower resolution sensor with closest date

and that do not present irregularities in that area, are used to cover the specified region.

The high resolution images were acquired from Landsat satellite sensor and the low

resolution ones from MODIS. To represent the three implementations, Poisson, Weighted

Linear Regression (WLR) and Spatio-Temporal Markov Random Fields (STMRF) methods

were used and compared with the purposed one. Two tests were performed, both cloud

simulated, the second one presenting a more fragmented scenario. The parameters to

23

CHAPTER 2. STATE-OF-ART

observe the quality of the methods when reconstructing a scene are Normalized Mean

Square Error (NMSE) where low results are better, as for Correlation Coefficient (CC)

and Universal Image Quality Index (UIQI) higher is better. The final results are shown in

table 2.16.

Table 2.16: Results for Spatial Resolution, Multi Spectral, Multi Temporal and Spatiotem-
poral approaches in cloud removal operation [34].

Poisson WLR STMRF Proposed in [34]

Test 1
CC 0.6662 0.7177 0.6946 0.8411
NMSE 0.0505 0.0434 0.0616 0.0260
UIQI 0.6268 0.7107 0.6909 0.8135

Test 2
CC 0.3894 0.6689 0.5861 0.5780
NMSE 0.6852 0.0670 0.0900 0.0938
UIQI 0.3404 0.6610 0.5682 0.4939

For the first test, the proposed method had the best results in every parameter taken

to consideration, although, for the second test, neither STMRF or the proposed method

score higher than WLR. This is majorly due to spectral mixed pixels from the MODIS

sensor and radiometric inconsistency between Landsat and MODIS sensors.

2.2 FPGA vs CPU vs GPU

As mentioned, when discussing image processing, it’s important to understand two main

standards, the speed of data processing and accuracy in decision making. There are also

other effects that should be taking in consideration such as energy consumption, cost,

size, reconfigurability, application-design complexity and fault tolerance. All these have

implementation trade-offs and what it’s most required for the system being implemented

must take higher priority.

Since the demand of greater and more complex problems have reached society, the

need of powerful machines and high performance processing units is a must. To achieve

a high performance either the operational frequency is very high or the architecture

is implemented with parallelism. Systems have changed from a sequential processing

approach to a parallel programming one [38], this can be observed in the past years,

where the trend of parallelism architectures has increased over time [39].

Different platforms can be used to run the algorithms implemented, here it will be

considered CPU, GPU and FPGA. Several studies have been made to compare the perfor-

mance of these three. As shown in [40], the right balance between operational frequency

and parallelism may lead to an optimal performance.

Till a few years ago, programmers have rely in fast and powerful processors, with high

clock frequency, which enables a software application to run smoothly and with no ap-

parently latency. This wasn’t an issue when these applications didn’t take full advantage

24

2.2. FPGA VS CPU VS GPU

of the processors capabilities, but applications started to demand more and more perfor-

mance. In response to this scenario, new generation processors couldn’t implement just a

faster CPU clock rate as it wasn’t significantly different from the previous generation, due

to physical limitations such as energy consumption and heat dissipation [41]. This being

said, processors started to be designed with several processing units, a multi-core proces-

sor. The first multi-core processor dates from 2001 and it was designed by International

Business Machines (IBM), presenting a chip with two 64-bit microprocessors, then, four

of these microprocessors working together were able to produce a clock speed of 1.3GHz

[42].

By the time, software applications were written as sequential programs who depend

on a single core CPU. With this new architecture, in which programs were not designed

for, the time they took to run an application, in a single ou multi-core architecture, was

similar since they didn’t use the parallelism that a new multi-core CPU is able to. Software

has still limited features and capabilities. When programmers started to think in their

problem answers’ with the ability to process multi operations at the same time, they took

the advantage of a modern multi-core CPU.

Next will be presented the literature review about the performance of FPGA in com-

parison to other platforms, CPU and GPU. Section 2.2.1 pretends to show what advan-

tages FPGA has in general algorithms, and section 2.2.2 a more contextualized scenario,

where FPGAs were used in image processing.

2.2.1 Analyse of Performance Power in FPGA

An example of how parallelism takes great advantage over sequential is demonstrated

in [43] where the platforms taken to test are a CPU (Intel Core2), a GPU (NVidia GTX

200), a FPGA (Xilinx Virtex-5) and a Massively Parallel Processor Arrays (MPPA) (Ambric

AM2000). It is mentioned that the Monte-Carlo simulation really takes advantage of the

parallel computation power as it will be analysed next. The Monte-Carlo simulation uses

a powerful generic method to generate samples from an arbitrary distribution, it repeats

random sampling to obtain numeric results [44].

In this paper is studied how these four platforms perform in random number gen-

eration. To accomplish the goal, three random number generator algorithms were used,

they are Uniform method, Gaussian method and Exponential method. Both effective and

mean results of the tests are presented in table 2.17, in which can be seen that the FPGA

has better performance than the other platforms, approximately three times the GPU,

thirty times the CPU and twenty times the MPPA. The main difference is in the efficiency

results, FPGA takes an order of magnitude step up from the other platforms.

An other factor to take in consideration, is the base language in what the program is

being written. To program an FPGA, it’s required to be used an Hardware Description

Language (HDL), such as VHDL or Verilog [45]. These operate at a very low abstraction

layer and their main purpose is to describe the structure and behavior of an electronic

25

CHAPTER 2. STATE-OF-ART

Table 2.17: Comparison of absolute performance and efficiency of random number gener-
ator across platforms. (Based on [43])

Performance (GSamples/s) Efficiency (MSamples/joule)
CPU GPU MPPA FPGA CPU GPU MPPA FPGA

Uniform 4.26 16.88 8.40 259.07 15.20 140.69 600.00 8635.73
Gaussian 0.89 12.90 0.86 12.10 3.17 107.52 61.48 403.20
Exponential 0.75 11.92 1.29 26.88 2.69 99.36 91.87 896.00
Geo Mean 1.41 13.75 2.10 43.84 5.07 114.55 150.21 1461.20

Relative Mean Performance Relative Mean Efficiency
CPU GPU MPPA FPGA CPU GPU MPPA FPGA

CPU 1.00 9.69 1.48 30.91 1.00 9.26 18.00 175.14
GPU 0.10 1.00 0.15 3.19 0.11 1.00 1.95 18.92
MPPA 0.67 6.54 1.00 20.85 0.06 0.51 1.00 9.73
FPGA 0.03 0.31 0.05 1.00 0.006 0.05 0.10 1.00

circuit or in this scenario, to describe the implementation of a digital logic circuit. These

languages allow to model the parallelism and clocking of a hardware description. How-

ever, these languages are not commonly used and not the most intuitive to learn and

program in. To solve this problem, in [45] is studied an approach with SystemC and

CoSynth Synthesizer, which comprehend a set of C++ classes and macros, described in

more detail in [46], that allow the source code to be compiled and an executable to be gen-

erated and an automatically generation of the hardware description required, respectively.

The programmer can now face the problem using a more friendly C++ syntax.

In [45], it’s analysed what is the difference between an implementation with SystemC

approach and a native VHDL description. Three algorithms were tested, Demosaicing,

Binary Morphology and Canny Algorithm. Two FPGAs were used, the LX45 (from the

Spartan-6 family) for low cost and the LX50T (from the Virtex-5 family) for high perfor-

mance. These two were compared to an Intel Core I7 2800MHz with OpenCV implemen-

tation. The results are presented in figure 2.5.

From the analyse of the bar chart, it’s noticeable that the implementations written di-

rectly in VHDL have better results than the ones using SystemC. This confirms the theory

that, that kind of implementation is less optimal due to the higher level of abstraction,

leading to a executable program with more operations and redundant ones, also it has

not much concern how memory is handled, so it "makes retrieving any details of a running
program a non-trivial task" [47].

2.2.2 Performance Analysis of FPGA in Image Processing

To demonstrate how parallelism takes benefit, [40] shows a problem where it was run a bi-

dimensional filter to compare performance between CPU, GPU and FPGA, the platforms

used where an Intel Core 2 Extreme QX6850, 8MB L2 cache, quad-core with 3GHz of

clock speed, a XFX GeForce 280GTX with 1024MB DDR3 and a Xilinx XC4VLX160

26

2.2. FPGA VS CPU VS GPU

Demosaicing Binary Morphology Canny Algorithm
0

100

200

300

Fr
am

es
p

er
Se

co
nd

VHDL Spartan-6 VHDL Virtex-5 SystemC Spartan-6
SystemC Virtex-5 OpenCV

Figure 2.5: Performance comparison of SystemC, native VHDL and CPU implementations.
Based on: [45]

respectively. As seen in chapter 3 of the described paper, CPU gets a higher performance

with a higher number of cores available, because it uses Single Instructions Multiple

Data (SIMD) instructions, where N can be processed in parallel using N cores. To use

the graphics card in its full potential, 960 filtering operations were computed to run in

parallel. CPU and FPGA showed the same number of operations. As known, CPU has

a much higher operating frequency than the other two platforms, this means that, for a

small filter size, where the parallelism as no big difference it should get better results.

In figure 2.6 can be seen the evolution of performance by the increase of filter size.

As expected, CPU shows better results than FPGA for a small filter size, 3x3 up to

5x5. Although GPU operating frequency was limited to 100MHz it gets better outcomes

than CPU for all tests performed. As for the FPGA, it’s interesting to see how it performs

through the tests, since it is expected to have similar results among them, taking full

advantage of its parallel capabilities (a decrease in the performance should only be seen

when the filter size k is big enough so that k2 operations couldn’t be taken at the same

time, that situation can be noticed at stereo-vision and K-Means clustering algorithm per-

formance test). According to the expected it maintains its frame ratio even for a greater

demanding problem. For the last test (filter size of 15) FPGA and GPU get almost the

same performance, and by analysis of the curvatures on the graphic, GPU performance

tends to decrease and FPGA to maintain till its parallelism capability (much higher than

the other two platforms) not been fulfilled. Equivalent results were acquired in the same

paper for other tests.

To complement the study in performance between platforms, now will be analysed

27

CHAPTER 2. STATE-OF-ART

Figure 2.6: Performance of two-dimensional filters, CPU vs GPU vs FPGA [40].

the paper [48] which comprises a comparison among GPU and FPGA with CPU as a

benchmark. Two methods of study were performed, the first being a primary color correc-

tion targeted at high definition video (1920x1080 frame size at 30 frames per second) and

the second case of study, an n∗n 2D convolution targeted at a frame size of 512x512 pixels

also at 30 frames per second, it’s desired a throughput rate of 63MP/s and 8MP/s respec-

tively. The platforms used were two GPUs, the GeForce 6800GT and GeForce 6600GT,

two FPGAs, the Virtex II Pro and Spartan 3, respectively high and low performance ones,

and the CPU used to benchmark was a Pentium 4 with clock rate of 3GHz. The first as-

pect to notice, as previous papers state, the clock rate of the CPU is the highest, followed

by GPU and at last the FPGA. It’s important to keep in mind that the FPGA is the one

who implements a higher level of parallelism.

From this paper point of view, when choosing from GPU and FPGA as a platform to

use in accelerating video processing, several decisions should be taken in consideration,

such as the instruction set and the frequency of memory usage, for example.

In figure 2.7, from the study [48], are presented the results for the first test. There can

be seen that both GPUs and FPGAs architectures are able to perform the desire through-

put of 63MP/s. The two FPGAs get better results than the GPUs, even when comparing a

high performance GPU to a low performance (cheaper) FPGA. One explanation for these

results is that FPGA architecture is implemented with a fixed point bit-width optimized

designed, this means it has a defined number of digits after the radix point. As GPUs

and CPUs don’t present this approach, depending on their instructions set, their outcome

performance is inferior.

Considering now the second test of [48], the results are consistent to what expected. FPGA

keeps its highest performance throughout the test. A minor detail is that for a small filter

size, where a high parallelism doesn’t make a big difference, GPU takes the lead due

28

2.2. FPGA VS CPU VS GPU

Figure 2.7: Performance for GPUs, FPGAs and a CPU for Primary Color Correction [48].

to its higher clock rate, this accords to [40]. As for bigger filter sizes, FPGA benefits

from its parallelism capabilities, pipelining (an implementation technique where multi-

ple instructions are overlapped in execution) and streaming data and shows the results

demonstrated in figure 2.8. This proves that parallelism takes a big step into process-

ing data, in this context image data where multiple pixels can be processed at the same

time. Even though FPGA has a high parallelism, it has its limitations and it’s shown in

figure 2.8, for the low performance one, for a filter size over 9x9 it decays its throughput

when the high performance keeps it.

In analyse of the graphic it’s noticeable that FPGAs are not just more handy to com-

plete the task with the desire throughput, but both GPUs can’t be used in the application

for a filter size over 7x7.

As mentioned in section 2.2.1 and in study [45], the programming language in which

the problem will be approached, influences the processing speed. Moreover, the platform

where it is run takes a big step in the performance and deep down, in throughput re-

sults. Next, is reviewed a paper with great comparison in performance according to the

language where the algorithms were written, in a scenario of image processing [49].

The goal is to achieve a processing time under 40ms. The programming languages

tested are C++, MATLAB and VHDL (ran in an FPGA board). For the MATLAB and C++

implementations, as they are designed for a serial CPU, running one instruction after

another, translating the code between MATLAB, C++ and VHDL it’s not the easiest task.

To help, was used the Xilinx System Generator block set for a higher level of abstraction,

which is an add-on to the MATLAB-Simulink environment that can "convert the Simulink
model into hardware for Xilinx FPGA" [49]. To complete the implementation, the hardware

used was a ML-555 board (Xilinx Virtex-5 family) and an Intel Pentium dual-core pro-

cessor, 3.9GHz with 0.99GB of RAM. Ideal for the task as it provides high-speed I/O by

29

CHAPTER 2. STATE-OF-ART

Figure 2.8: Maximum throughput of 2D convolution for GPUs, FPGAs and a CPU [48].

a PCI Express connector for interface with the PC. Three images of different size were

taken to test. The results for the test are shown in figure 2.9 with exact processing speed

time in table 2.18.

Figure 2.9: Comparison of Processing Speed for different image size and coding format
[49].

30

2.3. CLASSIFICATION AND IMAGE PROCESSING IN ZYNQ ULTRASCALE+

Table 2.18: Processing Speed exact values for different image size and coding format [49].

Image Size Coding Format Minimum Time (ms) Average Time (ms)

Image 1
(119KB)

C++ 46 47
MATLAB 1435.9 1440.33

FPGA 30.7201 30.7201

Image 2
(45KB)

C++ 23 24.5
MATLAB 664.8 666.95

FPGA 14.7456 14.7456

Image 3
(4KB)

C++ 0 0.9
MATLAB 8.1 8.32

FPGA 0.4881 0.4881

As seen, there is a great variance between C++, MATLAB and FPGA time to process

the algorithm. Furthermore, only FPGA can perform under 40ms for all three image

sizes, followed by C++ and MATLAB with the worst results. The 0ms processing time

for C++ in image 3m, should not be taken to consideration since it was limited by de

precision of the timer. This shows that, despite a higher abstraction level, these two

programming languages can’t get close to the performance presented by the FPGA, taking

again full advantage of its parallelism and description of an electronic circuit to optimize

instructions. Also should be noticed, the FPGA is the only one that for the minimum and

average time presents the same values, this is because applications ran in PC are affected

background running parts of the operating system.

2.3 Classification and Image Processing in Zynq UltraScale+

From previous sections it was seen several classifiers obtaining good results, such as Deci-

sion Trees, Artificial Neural Networks, UNINORM. The ones decided to be implemented

in Hardware to fully optimize the process are Decision Tree and Minimum Distance. This

choice is based on the performance of the classifiers and the complexity required to imple-

ment in hardware. From these classifiers it’s expected to achieve such good performance

on hardware as in software, since the comparison will be made with exactly the same

implementation in CPU.

To implement the design in hardware will be used a Xilinx UltraScale+ MPSoC

ZCU102 Evaluation Kit. This platform is described in detail in table 3.1, but it con-

sists of a processor with several I/O ports available and a Programmable Logic (PL) side

in which the classifier will be implemented taking full advantage of parallelism provided

by a typically known FPGA. The Digital Signal Processors will be fundamental for this

work.

Literature about implementing Land Use/Land Cover classifiers into Zynq devices

is little to none. But accelerating some kind of classification applied for other cases

of study comprehending image processing can be found and it’s good to understand

31

CHAPTER 2. STATE-OF-ART

that implementing image processing can be done and results obtained from this type of

platforms.

When implementing image processing or image classification, the fast throughput

must be a requirement, moreover for a real time system like in [50]. CPUs cannot provide

the desired performance based on its sequential behavior, but FPGAs can process multiple

operations simultaneously. In this paper, grayscale conversion is applied to RGB images.

The method is run in a Zynq family device using the software and hardware parts of

the board. The method used covers the image with a window filter of 3x3 applying

consecutive mathematical operations. The results obtained were the ability for the design

to run as high as 2000 fps but it was bottleneck by the transferring speed of 25ms per

frame, summing up in a 40 fps real time system. From these outcomes, its seen that

optimizing the process of transferring data into and from the board is a must.

An other example on real time systems is [51]. For this case it’s a traffic sigh recog-

nition in which the need of a fast output is more important. In this project it’s used

a Zynq-7000 along with Matlab. The results are compared with previous works on a

MicroBlaze and the Ip core implemented on Virtex 5. The benefits are the faster clock

frequencies the system is able to reach, achieving almost 10 times the performance. This

advantages also came from an implementation of a System on a Chip providing better

communication between software and hardware, rather than a microcontroller with I/O

peripherals to the FPGA part.

A third paper will be studied since it uses the same platform as the one in the project.

In [52], the Zynq UltraScale+ MPSoC is used for processing operations in 4K video stream-

ing. It was implement simple averaging, Gaussian and Median filters, edge detection us-

ing Sobel and Canny methods, morphological erosion and dilatation. From this paper it’s

possible to understand the resource demanding to process such high resolution images

without losing frames, one very important aspect in real-time systems.

32

C
h
a
p
t
e
r

3
Platform and Software Framework

To develop a Land Use/Land Cover classifier with implementation based on FPGA image

processing, it is required a validation platform. The one developed for this work it’s

represented in figure 3.1. The simplified block diagram consists of a computer and a

Zynq board. The computer performs data acquisition and sends it to the board which is

preconfigured with the classifier. More details of the work done in each component are

described in following sections.

ZYNQ Computer

Data

Classification

Figure 3.1: Validation Platform - Block Diagram

3.1 Xilinx Zynq UltraScale+ MPSoC ZCU102

The ZCU102 kit is equipped with a quad-core Arm Cortex-A53, dual-core Cortex-R5F

real time processors, 4GB 64-bit DDR4 SODIMM (Processing System (PS)) and 512MB 16-

bit DDR4 Component (PL) [53], being these three factors strictly important for a classifier,

one for store the data required for the classifier and the one generated as an output and

second, the high parallelism for calculations in the PL side. As it was seen in section 2.2,

for instance, calculations takes major impact when performing multiplications. More

detailed specifications from the PL side of the board are described in table 3.1.

As mentioned, the Zynq board has two sides, PS and PL. The biggest advantage from

a System on a Chip (SoC) like this, is that the PS can control operations performed by

33

CHAPTER 3. PLATFORM AND SOFTWARE FRAMEWORK

Table 3.1: Processing Speed exact values for different image size and coding format [54].

Programmable

Functionality

System Logic Cells (K) 600

CLB Flip-Flips (K) 548

CLB LUTs (K) 274

Memory
Max. Distributed RAM (Mb) 8.8

Total Block RAM (Mb) 32.1

Clocking Clock Management Tiles (CMTs) 4

Integrated IP
DSP Slices 2520

AMS - System Monitor 1

Transceivers GTH 16.3Gb/s Transceivers 24

Speed Grades Industrial -1 -2L -2

the PL and even offload tasks to the PL which leaves the processor with more bandwidth

for other tasks [55]. A representation diagram with PS and PL is shown in figure 3.2,

there can be seen several components of the PS and a black box for the PL side. From the

figure it is also possible to see the interfaces between PS and PL and their are described

by the Advanced eXtensible Interface (AXI) protocol. This protocol is described in more

detailed in subsection 3.1.1 as it is one important aspect for the implementation of the

work.

Also worth to mention that the PS is able to boot with a standalone project or with

an Operating System. The different boot mode options are: Quad SPI Flash Memory,

eMMC18, NAND, Secure Digital Interface Memory, JTAG and USB. Boot from an SD

Card was chosen for convenience. A closer look to this topic is made in section 3.2.

When creating a project in the Zynq UltraScale+ MPSoC with implication to image

classification, the three main components above mentioned have a common implementa-

tion. More attention is paid in section 3.1.2.

3.1.1 AXI Protocol

The AXI protocol is part of the Advanced Microcontroller Bus Architecture (AMBA) speci-

fication, like it is present into the ZCU102 kit. This protocol allows the different modules

of the Zynq device to communicate with each other implementing the rules required

between them. This protocol implements an effective way of data transmission with a

master/slave type of agreement, represented in figure 3.3. This kind of protocol has the

following procedures [56]:

• Master and Slave agreement to confirm valid signals, task taken before data trans-

mission;

• Transmission of control signal/address and data must be in different phases;

34

3.1. XILINX ZYNQ ULTRASCALE+ MPSOC ZCU102

Figure 3.2: Zynq UltraScale+ MPSoC - Block Design

• Transmission of control signal/address and data must be in different channels;

• Continuous data transmission might be done through burst-type communication.

The burst-type communication allows the data to be sent in blocks. This feature will

be useful when transmitting data from the PS to the PL, as will be seen in future sections,

database and data to be classified are stored in SODIMM DDR4 in the PS side. The AXI

protocol can be memory mapped or stream, for this implementation, memory mapped

is chosen allowing memory and registers in the module to be associated with memory

addresses on the PS.

Master
Interface

Slave
Interface

Write Address

Read Data

Read Address

Write Response

Write Data

Figure 3.3: Master/Slave Channel Connections (Based on: [56])

35

CHAPTER 3. PLATFORM AND SOFTWARE FRAMEWORK

3.1.2 Common Blocks

When creating a project which requires the use of the PS side of the Zynq board, one In-

tellectual Property (IP) that should be present in the block design is the Zynq UltraScale+

MPSoC. Through it, all I/O pins and ports will be controlled, like UART, I2C, DDR

Controller, Display Port, etc. In the scope of this work, DDR4 is one other important

component, since all the data for the classifier, pre and pos-classification, will be stored

in it.

The usage of DDR4 to store the information that the classifier need have its pros and

cons. One major benefit is its read/write speed which will affect the time outcome of

the classifier, on the other hand, if the board is disconnected from the power supply all

data stored in it is lost. In figure 3.4 it’s possible to see the basic implementation. Also,

between the processor IP and DDR4 IP it’s present an AXI SmartConnect block, this will

take care of all the different connections between the processor and peripherals applying

the AXI Protocol previous studied.

Figure 3.4: Simple Block Design with Processor and DDR4

At this point, no PL implementation is done, so no more connections are made. When

the classifier is attached to the block design, more AXI SmartConnect blocks are expected

to connect to the classifier and consequently to the PL side of the board.

3.2 Development Environments

To develop the classifier in the ZCU102 kit, two softwares will be used, Vivado HL Design

Suite and MathWorks Simulink. Vivado HL Design Suite is a software for synthesis and

analysis of HDL produced by Xilinx. The Vivado IP Integrator allows to integrate and

configure several IP modules from the Xilinx IP repository and with MathWorks Simulink

tools, design and build the projects [57, 58]. The versions required are Matlab R2019a

and Vivado 2018.2 for compatibility issues.

The description design will be made in MathWorks Simulink and using Matlab HDL

Coder synthesize the desire components to be implemented into the Zynq board. Further

36

3.3. PREPROCESSING DATA FOR IMPLEMENTATION IN ZYNQ ULTRASCALE+

BOARD

adjustments have to be made in the Vivado HL Design Suite software as well as synthesis,

implementation and the generation of the bitstream to be loaded into the board.

As mentioned before, the PS as several boot options and can be booted in standalone

or into an Operating System. For the case of study it’s used an SD Card with a pre-built

Operating System image provided by MathWorks. After the board starts the Operating

System, the generated bitstream is loaded into the board via JTAG.

The overall description of the system implemented is shown in figure 3.5. In it can be

seen the different step the data takes since it is loaded till the final classification.

Initialization

Wait for Image

Receive Image

Store Image
To RAM

Transfer Image
via AXI

Receive Image

Apply Classifier

Transfer Output
Labels

PS

Hardware
Peripheral

Matlab

Load Image

Reshapes Matrix

Sends Data

Receives
Classification

Output
Classification

Receive Labeling
Output of Classifier

Send Classification

Zynq UltraScale+ MPSoC

Figure 3.5: High Level Block Diagram for the Classifiers

3.3 Preprocessing Data for Implementation in Zynq

UltraScale+ board

As mentioned, the computer has the function of loading the data which is intended to

be classified and sends it to the Zynq board. The data used in this work is provided

by Sentinel 2 satellite. Sentinel 2 is part of a European Union Copernicus Program and

acquired Earth imagery with a time stamp of five days. It has a spatial resolution of

10x10m, 20x20m and 60x60m throughout the 11 bands [59]. For the scope of this work

the resolution of 10x10m was chosen and for the bands that do not accomplished this

resolution, the method of duplication of pixels was performed to achieve the desired

standard. The data was acquired in 24th February 2019, with reference N0213, R037

and T29SNC. Although the area covered by this satellite imagery does not integrated

37

CHAPTER 3. PLATFORM AND SOFTWARE FRAMEWORK

the region of Mação as this work is intended to, it was chosen for the fact that it has

more water data information so that the classifier can achieve a better accuracy. The class

assessment for the region of study was obtained from Carta de Uso e Ocupação do Solo

de Portugal Continental (COS) 2015 [60].

As a primary implementation, the design of the classifier will only range between two

classes, water and non water. This approach was done due to the complexity of the work,

time to perform it and to keep the highest accuracy possible of the classifier. From COS

database, 10 classes are provided for the region of study, they are labeled as so: 0 - ocean,

1 - artificial territories, 2 - cropland, 3 - grassland, 4 - agroforestry systems, 5 - forest, 6 -

bushlands, 7 - bare areas, 8 - humid areas, 9 - water bodies. For the first approach to the

classifier, ocean, humid areas and water bodies will be considered as water regions and

all other labels as non water regions.

The database comes with Tagged Image File Format (tiff) images describing all 11

bands. An additional band was created, NVDI, as it can clearly distinguish water from

non water pixels and increase the overall performance of the classifier, the formula for

the NVDI index is shown in equation 3.1.

NDV I =
(NIR−Red)
(NIR+Red)

(3.1)

When operating tiff images it’s possible to see that they are bi-dimensional vectors

of single precision variables. This type of variable is a 32 bit floating point value, which

means it can store fractions, as it does. When coding in HDL, decimal number is not an

option and a different approach has to be taken. If the decimal or integer part of the num-

ber is constant, the number could be rounded to the closest exponential base 2 number,

but not just neither of the integer or decimal parts are constant and an adaptation to the

closest number might result in a non dynamic classifier. The solution is to multiply the

database by a number great enough so that the fraction parts can be discarded not affect-

ing the outcome of the classifier, by analyses, 105 is reasonable to the classifier become

dynamic and perform with the images tested and others. Even though this multiplica-

tion, the input numbers for the classifier could be kept at 32 bit and the variable type

chosen for implementing in the FPGA was integer 32 ranging from -2.147.483.648 up to

+2.147.483.647.

With all these changes applied to the database, it is ready to be performed the classifi-

cation in any method implemented.

38

C
h
a
p
t
e
r

4
Classification Algorithms for Land

Use/Land Cover

To implement a classification algorithm, in this dissertation, for Land Use/Land Cover

classification, it’s firstly required to know if there is a previous classified database. With

this knowledge will be decided if the methods implemented will be based on a supervised

or unsupervised classifier.

As previous mentioned, the database used for the case of study will be acquired

from Sentinel 2 satellite with spatial reference N0213, R037 and T29SNC, dated from

24th February 2019. The imagery consists of 11 bands of the frequency spectrum plus

the NVDI created, with all the adaptations required described in section 3.3. The images

size is 10980x10980 pixels, containing a total of 120560400 pixels. For the algorithms

to perform, a training data totaling 3M pixels was chosen. For this data the selection of

the pixels was random, with the only requirement being the need of at least 1M pixels

containing water information.

The classification algorithms implemented are Decision Tree and Minimum Distance

depicted in following sections.

4.1 Decision Tree

The Decision Tree learning algorithm is a tree-like chart which test the data across its

nodes resulting in a classification. It’s complexity increases by the number of samples

and the number of attributes. The learning process of the model can be summarized

into "partionating the nodes, find the terminal nodes and allocate class labels to the terminal
nodes" [61]. The nodes test the attributes of the database by a threshold parameter, in

the DT model used, the data passes through the parameter and splits into two categories,

39

CHAPTER 4. CLASSIFICATION ALGORITHMS FOR LAND USE/LAND COVER

within the threshold or outside the threshold. The number of splits per node can be

choose by the creator of the model, fitting the best for the database in study.

The building of a DT model can be a lengthy process. This is when the use of the

Classification Learner package provided by MathWorks in Matlab software comes handy.

With the Classification Learner package several classifiers can be build for the database

provided, the right choice of them depends in the case of study, reproducing the model

generate in HDL like it is intended in this project can be very complicated, DTs are a

solid first approach to the problem with satisfactory results as study in chapter 2.

With the above mentioned sampled training data, in the Classification Learner the

model Decision Tree - Fine Tree with no PCA was chosen. The parameters for training

the model are described in table 4.1.

Table 4.1: Decision Tree model parameters for Matlab Classification Learner.

Decision Tree - Fine Tree (Parameters)

Max Splits 100

Split Criteria Fini’s diversity index

Surrogate Decision Splits off

Observations 3M

Features 12

Holdout Validation 25%

Minimum Accuracy 95%

Although DT classifiers could take long time to model they have a few advantages

against other kind of classifier, like Minimun Distance (section 4.2). After the classifier is

defined it no longer needs the database for assigning the output saving a lot of memory

when the project takes considerable size and since the nodes in the tree are typically

defined by if conditions it’s one of the fastest classifiers. These are trade-offs for not being

the classifier with highest accuracy but high throughput.

The model built by Matlab Classification Learner has its own accuracy, calculated

with the 25% holdout validation data, this will be compared with the results obtained

when applying the model to the entire image. The same model will also be performed in

the Zynq board and in a computer, further results (speed and accuracy) and conclusions

will be taken in chapter 5. The summary of the process taken in this classifier is illus-

trated in figure 4.1, representing all the steps between satellite image and final accuracy

assessment.

In section 4.1.1 will be explained in more detail how to implement the DT classifier

into the Zynq UltraScale+ board, all the software required and adaptations made so it

can run.

40

4.1. DECISION TREE

Satellite
Image

Training
Data

Validation
Data

Total
Image

Sampling
(2% of total

Data, 3M pixels)

Matlab
class result

Matlab
Accuracy

Assessment

DT
Classifier

Total Image
Classification

Comparison

25%

Total Image
Accuracy

Assessment

75%

Figure 4.1: Decision Tree Model - Flowchart

4.1.1 Decision Tree Classifier - Software Support

In this subsection will be explained how the classifier was implemented into the board and

decisions taken throughout the design in how to most efficiently outcome the classified

pixels.

A first approach was done, using a standalone project, with a design project close to

the one showed in figure 3.4. Then, the design was exported into the Xilinx Software

Development Kit (SDK). Xilinx SDK is "an Integrated Development Environment for

development of embedded software applications targeted towards Xilinx embedded pro-

cessors" [62]. It works in parallel with Xilinx Design Suite and allows the system to be

programmed in C/C++ programming languages and an easier debug solution. This alter-

native accelerates and overcomes the problems of programming an interface with board

peripherals in any HDL, additionally, it also provides a vast library available for the user.

The library used was "xsdps.h". This decision was initially taken because the data was

intended to be stored in a SD Card. From the library it was possible to initialize the SD

Card, read and write data to it. The main concern was the time it was taking to perform

the task. To send 200 pixels with 12 bands each it took longer than 10 minutes, so this

approach was discarded. Although the optimizations explored were done, the 10 minute

mark could not be overtaken.

This is when also MathWorks comes in. MathWorks provide three packages for Xilinx

41

CHAPTER 4. CLASSIFICATION ALGORITHMS FOR LAND USE/LAND COVER

evaluation boards, in specific for Xilinx Zynq UltraScale+ MPSoC ZCU 102 Evaluation Kit.

The packages are HDL Coder, HDL Verifier and Embedded Coder. These three tool work

together to help the user designing the architecture of the work, creating personalized IP

cores, verify and simulate the implementation. HDL Coder is the package responsible

for the generation of the IP cores [63], HDL Verifier is the tool that allows to test the

implementation of a block creating the test bench for VHDL [64] and Embedded Coder

supports generation of C/C++ code for the ARM Cortex A processor family [65]. The

support packages provide a boot loader image file containing a MathWorks Operating

System. This file is strictly important without it none of the following work would run.

The file is incorporated into a SD Card and the board booted from it.

To incorporate the support packages, Simulink will be used to model the implemen-

tation based on a graphical programming environment.

4.1.2 Simulink Model

A high level graphical design system of the work is shown in figure 4.2. It includes

input and output variables so that the user can control the system. A Design Under Test

(DUT) in which is present the classifier itself and a DDR block to interface with the DDR4

SODIMM from the board.

Figure 4.2: High Level Design System - Classifier, Zynq board and interface with the user

Next will be explained the several components of the design and the building process

of the entire system.

The first requirement is to design where to store the data, the DDR4 (PS) RAM is the

option to take because its high read/write speeds. Simulink provides a simple implemen-

tation to interface with the DDR4 (PS) RAM represented in figure 4.3.

The model provided is defined to work only to positive numbers. Some modifications

had to be made because the classifier also carries negative integers. The modifications

were applied to the block "load_init_data", the final function is described in annex I,

Load_Init_Data Block Code. From figure 4.3 it’s possible to see that the output of the

Simple Dual Port RAM is, as expected, the type int32 instead of the previous uint32.

42

4.1. DECISION TREE

Figure 4.3: DDR4 RAM Interface Block Design

After the DDR (PS) block being defined and the memory of the system being well

implemented, the read/write functions to access it must be established. Inside the DUT

block it’s possible to see a block called "DDR_Access", figure 4.4. In it two function are

defined to read from the DDR (PS) into the classifier and write from the classifier into the

DDR (PS), these two function are also presented in annex I.

Figure 4.4: Design Under Test

From specific addresses values, the user can control when to read and when to write,

from what address in the DDR4 (PS) to perform the task and how many bytes to work

with. The process of read/write from/to the DDR4 (PS) is sequential, which means, if the

user wants to access three bytes, although the process is automatic, it needs to get one at

a time. For this condition the classifier has a few adaptations to handle with it.

43

CHAPTER 4. CLASSIFICATION ALGORITHMS FOR LAND USE/LAND COVER

Entering the Classifier block itself, figure 4.5, it shows the function that represents

the DT classifier and a Simple Dual Port RAM block. After all the data to be classified is

loaded into the DDR4 (PS), it is able to start the classification.

Figure 4.5: Classifier Design Block - Decision Tree

As mentioned, the classifier function only receives one byte at a time. For this classifier

to perform it must have access to all 12 bands of the pixel being studied to perform the

classification, this means only after 12 clock cycles all the data has arrived to the function.

Typical variables inside functions are lost when the functions ends, to overcome the

problem of loosing previous pixel data, the different band variables are store is persistent
variables. This way, as long as the user wants and the board is not unplugged from

the power, the variables are available. At every 12 clock cycles the classifier outputs a

classification and an enable variable. These are written to the Simple Dual Block RAM.

The enable signal increments a variable which indicates in what address the classification

should be written to. Although Simulink allows Simple Dual Port RAM addresses to have

30 bits, the DDR4 (PL) is 16-bit representing a maximum of 65535 data to be classified.

If more than 65535 pixels have to be processed, the previous ones should be read before

new ones written.

Till this point the classification is stored in the DDR4 from the PL side not being yet

available, after the user set the command to write from the PL to the PS the classification

is ready in a specific address in DDR4 (PS) RAM. To emphasize that all these read/write

processes are done through the AXI Protocol.

The classifier function code will be attached to annex I, "Decision Tree Classifier

Function".

At this stage the Simulink model is ready to perform classification. The project to

implement into the board should now be created so that all the IP cores and connections

with peripherals are defined. This is explained in section 4.3

44

4.2. MINIMUM DISTANCE

4.2 Minimum Distance

The Minimum Distance Classifier is one model that does not required previous training.

The data it needs to perform it’s just the database and the pixels to be classified. The

method used in this work is the Minimum Distance Algorithm and Euclidean Distance

Estimate. It is an iterative method being highly time consuming [66]. It assigns an unclas-

sified pixel to the nearest class in the database. The nearest class is calculated according

with the Euclidean Distance [67]. The Euclidean Distance is defined by equation 4.1.

D (p1,p2) =

√√√ N∑
b=1

(BVb1 −BVb2)2

 (4.1)

From the equation it’s possible to see that the number of multiplications to perform

the algorithm increases by the number of bands to analyse and the number os samples in

the database. This will present a major impact in the time to perform the classification

and will be the major difference between CPU and Zynq.

When performing a multiplication, CPU and Hardware implementations don’t have

similar behaviors. CPUs tend to implement a multiplication by a successive addiction,

when for the Hardware implementation, the result of a multiplication is ready at the clock

the inputs are presented or at the next one depending how the system is designed to.

For comparison, a multiplication performed in Matlab software running in an I7-

8750HQ at 3.9GHz, took an average of 1ns to perform, and the same multiplications ap-

plied in Hardware the result is available at the same clock of the inputs, like is presented

in instructive figure 4.6. For this reason it’s expected the classifier to take advantage of

the implementation in the Zynq board. The major difference will also be the amount of

multiplications that can be made at the same time, the Zynq board benefits from its 2520

Digital Signal Processing Slices.

Figure 4.6: Output of a multiplication implemented in Hardware

This kind of classifier has its own advantages and disadvantages. It doesn’t require

any training process so the implementation of it is faster than the Decision Tree classifier,

but after both been implemented its classification takes much longer, this will be seen in

chapter 5 along with the accuracy results.

45

CHAPTER 4. CLASSIFICATION ALGORITHMS FOR LAND USE/LAND COVER

A flowchart explaining the concept of the algorithm is show in figure 4.7. This will

be translated into the Graphical Programming Modulation in Simulink and further func-

tions.

Satellite
Image

Total
Image

Database
(2% of total Data,

3M pixels)

Euclidean
Distance

Previous
Distance

Database
Size

Increment
Counter

T

F

Next pixel to classify T

F

New Distance

Next database
pixel

Classification

E.D
<

Previous

=

Figure 4.7: Minimum Distance Model - Flowchart

In following section, Simulink Model, will be described how the classifier was im-

plemented and the changes made from the previous model. No need of any MathWorks

Machine Learning package since the classifier is strictly mathematical.

4.2.1 Simulink Model

The similarities to the Decision Tree Simulink Model are many. The design of both DDR

and DDR_Access modules is the same. The differences came when more variables are

needed to the classifier. In the previous one, at every 12 bytes incoming, corresponding

to the bands of a pixel, it would outcome with a classification. Here, in this classifier, it

46

4.2. MINIMUM DISTANCE

will receive the bands of one pixel to be classified and then run across the entire database

to search for the one classification that minimizes the Euclidean Distance. To iterate

the process for all the pixels to be classified, the function needs to previously know the

database and data to be classified sizes. These are input variables of the system which go

directly to the "Classifier Design Block", figure 4.8.

Figure 4.8: Classifier Design Block - Minimum Distance

The classifier function itself is an exhaustive process of addictions, subtractions and

multiplications. One particular adaptation was made to implement the algorithm in HDL.

When considering the Euclidean Distance formula, it has a root square at the end of

the sum of all values. The root square could possible result in a decimal figure. Since

the implementation of decimals in HDL it’s not trivial, and the distance itself it’s not

important, but the relation, higher or lower, to the others, it was decided to remove it

from the function.

The function is described in annex I, "Minimum Distance Classifier Function". The

output of the classifier is saved into Simple Dual Port RAM after the pixel is compared

with all the database.

All the limitations applied in section 4.1.2 are present in this model too, ranging from

the maximum pixels to be classified and when the data is available to the user. One spec

it is important to mention, although the maximum number of pixels are limited to 65535,

this number is not the same for the size of the database. The database is stored in DDR4

from the PS side which is 64-bit addressed. By default its writable addresses range from

"x8000000" to "x9FFFFFFF", leaving 536.870.911 free addresses. Considering for each

pixel of the database have 12 bands plus 1 classification, 536.870.911/13 ≈ 41.297.792 pixels

47

CHAPTER 4. CLASSIFICATION ALGORITHMS FOR LAND USE/LAND COVER

can be stored in RAM. For every pixel that the user wants to classify, one pixel of the

database have to be removed. The max number of pixels that can be loaded into RAM is

simply defined by equation 4.2. Since this classifier depends on how good the database

is, the size limitation could be a constraint.

NDB_pixels = 41.297.792−Number_of _classif ication_pixels (4.2)

4.3 Vivado Design Suite - Xilinx UltraScale+ MPSoC

Classifiers Implementation

This section will describes the process of implementing the classifiers into the Zynq

UltraScale+ MPSoC board.

After the design of the classifiers has been done in Matlab software, it’s required to

use Vivado Design Suite to select what IP cores to use, create new ones if needed and

manage all the interconnections between them. The block from figure 4.2 intended to be

optimized by the board, taking advantage of its high parallel operation capabilities is the

"DUT", since the function to be accelerated is the classifier.

From Matlab HDL Workflow Advisor will be set all the parameters for the creation

of the project. This parameters are the the working frequency of the board, the base

addresses of the inputs/outputs, the control values when to read/write from/to DDR4 PS

side RAM into DDR4 PL side and the addresses for the origin of the data and the output

of the classification.

After all the parameters settled, the Vivado project is created. Although Matlab HDL

Workflow Advisor creates a priori a project, few adjustments had to be made, establish a

few more interconnections and address ranges inside the components defined. For this

task it’s run the Block Automation and the Connection Automation. Block Automation

function allows to create a subsystem consisting of IP blocks needed to configure the IP,

building an hierarchy and Connection Automation function completes the connections

within the system, defining what components are connect, more even, when it’s required

an AXI Protocol interconnection, setting the specific addresses [68]. The complete design

for the implementation is shown in figure 4.9.

48

4.3. VIVADO DESIGN SUITE - XILINX ULTRASCALE+ MPSOC CLASSIFIERS

IMPLEMENTATION

C
0_

D
D

R
4

C0_SYS_CLK

D
U

T
_i

p
_0

D
U

T
_i

p

A
X

I4

A
X

I4
_M

as
te

r

IP
C

O
R

E
_C

LK

IP
C

O
R

E
_R

E
S

E
T

N

A
X

I4
_A

C
LK

A
X

I4
_A

R
E

S
E

T
N

ax
i_

in
te

rc
on

ne
ct

_0

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

S
01

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

S
01

_A
C

LK

S
01

_A
R

E
S

E
T

N

ax
i_

in
te

rc
on

ne
ct

_1

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

S
01

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

M
01

_A
C

LK

M
01

_A
R

E
S

E
T

N

S
01

_A
C

LK

S
01

_A
R

E
S

E
T

N

cl
k_

w
iz

_0

C
lo

ck
in

g
 W

iz
ar

d

cl
k_

in
1

cl
k_

o
ut

1

d
d

r4
_0

D
D

R
4

S
D

R
A

M
 (

M
IG

)

C
0_

S
Y

S
_C

LK

C
0_

D
D

R
4

C
0_

D
D

R
4_

S
_A

X
I

c0
_i

ni
t_

ca
lib

_c
o

m
pl

et
e

db
g_

cl
k

db
g_

bu
s[

51
1:

0]

c0
_d

dr
4_

ui
_c

lk

c0
_d

dr
4_

ui
_c

lk
_s

yn
c_

rs
t

c0
_d

dr
4_

ar
es

et
n

sy
s_

rs
t

hd
lv

er
ifi

er
_a

xi
_m

as
te

r_
0

M
A

T
LA

B
 a

s
A

X
I M

as
te

r

ax
i4

m
ac

lk

ar
es

et
n

p
ro

c_
sy

s_
re

se
t_

0

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
o

w
es

t_
sy

nc
_c

lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
o

ck
ed

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
o

nn
ec

t_
ar

es
et

n[
0:

0]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

p
ro

c_
sy

s_
re

se
t_

1

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
o

w
es

t_
sy

nc
_c

lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
o

ck
ed

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
o

nn
ec

t_
ar

es
et

n[
0:

0]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

p
ro

c_
sy

s_
re

se
t_

2

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
o

w
es

t_
sy

nc
_c

lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
o

ck
ed

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
o

nn
ec

t_
ar

es
et

n[
0:

0]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

p
ro

c_
sy

s_
re

se
t_

3

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
o

w
es

t_
sy

nc
_c

lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
o

ck
ed

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
o

nn
ec

t_
ar

es
et

n[
0:

0]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

sy
s_

rs
t

xl
co

nc
at

_0

C
on

ca
t

In
0[

0:
0]

In
1[

0:
0]

In
2[

0:
0]

In
3[

0:
0]

In
4[

0:
0]

In
5[

0:
0]

In
6[

0:
0]

In
7[

0:
0]

do
ut

[7
:0

]

xl
co

ns
ta

nt
_0

C
on

st
an

t

do
ut

[0
:0

]
zy

nq
_u

ltr
a_

p
s_

e_
0

Z
yn

q
 U

ltr
aS

ca
le

+
 M

P
S

oC

M
_A

X
I_

H
P

M
0_

F
P

D
m

ax
ih

pm
0_

fp
d_

ac
lk

pl
_p

s_
irq

0[
7:

0]
pl

_r
es

et
n0

pl
_c

lk
0

Fi
gu

re
4.

9:
C

la
ss

ifi
er

D
es

ig
n

B
lo

ck
-

V
iv

ad
o

P
ro

je
ct

49

CHAPTER 4. CLASSIFICATION ALGORITHMS FOR LAND USE/LAND COVER

From the block design in figure 4.9, it’s important to enhance four blocks, the Zynq

UltraScale+ MPSoC, DUT_IP, DDR4_SDRAM (MIG) and MATLAB_as_AXI_Master. The

Zynq UltraScale+ MPSoC IP is responsible to control all peripherals, being the Master
of them through the AXI Protocol. The DUT_IP block consists of several smaller IP

blocks generated by Matlab Workflow Advisor, its function is to reproduce the Simulink

model. All the blocks inside the DUT are represented individually by an IP entity. It was

chosen that the HDL for these IPs is VHDL. The DDR4_SDRAM (MIG) allows to store

the data to be loaded into the classifiers, this RAM is presented in PS side. At last, the

MATLAB_as_AXI_Master block represents the interface between Matlab and the Zynq

board. As Matlab will be the software responsible to load the data into the board it is set

as Master.

Before understanding the schematics, it is necessary to understand the instructions

occurred between loading the data and the final output. The flow of instructions will also

help to define which IP block is Master of which. The data is previously loaded in Matlab

software, then, the same data is intended to be sent over to DDR4 PS RAM, only after that

the classifier could start to run. After the classification, Matlab reads the output from a

specific address in RAM.

From these instructions it is possible to conclude that MATLAB_as_AXI_Master IP

block has to be one of the Masters of DDR4. The DUT need to access the data inside the

DDR4 so it is its second master. The Zynq UltraScale+ MPSoC controls the DUT being its

master and by hierarchy master of DDR4 too. Referring the Master/Slave is translated into

AXI Interconnect blocks in Vivado design scheme. In figure 4.9, for the blocks mentioned,

on the right side of the block there a Master port and on the left side, a Slave port.

As mentioned before, the frequency defined for the PL side was defined in Matlab

and was left as default, 50MHz. Higher frequencies would required delay blocks due to

the board could not make all the calculations in one clock cycle. This frequency is one of

the input parameters of the DUT block. But DDR4 RAM has a default clock frequency of

300MHz, to synchronize this two blocks as they are interconnected, the Clock_Wizard IP

is used.

The two classifiers have the same visual appearance in the Vivado Block Design, their

difference comes in the DUT_IP block which has different IP blocks inside, they use

different IP repositories.

This is the implementation of the classifiers in Vivado, next it’s run Synthesis, Imple-

mentation and Generation of the Bitstream. The bitstream file will be configure to the

board before anything else. The Zynq board will then be ready to perform classification,

the results obtained for the database studied are presented in chapter 5.

50

C
h
a
p
t
e
r

5
Results

In this chapter are presented the results acquired from the classifiers imple-
mented in the Zynq UltraScale+ MPSoC ZCU102 board. A comparison of perfor-
mance and accuracy will be made with the same implementation run in CPU.

When considering a classifier two results are expected from it, accuracy and pro-

cessing speed. The higher both categories the best. Both Decision Tree and Minimum

Distance classifiers are implemented in the Zynq board and in CPU, I7 8750HQ - 3.9GHz,

in which the algorithm is run in Matlab.

It’s important to understand that either way, the classifier algorithm is the same, so

in terms of accuracy it’s expected similar results. Similar results and not exactly equal

results, since one of the classifiers involve mathematical calculations, Matlab using a

floating point operations takes great advantage, having more significant figures, being

more precise, but accuracy overall should not be affected.

Following sections compare the implementation of the classifiers in terms of process-

ing speed and accuracy.

5.1 Accuracy Assessment - Zynq board vs CPU

The Accuracy Assessment is one important part of this work, if the classifier is not well

built, its results cannot be trusted. To calculate the overall accuracy it’s required an

ground truth data. For the scope of this work and in Satellite Imagery Classification itself,

the ground truth data is collected in the field [69]. The COS validation will be used for

that. Both Decision Tree and Minimum Distance classifiers will be tested against this

database. The accuracy results obtained are presented in following subsections.

51

CHAPTER 5. RESULTS

5.1.1 Decision Tree Classifier - Accuracy

For the Decision Tree Classifier, as mentioned before, was used the Classification Learned

Support Package from Matlab to help building the tree. One of the parameters required

was that the accuracy should be over 95% for the validation test. This was chosen because

it’s expected it to drop when performing for the all image. The accuracy can be kept

high as the implementation is being made for water and non water classes for the reasons

explained before.

The output of the Classification Learner was a 100 nodes split tree with 98.7% accu-

racy for the holdout validation test. The tree was then programmed in Matlab and VHDL.

Since the Classifier doesn’t have any calculations and the data provided is the same no

matter the platform, it’s expected the output of the classification.

When assessing the accuracy, comparing the outputs of the two platforms, the results

are the same, pixel per pixel. In table 5.1 it is presented the confusion matrix for the

output of the classifier, label 0 represents water and 1 non water.

Table 5.1: Confusion Matrix for the Decision Tree Classifier

0 - water, 1 - non water

Predicted Values

0 1

Actual Values
0 869440 63549

1 899464 18167550

For a total of 20M pixels analysed in this classifier, the accuracy for the two proposed

classes is 95.181%, presenting a good classification.

To search were the classifier is failing, it was run on CPU for the whole image, this

could be done from previous comparison showing the output is absolute equal and as will

be seen in next section, CPU performs faster for this classifier. The COS mega classes are

represented in figure 5.1 representing the 2 mega classes. The real COS 9 mega classes

was converted into 2, Ocean, Humid Areas and Water Bodies are represented as black

pixels and all other labels are white pixels. In figure 5.2 it is demonstrated the two output

classes of the classifier.

To totally understand what the classifier is missing, the true RGB image for the region

of interest is shown in figure 5.3.

From the three images it is possible to understand the regions that algorithm is

wrongly classifying. For the water pixels that the classifier attributed non water labels,

they most reside in the river banks in Natural Reserve of the Sado Estuary. But even so,

the contours for the shore are really sharp, also because, these were not the labels that

the classifier mostly failed. Referring to the non water pixels that the classifier attributed

water labels, they are also blended in the river banks and all across the image. From

deeper analysis, it mostly confuses forest territory with water regions. One reason for this

52

5.1. ACCURACY ASSESSMENT - ZYNQ BOARD VS CPU

Figure 5.1: COS Mega Classes used as validation and training samples

Figure 5.2: Output of Decision Tree Classifier with 2 classes - water and non water

could be that band number 9 of the satellite, representing water vapor have close values

in both regions. These miss classified regions can be easier observed in the down left side,

53

CHAPTER 5. RESULTS

Figure 5.3: RGB Satellite Image

by the shore in figure 5.2 and in regions close to Sado river. From the global view of the

image can also be seen that bigger water regions where firefighting vehicles can refuel

are clear distinguishable.

In summary, the results obtained are not far off from what expected from the foreseen

in Matlab Classification Learner with only a 3% decrease in accuracy.

Further work was developed in the Decision Tree Classifier. To start the classification

with more than two classes, a third classes was added. It was chosen the three main

classes that are considered more important in the context of preventing and fighting fires,

the classes are water, forest and everything else. Forest was added since it is one easy way

for the fire to spread out and it is the habitat of a lot of living species.

To build this three class classifier the same method as before was applied. Ocean,

Humid Areas and Water Bodies are merged into one class (class 0), Forest is the second

one (class 1) and all other classes provided by COS are in class 2. Since more classes are

set a bigger data training set is needed. For this scenario a 10M pixels database is used

for training with 10k split nodes. The same 25% holdout is used for validation achieving

88% theoretical validation. In practice, the classifier was able to achieve 82.21% accuracy.

The output of the classification is shown in figure 5.4. There can be seen that the miss

leading water pixels were cleaned from the image and the contours of the water regions

are more sharp. Even Sado river flow is noticeable in the image.

To conclude the study of Decision Tree classifiers, a last approach was taken to full

compare the performance with all the classes in the COS imagery. The same database

54

5.1. ACCURACY ASSESSMENT - ZYNQ BOARD VS CPU

Figure 5.4: Output of Decision Tree Classifier with 3 classes - water, forest and everything
else

from the DT with 3 classes served to build the classifier, again with 10k split nodes.

Any update in size could be made for constraints in the computer used to perform the

task. When comparing the output, represented in sub figure 5.5b with COS classification,

figure 5.5a, the accuracy achieved is 63.33%. The confusion matrix for this 10 class

algorithm is shown in figure 5.6.

a - COS Classification b - Output of Decision Tree Classifier

Figure 5.5: Region of Study with 9 classes

55

CHAPTER 5. RESULTS

Figure 5.6: Confusion Matrix - Decision Tree Classifier with 10 classes

From the images, the clear differences are, all the artificial territories inside Portuguese

mainland are lost. In contrast, in Sado estuary, comparing with figure 5.3 can be noticed

more detail, distinguishing the river banks from the ocean. The overall differences of the

two images are not big even though the accuracy does not says the same.

5.1.2 Minimum Distance Classifier - Accuracy

When applying the Minimum Distance Classifier, the same database used to train the

Decision Tree Classifier, will be here used to calculate the Euclidean Distance and then

labeling the pixels.

As said before, this classifier could suffer differences between Matlab and Zynq im-

plementations. Between calculations, VHDL could round some figures and all across the

search in the database, the minimum distance could be affected by this.

For time and resource restrictions the classification was performed for 250k pixels.

When looking for the classification from Matlab or Zynq board, the labeling was exactly

the same. In study of the course of the program could be seen that the Zynq board did

not round any figures. This was in fact due to the multiplication algorithm does not

constitute a problem in VHDL, in contrast to division and square root. As explained, the

square root was not applied in the Euclidean Distance formula meaning a perfect match

for the two implementations. The output results of the classifications is presented in

table 5.2. As before, 0 represents water pixels and 1 non water pixels.

Table 5.2: Confusion Matrix for the Minimum Distance Classifier

0 - water, 1 - non water

Predicted Values

0 1

Actual Values
0 43969 4072

1 14826 187133

This classifier for the regions analysed achieved a 92.4% accuracy validation. The

250 pixels used were picked so that the relation of water and non water pixels was kept

closely to the one in the Decision Tree classifier.

56

5.2. PROCESSING SPEED - ZYNQ BOARD VS CPU

As previous, this classifier can be applied for the two class classification. This type of

classifier is more affected for the chosen database than the one before.

5.2 Processing Speed - Zynq board vs CPU

The time taken for an algorithm to be completed not just depends on the machine in

which it is being run, but also the what kind of algorithm is being implemented. If

the algorithm is based on sequential conditions like the Decision Tree, it is less time

consuming than a mathematical approach, even more, an intensive method, comparing

one pixel to all the database like the Minimum Distance classifier.

The classification process is the same for the implementation in the Zynq board or

in CPU. The time taken for loading the variables in RAM, either in the Zynq board or in

the computer RAM, is not considered.

The expected results in this field for what platform runs faster differ from what clas-

sifier is considered. For the Decision Tree, it doesn’t involve calculations, so, a higher

working frequency of the CPU should take advantage. On the other hand, as explained

in figure 4.6, multiplications have the output sooner in hardware than in software and

several multiplications can be made at the same time when performing the Euclidean

Distance, so the Zynq board should have a faster classification.

In following subsections are presented the time to perform each algorithm.

Although the time taken to transfer the data into the Zynq board is not considered in

the scope of this work, the average baud rate was 9446 32bit integer per second.

5.2.1 Decision Tree

When performing the Decision Tree algorithm, the data used reduced into 20M random

samples, due to the time the classifiers took to perform. 20M samples are still enough to

see the difference in the two platforms. Also, to see if the time to perform would increase

linearly or exponentially with more samples, the classifier was run with different number

of samples. The results for the Zynq board and CPU are presented in figures 5.7 and 5.8

respectively.

From the images it’s possible to observe the big advantage of using a CPU for pro-

cessing an algorithm based on a Decision Tree. Its high working frequency is much more

useful for a sequential kind of algorithm. Further work was done to improve Decision

Tree processing time results for the FPGA. With a few adaptations required to increase the

clock speed from 50MHz to 500MHz on the board, the time difference is demonstrated

in figure 5.10.

For both implementations there is a linearity between time to finish processing and

the number of pixels. The Zynq board takes an average of 1000 times the time to process

the same data than the CPU.

57

CHAPTER 5. RESULTS

Table 5.3: Decision Tree: Time to
Perform Classification - Zynq board

Nº of Pixels Time to Perform
Classification (s)

50000 1.034
100000 2.065
200000 4.131
500000 10.34

1000000 20.676
2000000 41.342
5000000 103.21

10000000 206.33
20000000 411.56

0

50

100

150

200

250

300

350

400

450

0 5000000 10000000 15000000 20000000

Ti
m

e
(s

)

Data to be processed (pixels)

Image Classification Execution Time
Decision Tree Classifier

FPGA set to 50 MHz

Figure 5.7: Image Classification Execution Time: De-
cision Tree Classifier - FPGA set to 50 MHZ

Table 5.4: Decision Tree: Time to
Perform Classification - I7 8750HQ
3.9GHz

Nº of Pixels Time to Perform
Classification (s)

50000 0.001
100000 0.003
200000 0.005
500000 0.010

1000000 0.021
2000000 0.044
5000000 0.113

10000000 0.220
20000000 0.435 Figure 5.8: Image Classification Execution Time: De-

cision Tree Classifier - I7 8750HQ 3.9GHz

Figure 5.9: Decision Tree speed comparison between Zynq board and CPU

58

5.2. PROCESSING SPEED - ZYNQ BOARD VS CPU

Figure 5.10: Decision Tree speed comparison between Zynq board and CPU

5.2.2 Minimum Distance

For the Minimum Distance Classifier the 20M samples could not be used because the

demand of the classifier. The database selected was the same one used to build the

Decision Tree as mentioned in the Accuracy Assessment section.

Again the time to load the variables into RAM it’s not considered for the classification

time.

In multiplications processing parallelism performs better than processing speed, the

balance of these two variable will decide with implementation will benefit and achieve

better results for this kind of classifiers. The I7 8750HQ is a hexa-core processor, having

12 processing units, comparing to the high parallelism of the Zynq board PL side, it’s

much less. So it’s expected for the Zynq board to come up ahead.

The results of the processing time for both Zynq and CPU implementation are pre-

sented in figures 5.11 and 5.12 respectively.

From the figure it’s clear to see that this classifier ir more suitable for the Zynq board.

It takes advantage of its high parallelism and fast output of multiplications.

To perform the classification of 250k pixels, the processor takes an average of 4 times

the time of the Zynq board. It is important to notice that the 250k pixels are being com-

pared to a data base of 3M pixels. This database could be reduced to improve classification

time. A good database will then be necessary preventing the accuracy to drop.

To compare the time dispense of this classifier, implemented with this database, to

classify the same 20M pixels of the Decision Tree classifier it is expected to take close to

100 hours for the Zynq board and 420 hours for the CPU to complete the task.

59

CHAPTER 5. RESULTS

Table 5.5: Minimum Distance:
Time to Perform Classification -
Zynq board

Nº of Pixels Time to Perform
Classification (s)

30 1.591
100 2.819
500 9.427

1000 18.682
5000 87.667

10000 174.2
20000 410.1
50000 928.1

100000 1799.8
150000 2701.3
200000 3598.9
250000 4478.4

0

1000

2000

3000

4000

5000

0 50000 100000 150000 200000 250000

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Data to be processed (pixels)

Image Classification Execution Time
Minimum Distance Classifier

FPGA set to 50 MHz

Figure 5.11: Image Classification Execution Time:
Minimum Distance Classifier - FPGA set to 50 MHZ

Table 5.6: Minimum Distance:
Time to Perform Classification - I7
8750HQ 3.9GHz

Nº of Pixels Time to Perform
Classification (s)

30 2.353
100 7.65
500 38.825

1000 76.62
5000 404.24

10000 786.44
20000 1557.3
50000 4082.6

100000 8404.2
150000 12084.7
200000 17525.6
250000 19059.1

0

5000

10000

15000

20000

25000

0 50000 100000 150000 200000 250000

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Data to be processed (pixels)

Image Classification Execution Time
Minimum Distance Classifer

I7 8750HQ - 3.9GHz

Figure 5.12: Image Classification Execution Time:
Minimum Distance Classifier - I7 8750HQ 3.9GHz

60

5.2. PROCESSING SPEED - ZYNQ BOARD VS CPU

Figure 5.13: Minimum Distance speed comparison between Zynq board and CPU

61

C
h
a
p
t
e
r

6
Conclusions and Future Work

Designing a project to be implemented in hardware it’s not simple. Image processing is in

itself a laborious and time consuming work. Optimizing the process of image processing,

applied in this dissertation for Land Use/Land Cover classification in hardware takes a

lot of time and resource consumption.

To accelerate the process of implementation Matlab gives a great support in this theme.

Other type of implementations could be performed, such as restrict the software support

to Xilinx SDK to implement all the processor programming and AXI Interconnections in

Vivado but would required more time to implement and probably not so good results.

The outcome of the project presents two good classifiers, performing satisfactory

results in the water/non water departments and further more, the expected accelerated

performance for implementing in the Zynq board was acquired in the Minimum Distance

classifier. For the majority of other classifiers, they comprehend any or a lot of calculations.

From this approach it is concluded that the Zynq board will accelerate the classification

processing time. More even, the power consumption of the Zynq board is much less that

one normal CPU.

There are variables that should be taken into account, such as the loading of the data

into the board. Even though the time was not taken into account in the classification

process, if it was, for the Decision Tree classifier, the gap time between the two implemen-

tation would be even bigger. On the other hand, for the Minimum Distance classifier, the

data took an average of 7 minutes to load into the board, still much faster than CPU. This

is one aspect to be optimized in future work, the need of a higher baud rate. The imple-

mentation that will be approached is with ethernet transferring data between computer

and board.

The comparison with the state of art classifiers is limited, since they are implemented

to several classes and here are only two. Either way, the results are still according from

63

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

what was seen in studied classifiers, Decision Tree performs better than Minimum Dis-

tance. Here by a slight difference but the tested data for the second one was must shorter,

for a bigger evaluation data the accuracy would fall more. In future work is pretended to

implement these two classifiers for the COS mega classes so a more accurate comparison

could be made with other works. The continuity of the work will lead to more classifiers

and is intended to accelerate the learning process in the board.

Also to be optimized, is the working frequency of the board. Register blocks will need

to be implemented because some parts of the Simulink design cannot be processed within

one clock cycle.

To sum up the work, the classifiers were implemented in the right direction, confirmed

by the accuracy results. Moreover, the time to perform them was surpassed in the one

expected.

64

Bibliography

[1] T. Skramstad. “Image Processing Methods Employed on Visual Quality Inspec-

tion Procedures Of Selected Industrial Applications.” note. Doctoral dissertation.

Norwegian Institute of Technology, June 1980, pp. 6–7.

[2] H. Liu, T.-H. Hong, M. Herman, T. Camus, and R. Chellappa. “Accuracy vs Effi-

ciency Trade-offs in Optical Flow Algorithms.” In: Computer Vision and Image Un-
derstanding 72.3 (1998), pp. 271–286. issn: 1077–3142. doi: https://doi.org/

10.1006/cviu.1998.0675. url: http://www.sciencedirect.com/science/

article/pii/S1077314298906750.

[3] B.-G. Jung, Y.-J. Cha, H.-H. Kim, S.-I. Jun, and J.-H. Cho. “Dynamic code binding

for scalable operating system in distributed real-time systems.” In: Real-Time Com-
puting Systems and Applications, 1995. Proceedings., Second International Workshop
on. IEEE. 1995, pp. 96–100.

[4] D. Sowmya, V. S. Hegde, J Suhas, R. V. Hegdekatte, P. D. Shenoy, and K. Venugopal.

“Land Use/Land Cover Classification of Google Earth Imagery.” In: 2017 IEEE
International WIE Conference on Electrical and Computer Engineering (WIECON-ECE).
IEEE. 2017, pp. 10–13.

[5] A. Di Gregorio. Land Cover Classification System: Classification concepts, Software
version 3. Food & Agriculture Org., 2016. isbn: 678-92-5-109017-6. url: http:

//www.fao.org/3/a-i5232e.pdf.

[6] Supervied Classification. 2015. url: http://gsp.humboldt.edu/olm_2015/

courses/gsp_216_online/lesson6-1/supervised.html (visited on 02/03/2019).

[7] K. N. Priyadarshini, M. Kumar, S. A. Rahaman, and S NitheshNirmal. “A COM-

PARATIVE STUDY OF ADVANCED LAND USE/LAND COVER CLASSIFICATION

ALGORITHMS USING SENTINEL–2 DATA.” In: International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences 42 (2018), p. 5.

[8] Unsupervied Classification. 2015. url: http://gsp.humboldt.edu/OLM/Courses/

GSP_216_Online/lesson6-1/unsupervised.html (visited on 02/03/2019).

[9] E. Adam, O. Mutanga, J. Odindi, and E. M. Abdel-Rahman. “Land-use/cover classi-

fication in a heterogeneous coastal landscape using RapidEye imagery: evaluating

the performance of random forest and support vector machines classifiers.” In:

International Journal of Remote Sensing 35.10 (2014), pp. 3440–3458.

65

https://doi.org/https://doi.org/10.1006/cviu.1998.0675
https://doi.org/https://doi.org/10.1006/cviu.1998.0675
http://www.sciencedirect.com/science/article/pii/S1077314298906750
http://www.sciencedirect.com/science/article/pii/S1077314298906750
http://www.fao.org/3/a-i5232e.pdf
http://www.fao.org/3/a-i5232e.pdf
http://gsp.humboldt.edu/olm_2015/courses/gsp_216_online/lesson6-1/supervised.html
http://gsp.humboldt.edu/olm_2015/courses/gsp_216_online/lesson6-1/supervised.html
http://gsp.humboldt.edu/OLM/Courses/GSP_216_Online/lesson6-1/unsupervised.html
http://gsp.humboldt.edu/OLM/Courses/GSP_216_Online/lesson6-1/unsupervised.html

BIBLIOGRAPHY

[10] K. Jia, J. Liu, Y. Tu, Q. Li, Z. Sun, X. Wei, Y. Yao, and X. Zhang. “Land use and

land cover classification using Chinese GF-2 multispectral data in a region of the

North China Plain.” In: Frontiers of Earth Science (Dec. 2018). issn: 2095-0209.

doi: 10.1007/s11707-018-0734-8. url: https://doi.org/10.1007/s11707-

018-0734-8.

[11] A. Mora, T. M. A. Santos, S. Łukasik, J. M. N. Silva, A. J. Falcão, J. M. Fonseca, and

R. A. Ribeiro. “Land Cover Classification from Multispectral Data Using Computa-

tional Intelligence Tools: A Comparative Study.” In: Information 8.4 (2017). issn:

2078-2489. doi: 10.3390/info8040147. url: http://www.mdpi.com/2078-

2489/8/4/147.

[12] N. A. Mahmon, N. Ya’Acob, and A. L. Yusof. “Differences of image classification

techniques for land use and land cover classification.” In: Signal Processing & Its
Applications (CSPA), 2015 IEEE 11th International Colloquium on. IEEE. 2015,

pp. 90–94.

[13] J Sharma, R Prasad, V. Mishra, V. Yadav, and R Bala. “Land Use and Land Cover

Classification of Multispectral LANDSAT-8 Satellite Imagery Using Discrete Wavelet

Transform.” In: International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences 42 (2018), p. 5.

[14] G. J. McLachlan. “Mahalanobis distance.” In: Resonance 4.6 (1999), pp. 20–26.

[15] N. S. Altman. “An Introduction to Kernel and Nearest-Neighbor Nonparametric

Regression.” In: The American Statistician 46.3 (1992), pp. 175–185. doi: 10.1080/

00031305.1992.10475879. eprint: https://www.tandfonline.com/doi/pdf/

10.1080/00031305.1992.10475879. url: https://www.tandfonline.com/doi/

abs/10.1080/00031305.1992.10475879.

[16] J. A. Richards and J. Richards. Remote sensing digital image analysis. Vol. 3. Springer,

1999. isbn: 978-3-642-30062-2.

[17] C. Cortes and V. Vapnik. “Support-vector networks.” In: Machine Learning 20.3

(Sept. 1995), pp. 273–297. issn: 1573-0565. doi: 10.1007/BF00994018. url:

https://doi.org/10.1007/BF00994018.

[18] J. A. Sobrino. Fifth recent advances in quantitative remote sensing. Universitat de

València, 2018. isbn: 978-84-9133-201-5.

[19] R. C. Weih and N. D. Riggan. “Object-based classification vs. pixel-based classifica-

tion: Comparative importance of multi-resolution imagery.” In: The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38.4

(2010), p. C7.

[20] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, et al. “Constrained k-means clustering

with background knowledge.” In: ICML. Vol. 1. 2001, pp. 577–584.

66

https://doi.org/10.1007/s11707-018-0734-8
https://doi.org/10.1007/s11707-018-0734-8
https://doi.org/10.1007/s11707-018-0734-8
https://doi.org/10.3390/info8040147
http://www.mdpi.com/2078-2489/8/4/147
http://www.mdpi.com/2078-2489/8/4/147
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018

BIBLIOGRAPHY

[21] T. M. Santos, A. Mora, R. A. Ribeiro, and J. M. Silva. “Fuzzy-fusion approach for

land cover classification.” In: Intelligent Engineering Systems (INES), 2016 IEEE 20th
Jubilee International Conference on. IEEE. 2016, pp. 177–182.

[22] M. P. Temudo and J. M. Silva. “Agriculture and forest cover changes in post-war

Mozambique.” In: Journal of Land Use Science 7.4 (2012), pp. 425–442. doi: 10.

1080/1747423X.2011.595834. eprint: https://doi.org/10.1080/1747423X.

2011.595834. url: https://doi.org/10.1080/1747423X.2011.595834.

[23] F. Al-Ahmadi, A. Hames, et al. “Comparison of four classification methods to

extract land use and land cover from raw satellite images for some remote arid

areas, kingdom of Saudi Arabia.” In: Earth 20.1 (2009), pp. 167–191.

[24] R. G. P. Jr and M. Millones. “Death to Kappa: birth of quantity disagreement

and allocation disagreement for accuracy assessment.” In: International Journal
of Remote Sensing 32.15 (2011), pp. 4407–4429. doi: 10.1080/01431161.2011.

552923. eprint: https://doi.org/10.1080/01431161.2011.552923. url:

https://doi.org/10.1080/01431161.2011.552923.

[25] Y. Meyer. Wavelets and operators. Vol. 1. Cambridge university press, 1992. isbn:

978-0521458696.

[26] L. S. Bernstein, S. M. Adler-Golden, X. Jin, B. Gregor, and R. L. Sundberg. “Quick

atmospheric correction (QUAC) code for VNIR-SWIR spectral imagery: Algorithm

details.” In: 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolu-
tion in Remote Sensing (WHISPERS). June 2012, pp. 1–4. doi: 10.1109/WHISPERS.

2012.6874311.

[27] COLORIMETRY — PART 4: CIE 1976 L*A*B* COLOUR SPACE. International

Commission on Illumination. url: http://www.cie.co.at/publications/

colorimetry-part-4-cie-1976-lab-colour-space (visited on 01/27/2019).

[28] Q Wua, R. Zhonga, W. Zhaoa, K Songa, and L. Dua. “Land-cover classification

using multi-source data.” In: Fifth recent advances in quantitative remote sensing
(2018), p. 174.

[29] G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical
learning. Vol. 112. Springer, 2013.

[30] Z. Deng, X. Zhu, Q. He, and L. Tang. “Land use/land cover classification using

time series Landsat 8 images in a heavily urbanized area.” In: Advances in Space
Research (2019). issn: 0273-1177. doi: https://doi.org/10.1016/j.asr.

2018.12.005. url: http://www.sciencedirect.com/science/article/pii/

S0273117718309037.

[31] T. Blaschke, S. Lang, and G. Hay. Object-based image analysis: spatial concepts for
knowledge-driven remote sensing applications. Springer Science & Business Media,

2008.

67

https://doi.org/10.1080/1747423X.2011.595834
https://doi.org/10.1080/1747423X.2011.595834
https://doi.org/10.1080/1747423X.2011.595834
https://doi.org/10.1080/1747423X.2011.595834
https://doi.org/10.1080/1747423X.2011.595834
https://doi.org/10.1080/01431161.2011.552923
https://doi.org/10.1080/01431161.2011.552923
https://doi.org/10.1080/01431161.2011.552923
https://doi.org/10.1080/01431161.2011.552923
https://doi.org/10.1109/WHISPERS.2012.6874311
https://doi.org/10.1109/WHISPERS.2012.6874311
http://www.cie.co.at/publications/colorimetry-part-4-cie-1976-lab-colour-space
http://www.cie.co.at/publications/colorimetry-part-4-cie-1976-lab-colour-space
https://doi.org/https://doi.org/10.1016/j.asr.2018.12.005
https://doi.org/https://doi.org/10.1016/j.asr.2018.12.005
http://www.sciencedirect.com/science/article/pii/S0273117718309037
http://www.sciencedirect.com/science/article/pii/S0273117718309037

BIBLIOGRAPHY

[32] B. Melville, A. Lucieer, and J. Aryal. “Object-based random forest classification

of Landsat ETM+ and WorldView-2 satellite imagery for mapping lowland na-

tive grassland communities in Tasmania, Australia.” In: International Journal of
Applied Earth Observation and Geoinformation 66 (2018), pp. 46 –55. issn: 0303-

2434. doi: https://doi.org/10.1016/j.jag.2017.11.006. url: http:

//www.sciencedirect.com/science/article/pii/S0303243417302659.

[33] G. M. Foody, N. Campbell, N. Trodd, and T. Wood. “Derivation and applications of

probabilistic measures of class membership from the maximum-likelihood classifi-

cation.” In: Photogrammetric engineering and remote sensing 58.9 (1992), pp. 1335–

1341.

[34] C. Zhang, Z. Li, Q. Cheng, X. Li, and H. Shen. “Correction of"Cloud Removal By

Fusing Multi-Source and Multi-Temporal Images".” In: arXiv preprint arXiv:1707.09959
(2017).

[35] M. Li, S. C. Liew, and L. K. Kwoh. “Automated production of cloud-free and cloud

shadow-free image mosaics from cloudy satellite imagery.” In: Proc. of the XXth
ISPRS Congress. 2004, pp. 12–13.

[36] P. Singh and N. Komodakis. “Cloud-Gan: Cloud Removal for Sentinel-2 Imagery

Using a Cyclic Consistent Generative Adversarial Networks.” In: IGARSS 2018
- 2018 IEEE International Geoscience and Remote Sensing Symposium. July 2018,

pp. 1772–1775. doi: 10.1109/IGARSS.2018.8519033.

[37] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio. “Generative adversarial nets.” In: Advances in neural
information processing systems. 2014, pp. 2672–2680.

[38] D. B. R. V. B. N. Manjunatha Reddy Dr. Shanthala S. “Performance Analysis of

GPU V/S CPU for Image Processing Applications.” In: International Journal for
Research in Applied Science Engineering Technology (IJRASET) 5 (II Feb. 2017). issn:

2321-9653. url: https://www.ijraset.com/fileserve.php?FID=6250.

[39] J. Fowers, G. Brown, P. Cooke, and G. Stitt. “A performance and energy comparison

of FPGAs, GPUs, and multicores for sliding-window applications.” In: Proceedings
of the ACM/SIGDA international symposium on Field Programmable Gate Arrays. ACM.

2012, pp. 47–56.

[40] S. Asano, T. Maruyama, and Y. Yamaguchi. “Performance comparison of FPGA,

GPU and CPU in image processing.” In: Field programmable logic and applications,
2009. fpl 2009. international conference on. IEEE. Aug. 2009, pp. 126–131.

[41] D. B. Kirk and W. H. Wen-Mei. Programming massively parallel processors: a hands-on
approach. Morgan kaufmann, 2016.

68

https://doi.org/https://doi.org/10.1016/j.jag.2017.11.006
http://www.sciencedirect.com/science/article/pii/S0303243417302659
http://www.sciencedirect.com/science/article/pii/S0303243417302659
https://doi.org/10.1109/IGARSS.2018.8519033
https://www.ijraset.com/fileserve.php?FID=6250

BIBLIOGRAPHY

[42] C. Anderson, R. Archambault, R. Arimilli, R. Blainey, G. Blandy, H. Chase, B.-L.

Chu, L. Clark, S. Fields, J. Kahle, J. Klockow, H. Le, h.-Y. McCreary, B. McCredie,

J. McInnes, B. Mealey, C. Mehta, M. Nealon, K. Reick, E. Seminaro, J. Warnock, and

D. Willoughby. Power 4 - The First Multi-Core, 1GHz Processor. Ed. by I. Corp. Aug.

2011. url: https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/.

[43] D. B. Thomas, L. Howes, and W. Luk. “A comparison of CPUs, GPUs, FPGAs, and

massively parallel processor arrays for random number generation.” In: Proceedings
of the ACM/SIGDA international symposium on Field programmable gate arrays. ACM.

2009, pp. 63–72.

[44] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo method. Vol. 10.

John Wiley & Sons, 2016, pp. 187–188.

[45] T. Tiemerding, C. Diederichs, C. Stehno, and S. Fatikow. “Comparison of different

design methodologies of hardware-based image processing for automation in mi-

crorobotics.” In: 2013 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics. July 2013, pp. 565–570. doi: 10.1109/AIM.2013.6584152.

[46] “IEEE Standard System C Language Reference Manual.” In: IEEE Std 1666-2005
(2006), pp. 1–2. doi: 10.1109/IEEESTD.2006.99475.

[47] J. Stoppe and R. Drechsler. “Analyzing SystemC designs: SystemC analysis ap-

proaches for varying applications.” In: Sensors 15.5 (2015), pp. 10399–10421.

[48] B. Cope, P. Y. K. Cheung, W. Luk, and S. Witt. “Have GPUs made FPGAs redundant

in the field of video processing?” In: Proceedings. 2005 IEEE International Conference
on Field-Programmable Technology, 2005. Dec. 2005, pp. 111–118. doi: 10.1109/

FPT.2005.1568533.

[49] M. Kiran, K. M. War, L. M. Kuan, L. K. Meng, and L. W. Kin. “Implementing image

processing algorithms using ‘Hardware in the loop’ approach for Xilinx FPGA.”

In: 2008 International Conference on Electronic Design. Dec. 2008, pp. 1–6. doi:

10.1109/ICED.2008.4786653.

[50] M. A. Altuncu, T. Guven, Y. Becerikli, and S. Sahin. “Real-time system implemen-

tation for image processing with hardware/software co-design on the Xilinx Zynq

platform.” In: International Journal of Information and Electronics Engineering 5.6

(2015), p. 473.

[51] Y. Han and E. Oruklu. “Real-time traffic sign recognition based on zynq fpga and

arm socs.” In: IEEE International Conference on Electro/Information Technology. IEEE.

2014, pp. 373–376.

[52] M. Kowalczyk, D. Przewlocka, and T. Krvjak. “Real-Time Implementation of Con-

textual Image Processing Operations for 4K Video Stream in Zynq UltraScale+ MP-

SoC.” In: 2018 Conference on Design and Architectures for Signal and Image Processing
(DASIP). 2018, pp. 37–42. doi: 10.1109/DASIP.2018.8597105.

69

https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/
https://doi.org/10.1109/AIM.2013.6584152
https://doi.org/10.1109/IEEESTD.2006.99475
https://doi.org/10.1109/FPT.2005.1568533
https://doi.org/10.1109/FPT.2005.1568533
https://doi.org/10.1109/ICED.2008.4786653
https://doi.org/10.1109/DASIP.2018.8597105

BIBLIOGRAPHY

[53] XILINX, ed. Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. url: https:

//www.xilinx.com/products/boards- and- kits/ek- u1- zcu102- g.html#

overview (visited on 05/07/2019).

[54] XILINX, ed. Zynq UltraScale+ MPSoC Product Tables and Product Selection Guide.

url: https://www.xilinx.com/support/documentation/selection-guides/

zynq-ultrascale-plus-product-selection-guide.pdf (visited on 07/17/2019).

[55] A. Taylor. The Zynq PS/PL, Part One: Adam Taylor’s MicroZed Chronicles Part 21. Ed.

by XILINX. 2014. url: https://forums.xilinx.com/t5/Xcell-Daily-Blog-

Archived/The-Zynq-PS-PL-Part-One-Adam-Taylor-s-MicroZed-Chronicles-

Part/ba-p/418935.

[56] XILINX, ed. AXI Reference Guide. Version 13.1. Mar. 7, 2011. url: https://

www.xilinx.com/support/documentation/ip_documentation/ug761_axi_

reference_guide.pdf.

[57] Xilinx, ed. Vivado Design Suite HLx Editions - Accelerating High Level Design. url:

https://www.xilinx.com/products/design-tools/vivado.html (visited on

08/02/2019).

[58] Mathworks, ed. MATLAB for FPGA, ASIC, and SoC Development. url: https:

//www.mathworks.com/solutions/fpga-asic-soc-development.html (visited

on 08/02/2019).

[59] ESA, ed. Access to Sentinel data via download. url: https://sentinel.esa.int/

web/sentinel/sentinel-data-access (visited on 02/24/2019).

[60] D. G. do Território, ed. Carta de Uso e Ocupação do Solo de Portugal Continental
(COS). url: http://www.dgterritorio.pt/dados_abertos/cos/ (visited on

03/02/2019).

[61] I. Nurwauziyah, U. Sulistyah, I Gede, I. G. B. Putra, and M. Firdaus. “Satellite

Image Classification using Decision Tree, SVM and k-Nearest Neighbor.” In: (July

2018).

[62] XILINX, ed. Xilinx Software Development Kit (XSDK). url: https://www.xilinx.

com/products/design-tools/embedded-software/sdk.html (visited on 08/09/2019).

[63] MathWorks, ed. Xilinx Zynq Support from HDL Coder. url: https://www.mathworks.

com/hardware-support/zynq-hdl-coder.html (visited on 08/17/2019).

[64] MathWorks, ed. HDL Verifier. url: https://www.mathworks.com/products/hdl-

verifier.html (visited on 08/17/2019).

[65] MathWorks, ed. Xilinx Zynq Support from Embedded Coder. url: https://www.

mathworks.com/hardware- support/zynq- embedded- coder.html (visited on

08/17/2019).

70

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#overview
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#overview
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#overview
https://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf
https://forums.xilinx.com/t5/Xcell-Daily-Blog-Archived/The-Zynq-PS-PL-Part-One-Adam-Taylor-s-MicroZed-Chronicles-Part/ba-p/418935
https://forums.xilinx.com/t5/Xcell-Daily-Blog-Archived/The-Zynq-PS-PL-Part-One-Adam-Taylor-s-MicroZed-Chronicles-Part/ba-p/418935
https://forums.xilinx.com/t5/Xcell-Daily-Blog-Archived/The-Zynq-PS-PL-Part-One-Adam-Taylor-s-MicroZed-Chronicles-Part/ba-p/418935
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://www.mathworks.com/solutions/fpga-asic-soc-development.html
https://www.mathworks.com/solutions/fpga-asic-soc-development.html
https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://sentinel.esa.int/web/sentinel/sentinel-data-access
http://www.dgterritorio.pt/dados_abertos/cos/
https://www.xilinx.com/products/design-tools/embedded-software/sdk.html
https://www.xilinx.com/products/design-tools/embedded-software/sdk.html
https://www.mathworks.com/hardware-support/zynq-hdl-coder.html
https://www.mathworks.com/hardware-support/zynq-hdl-coder.html
https://www.mathworks.com/products/hdl-verifier.html
https://www.mathworks.com/products/hdl-verifier.html
https://www.mathworks.com/hardware-support/zynq-embedded-coder.html
https://www.mathworks.com/hardware-support/zynq-embedded-coder.html

BIBLIOGRAPHY

[66] M. E. Hodgson. “Reducing the computational requirements of the minimum-

distance classifier.” In: Remote Sensing of Environment 25.1 (1988), pp. 117 –128.

issn: 0034-4257. doi: https://doi.org/10.1016/0034-4257(88)90045-4. url:

http://www.sciencedirect.com/science/article/pii/0034425788900454.

[67] H. Anton and C. Rorres. Elementary Linear Algebra, Binder Ready Version: Applica-
tions Version. 11th. John Wiley & Sons, 2013, p. 145.

[68] Xilinx, ed. Vivado Design Suite User Guide - Designing IP Subsystems Using IP Inte-
grator. June 22, 2018. url: https://www.xilinx.com/support/documentation/

sw_manuals/xilinx2018_2/ug994-vivado-ip-subsystems.pdf.

[69] ArcGis, ed. Accuracy Assessment for Image Classification - An overview of the ac-
curacy assessment workflow. url: https://desktop.arcgis.com/en/arcmap/

latest/manage-data/raster-and-images/accuracy-assessment-for-image-

classification.htm (visited on 09/10/2019).

71

https://doi.org/https://doi.org/10.1016/0034-4257(88)90045-4
http://www.sciencedirect.com/science/article/pii/0034425788900454
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug994-vivado-ip-subsystems.pdf
https://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/accuracy-assessment-for-image-classification.htm
https://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/accuracy-assessment-for-image-classification.htm
https://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/accuracy-assessment-for-image-classification.htm

A
n
n
e
x

I
Annex

Listing I.1: Load_Init_Data block code

1 function [load_done,ram_wr_data,ram_wr_add,ram_wr_enb] =

2 load_init(axi_wr_data,axi_wr_add,axi_wr_val, INIT_ADDR, DDR3_DEPTH,

3 INIT_DDR3,INIT_DATA)

4

5 %%

6 % Create persistent variables (registers)

7 ddrWidth = 32;

8 persistent reg_ram_wr_add;

9 if(isempty(reg_ram_wr_add))

10 reg_ram_wr_add = fi(0,0,32,0);

11 end

12

13 persistent reg_ram_wr_data;

14 if(isempty(reg_ram_wr_data))

15 reg_ram_wr_data = fi(0,1,ddrWidth ,0);

16 end

17

18 persistent reg_ram_wr_data_d1;

19 if(isempty(reg_ram_wr_data_d1))

20 reg_ram_wr_data_d1 = fi(0,1,ddrWidth ,0);

21 end

22

23 persistent state;

24 if(isempty(state))

25 state = fi(0, 0, 3, 0);

26 end

27

28 persistent reg_ram_wr_enb;

29 if(isempty(reg_ram_wr_enb))

73

ANNEX I. ANNEX

30 reg_ram_wr_enb = false;

31 end

32

33 persistent reg_ram_wr_enb_d1;

34 if(isempty(reg_ram_wr_enb_d1))

35 reg_ram_wr_enb_d1 = false;

36 end

37

38 persistent reg_init_data;

39 if(isempty(reg_init_data))

40 reg_init_data = fi(zeros(1,DDR3_DEPTH),1,ddrWidth ,0);

41 end

42

43 %%

44 % State Memory Encoding

45 INIT_ST = fi(0, 0, 3, 0);

46 LOAD_START = fi(1, 0, 3, 0);

47 LOAD_PROG = fi(3, 0, 3, 0);

48 LOAD_DONE = fi(2, 0, 3, 0);

49 DATA_ST = fi(6, 0, 3, 0);

50

51 % init phase states

52 % 1. Every state MUST assign every output value

53 % 2. Use explicit data type always

54 switch (state)

55 case INIT_ST

56

57 reg_ram_wr_add = fi(0,0,32,0);;

58 reg_ram_wr_data = fi(0,1,ddrWidth ,0);

59 reg_ram_wr_enb = false;

60 load_done = false;

61

62 case LOAD_START

63

64 reg_ram_wr_add = fi(INIT_ADDR ,0,32,0);

65 reg_ram_wr_data = fi(reg_init_data(1,reg_ram_wr_add+1),1,ddrWidth ,0);

66 reg_ram_wr_enb = true;

67 load_done = false;

68

69 case LOAD_PROG

70

71 reg_ram_wr_add = fi(reg_ram_wr_add+1,0,32,0);

72 reg_ram_wr_data = fi(reg_init_data(1,reg_ram_wr_add+1),1,ddrWidth ,0);

73 reg_ram_wr_enb = true;

74 load_done = false;

75 case LOAD_DONE

76

77 reg_ram_wr_add = fi(reg_ram_wr_add ,0,32,0);

78

79 reg_ram_wr_enb = true;

74

80 load_done = true;

81 case DATA_ST

82 %external (AXI) inputs

83 reg_ram_wr_add = fi(axi_wr_add ,0,32,0);

84 reg_ram_wr_data = axi_wr_data;

85 reg_ram_wr_enb = axi_wr_val;

86 load_done = true;

87 otherwise

88

89 reg_ram_wr_add = fi(0,0,32,0);

90 reg_ram_wr_data = fi(0,1,ddrWidth ,0);

91 reg_ram_wr_enb = false;

92 load_done = false;

93 end

94

95 ram_wr_add = fi(reg_ram_wr_add ,0,32,0);

96

97 if(load_done == true)

98 ram_wr_data = fi(reg_ram_wr_data_d1 ,1,ddrWidth ,0);

99 else

100 ram_wr_data = fi(reg_ram_wr_data_d1 ,1,ddrWidth ,0);

101 end

102

103 if(load_done == true)

104 ram_wr_enb = reg_ram_wr_enb_d1;

105 else

106 ram_wr_enb = reg_ram_wr_enb;

107 end

108

109 if(load_done == false)

110 reg_init_data = fi(INIT_DATA,1,ddrWidth ,0);

111 end

112

113 reg_ram_wr_enb_d1 = reg_ram_wr_enb;

114 %reg_ram_wr_data_d1 = reg_ram_wr_data;

115 reg_ram_wr_data_d1 = fi(reg_ram_wr_data ,1,ddrWidth ,0);

116 % Next State Logic

117 switch (state)

118 case INIT_ST

119

120 if (INIT_DDR3 == true)

121 nextState = LOAD_START;

122 else

123 nextState = DATA_ST;

124 end

125 case LOAD_START

126 nextState = LOAD_PROG;

127 case LOAD_PROG

128 if(fi(ram_wr_add ,0,32,0)==fi(DDR3_DEPTH -1,0,32,0))

129 nextState = LOAD_DONE;

75

ANNEX I. ANNEX

130 else

131 nextState = LOAD_PROG;

132 end

133 case LOAD_DONE

134 nextState = DATA_ST;

135 case DATA_ST

136 nextState = DATA_ST;

137 otherwise

138 nextState = INIT_ST;

139 end

140

141 state = nextState;

142

143 end

76

Listing I.2: DDR_Read_Controller

1

2 function [valid_out, count_out, ddr_read_done, rd_addr, rd_len, rd_avalid] = ...

3 hdlcoder_external_memory_read_ctrl(burst_len, start, rd_aready, rd_dvalid)

4 %

5

6 % Copyright 2017 The MathWorks, Inc.

7

8 % create persistent variables (registers)

9 persistent rstate burst_stop burst_count

10 if isempty(rstate)

11 rstate = fi(0, 0, 4, 0);

12 burst_stop = uint32(0);

13 burst_count = uint32(0);

14 end

15

16 % state Memory Encoding

17 IDLE = fi(0, 0, 4, 0);

18 READ_BURST_START = fi(1, 0, 4, 0);

19 READ_BURST_REQUEST = fi(2, 0, 4, 0);

20 DATA_COUNT = fi(3, 0, 4, 0);

21

22 % state machine logic

23 switch (rstate)

24 case IDLE

25 % output to AXI4 Master

26 rd_addr = uint32(0);

27 rd_len = uint32(0);

28 rd_avalid = false;

29

30 % output to DUT logic

31 valid_out = false;

32 count_out = uint32(0);

33 ddr_read_done = true;

34

35 % State vars

36 burst_stop = uint32(burst_len);

37 burst_count = uint32(0);

38

39 if start

40 rstate(:) = READ_BURST_START;

41 else

42 rstate(:) = IDLE;

43 end

44

45 case READ_BURST_START

46 % output to AXI4 Master

47 rd_addr = uint32(0);

48 rd_len = uint32(burst_stop);

49 rd_avalid = false;

77

ANNEX I. ANNEX

50

51 % output to DUT logic

52 valid_out = false;

53 count_out = uint32(0);

54 ddr_read_done = false;

55

56 if rd_aready

57 rstate(:) = READ_BURST_REQUEST;

58 else

59 rstate(:) = READ_BURST_START;

60 end

61

62 case READ_BURST_REQUEST

63 % output to AXI4 Master

64 rd_addr = uint32(0);

65 rd_len = uint32(burst_stop);

66 rd_avalid = true;

67

68 % output to DUT logic

69 valid_out = false;

70 count_out = uint32(0);

71 ddr_read_done = false;

72

73 rstate(:) = DATA_COUNT;

74

75 case DATA_COUNT

76 % output to AXI4 Master

77 rd_addr = uint32(0);

78 rd_len = uint32(burst_stop);

79 rd_avalid = false;

80

81 % output to DUT logic

82 valid_out = rd_dvalid;

83 count_out = uint32(burst_count);

84 ddr_read_done = false;

85

86 % State vars

87 if (rd_dvalid)

88 burst_count = uint32(burst_count + 1);

89 end

90

91 if (burst_count == burst_stop)

92 rstate(:) = IDLE;

93 else

94 rstate(:) = DATA_COUNT;

95 end

96

97 otherwise

98 % output to AXI4 Master

99 rd_addr = uint32(0);

78

100 rd_len = uint32(0);

101 rd_avalid = false;

102

103 % output to DUT logic

104 valid_out = false;

105 count_out = uint32(0);

106 ddr_read_done = false;

107

108 rstate(:) = IDLE;

109 end

110

111 end

79

ANNEX I. ANNEX

Listing I.3: DDR_Write_Controller

1

2 function [ram_addr, ddr_write_done, wr_addr, wr_len, wr_valid] = ...

3 hdlcoder_external_memory_write_ctrl(burst_len, start, wr_ready, wr_complete)

4 %

5

6 % Copyright 2017 The MathWorks, Inc.

7

8 % create persistent variables (registers)

9 persistent wstate burst_stop burst_count

10 if(isempty(wstate))

11 wstate = fi(0, 0, 4, 0);

12 burst_stop = uint32(0);

13 burst_count = uint32(0);

14 end

15

16 % state machine encoding

17 IDLE = fi(0, 0, 4, 0);

18 WRITE_BURST_START = fi(1, 0, 4, 0);

19 DATA_COUNT = fi(2, 0, 4, 0);

20 ACK_WAIT = fi(3, 0, 4, 0);

21

22 % state machine logic

23 switch (wstate)

24 case IDLE

25 % output to AXI4 Master

26 wr_addr = uint32(0);

27 wr_len = uint32(0);

28 wr_valid = false;

29

30 % output to DUT logic

31 ram_addr = uint32(0);

32 ddr_write_done = true;

33

34 % state variables

35 burst_stop = uint32(burst_len);

36 burst_count = uint32(0);

37

38 if start

39 wstate(:) = WRITE_BURST_START;

40 else

41 wstate(:) = IDLE;

42 end

43

44

45 case WRITE_BURST_START

46 % output to AXI4 Master

47 wr_addr = uint32(0);

48 wr_len = uint32(burst_stop);

49 wr_valid = false;

80

50

51 % output to DUT logic

52 ram_addr = uint32(burst_count);

53 ddr_write_done = false;

54

55 if wr_ready

56 wstate(:) = DATA_COUNT;

57 else

58 wstate(:) = WRITE_BURST_START;

59 end

60

61

62 case DATA_COUNT

63 % output to AXI4 Master

64 wr_addr = uint32(0);

65 wr_len = uint32(burst_stop);

66 wr_valid = true;

67

68 % state variables

69 burst_count = uint32(burst_count + 1);

70

71 % output to DUT logic

72 ram_addr = uint32(burst_count);

73 ddr_write_done = false;

74

75 if (burst_count == burst_stop)

76 wstate(:) = ACK_WAIT;

77 else

78 if (wr_ready)

79 wstate(:) = DATA_COUNT;

80 else

81 wstate(:) = WRITE_BURST_START;

82 end

83 end

84

85

86 case ACK_WAIT

87 % output to AXI4 Master

88 wr_addr = uint32(0);

89 wr_len = uint32(0);

90 wr_valid = false;

91

92 % output to DUT logic

93 ram_addr = uint32(0);

94 ddr_write_done = false;

95

96 if wr_complete

97 wstate(:) = IDLE;

98 else

99 wstate(:) = ACK_WAIT;

81

ANNEX I. ANNEX

100 end

101

102 otherwise

103 % output to AXI4 Master

104 wr_addr = uint32(0);

105 wr_len = uint32(0);

106 wr_valid = false;

107

108 % output to DUT logic

109 ram_addr = uint32(0);

110 ddr_write_done = false;

111

112 wstate(:) = IDLE;

113

114 end

115

116 end

117

118 % LocalWords: AXI

82

Listing I.4: Decision Tree Classifier Function

1

2 function [classification, enable] = classifier(data_in_enable, data_in)

3

4 classification = int32(0);

5 enable = int32(0);

6

7 persistent counter;

8 if(isempty(counter))

9 counter = int32(0);

10 end

11

12 persistent b1;

13 if(isempty(b1))

14 b1 = int32(0);

15 end

16

17 persistent b2;

18 if(isempty(b2))

19 b2 = int32(0);

20 end

21

22 persistent b3;

23 if(isempty(b3))

24 b3 = int32(0);

25 end

26

27 persistent b4;

28 if(isempty(b4))

29 b4 = int32(0);

30 end

31

32 persistent b5;

33 if(isempty(b5))

34 b5 = int32(0);

35 end

36

37 persistent b6;

38 if(isempty(b6))

39 b6 = int32(0);

40 end

41

42 persistent b7;

43 if(isempty(b7))

44 b7 = int32(0);

45 end

46

47 persistent b8;

48 if(isempty(b8))

49 b8 = int32(0);

83

ANNEX I. ANNEX

50 end

51

52 persistent b9;

53 if(isempty(b9))

54 b9 = int32(0);

55 end

56

57 persistent b10;

58 if(isempty(b10))

59 b10 = int32(0);

60 end

61

62 persistent b11;

63 if(isempty(b11))

64 b11 = int32(0);

65 end

66

67 persistent b12;

68 if(isempty(b12))

69 b12 = int32(0);

70 end

71

72 %count til number of input parameters

73 if data_in_enable ~= 0

74 counter = counter + 1;

75

76

77 %load data from RAM into the variables

78 switch counter

79 case 1

80 b1 = data_in;

81 case 2

82 b2 = data_in;

83 case 3

84 b3 = data_in;

85 case 4

86 b4 = data_in;

87 case 5

88 b5 = data_in;

89 case 6

90 b6 = data_in;

91 case 7

92 b7 = data_in;

93 case 8

94 b8 = data_in;

95 case 9

96 b9 = data_in;

97 case 10

98 b10 = data_in;

99 case 11

84

100 b11 = data_in;

101 case 12

102 b12 = data_in;

103 enable = int32(1);

104 end

105

106 %apply the DT classifier after the number of input cycles correspondent to

107 %the number of variables

108

109 if counter == 12

110 if b10 < 12912200

111 if b12 <= 6892

112 if b12 <= 6245

113 if b11 <= 9405320

114 if b12 <= 5751

115 if b1 <= 21847100

116 classification =int32(0);

117 else % b1 > 21847100

118 classification = int32(1);

119 end

120 else % b12 > 5751

121 if b10 <= 11990300

122 classification =int32(0);

123 else % b10 > 11990300

124 if b5 <= 7899690

125 classification = int32(1);

126 else % b5 > 7899690

127 classification =int32(0);

128 end

129 end

130 end

131 else % b11 > 9405320

132 if b5 <= 7940940

133 if b9 <= 16044000

134 classification = int32(1);

135 else % b9 > 16044000

136 classification =int32(0);

137 end

138 else % b5 > 7940940

139 classification =int32(0);

140 end

141 end

142 else % b12 > 6245

143 if b10 <= 10917200

144 if b10 <= 9876560

145 classification =int32(0);

146 else % b10 > 9876560

147 if b5 <= 690750

148 if b7 <= 16388800

149 classification =int32(0);

85

ANNEX I. ANNEX

150 else % b7 > 16388800

151 classification = int32(1);

152 end

153 else %b5 > 690750

154 classification =int32(0);

155 end

156 end

157 else % b10 > 10917200

158 if b5 <= 7933750

159 if b9 <= 17023500

160 if b9 <= 5639060

161 classification = int32(1);

162 else % b9 > 5639060

163 classification =int32(0);

164 end

165 else % b9 > 17023500

166 if b9 <= 25391800

167 classification = int32(1);

168 else % b9 > 25391800

169 classification =int32(0);

170 end

171 end

172 else % b5 > 7933750

173 if b5 <= 8704060

174 if b7 <= 19826600

175 classification =int32(0);

176 else % b7 > 19826600

177 classification = int32(1);

178 end

179 else % b5 > 8706060

180 classification =int32(0);

181 end

182 end

183 end

184 end

185 else % b12 > 6892

186 if b3 <= 4865000

187 if b9 <= 16753800

188 if b10 <= 10145300

189 classification =int32(0);

190 else % b10 > 10145300

191 if b5 <= 5410310

192 classification = int32(1);

193 else % b5 > 5410310

194 classification =int32(0);

195 end

196 end

197 else % b9 > 16753800

198 if b10 <= 8058440

199 if b5 <= 7639060

86

200 classification =int32(0);

201 else % b5 > 7639060

202 classification = int32(1);

203 end

204 else % b10 > 8058400

205 if b5 <= 7639060

206 classification =int32(0);

207 else % b5 > 7639060

208 if b8 <= 21735000

209 classification =int32(0);

210 else % b8 > 21735000

211 classification = int32(1);

212 end

213 end

214 end

215 end

216 else % b3 > 4865000

217 if b7 <= 35499700

218 if b9 <= 24126900

219 if b3 <= 5295000

220 if b10 <= 105156

221 classification =int32(0);

222 else % b10 > 105156

223 classification = int32(1);

224 end

225 else % b3 > 5295000

226 classification =int32(0);

227 end

228 else % b9 > 24125900

229 if b5 <= 8256880

230 if b7 <= 21752800

231 classification =int32(0);

232 else % b7 > 21752800

233 classification = int32(1);

234 end

235 else % b5 > 8256880

236 classification =int32(0);

237 end

238 end

239 else % b7> 35499700

240 if b9 <= 31521400

241 if b3 <= 5245000

242 classification = int32(1);

243 else % b3 > 524500

244 classification =int32(0);

245 end

246 else % b9 > 31521400

247 classification = int32(1);

248 end

249 end

87

ANNEX I. ANNEX

250 end

251 end

252 else % b10 > 12912200

253 if b9 <= 18090900

254 if b2 <= 3055000

255 if b9 <= 16516100

256 if b4 <= 6225000

257 if b5 <= 6432190

258 if b7 <= 12295300

259 classification =int32(0);

260 else % b7 > 12295300

261 classification = int32(1);

262 end

263 else % b5 > 6432190

264 classification =int32(0);

265 end

266 else % b4 > 6225000

267 classification = int32(1);

268 end

269 else % b9 > 16516100

270 if b5 <= 7672190

271 if b7 <= 12863400

272 classification =int32(0);

273 else % b7 > 12863400

274 classification = int32(1);

275 end

276 else % b5 > 7672190

277 if b11 <= 9221560

278 classification =int32(0);

279 else % b11 > 9221560

280 classification = int32(1);

281 end

282 end

283 end

284 else % b2 > 3055000

285 if b11 <= 12854700

286 if b10 <= 16240900

287 if b2 <= 3465000

288 if b11 <= 10921600

289 classification =int32(0);

290 else % b11 > 10921600

291 classification = int32(1);

292 end

293 else % b2 > 3465000

294 classification =int32(0);

295 end

296 else % b10 > 16240900

297 if b9 <= 16802600

298 classification =int32(0);

299 else % b9 > 16802600

88

300 if b5 <= 8820000

301 classification = int32(1);

302 else % b5 > 8820000

303 classification =int32(0);

304 end

305 end

306 end

307 else % b11 > 12854700

308 if b8 <= 18425000

309 if b11 <= 17395900

310 if b5 <= 13470000

311 classification = int32(1);

312 else % b5 > 13470000

313 classification =int32(0);

314 end

315 else % b11 > 17395900

316 classification = int32(1);

317 end

318 else % b8 > 18425000

319 classification =int32(0);

320 end

321 end

322 end

323 else % b9 > 18090900

324 if b12 <= 5587

325 if b10 <= 17057200

326 if b5 <= 9499690

327 if b7 <= 15565300

328 classification =int32(0);

329 else % b7 > 15565300

330 if b11 <= 8787810

331 classification =int32(0);

332 else % b11 > 8787810

333 classification = int32(1);

334 end

335 end

336 else % b5 > 9499690

337 classification =int32(0);

338 end

339 else % b10 > 17057200

340 if b9 <= 22435900

341 if b6 <= 21110300

342 classification = int32(1);

343 else % b6 > 21110300

344 classification =int32(0);

345 end

346 else % b9 > 22435900

347 if b7 <= 17992800

348 if b7 <= 16450900

349 classification =int32(0);

89

ANNEX I. ANNEX

350 else % b7 > 16450900

351 classification = int32(1);

352 end

353 else % b7 > 17992800

354 if b12 <= 964

355 classification =int32(0);

356 else % b12 > 964

357 classification = int32(1);

358 end

359 end

360 end

361 end

362 else % b12 > 5587

363 if b1 <= 3223220

364 if b5 <= 8629060

365 if b8 <= 13385000

366 classification = int32(1);

367 else % b8 > 13385000

368 if b5 <= 7631560

369 classification = int32(1);

370 else % b5 > 7631560

371 classification = int32(1);

372 end

373 end

374 else % b5 > 8629060

375 if b10 <= 14491600

376 if b12 <= 7934

377 classification =int32(0);

378 else % b12 > 7934

379 classification = int32(1);

380 end

381 else % b10 > 14491600

382 if b9 <= 19777400

383 classification = int32(1);

384 else % b9 > 19777400

385 classification = int32(1);

386 end

387 end

388 end

389 else % b1 > 3223220

390 if b10 <= 15793400

391 if b5 <= 9037810

392 classification = int32(1);

393 else % b5 > 9037810

394 if b7 <= 40633100

395 classification =int32(0);

396 else % b7 > 40633100

397 classification = int32(1);

398 end

399 end

90

400 else % b10 > 15793400

401 classification = int32(1);

402 end

403 end

404 end

405 end

406 end

407 end

408

409 if counter == 12

410 counter = int32(0);

411 end

412

413 end

414

415 end

91

ANNEX I. ANNEX

Listing I.5: Minimum Distance Classifier Function

1

2 function [classificationAux , EnableOut] =

3 classifiertry(DataIn, Enable, DB_Size, Data_Size)

4

5 EnableOut = int32(0);

6

7 persistent classification

8 if(isempty(classification))

9 classification = int32(0);

10 end

11

12 persistent state

13 if(isempty(state))

14 state = int32(1);

15 end

16

17 persistent classificationON

18 if(isempty(classificationON))

19 classificationON = int32(0);

20 end

21

22 persistent nextAddr

23 if(isempty(nextAddr))

24 nextAddr = int32(0);

25 end

26

27 persistent counter

28 if(isempty(counter))

29 counter = int32(1);

30 end

31

32 persistent distance

33 if(isempty(distance))

34 distance = int32(10000000);

35 end

36

37 persistent newClassification

38 if(isempty(newClassification))

39 newClassification = int32(0);

40 end

41

42 persistent counterDB

43 if(isempty(counterDB))

44 counterDB = int32(0);

45 end

46

47 persistent counterData

48 if(isempty(counterData))

49 counterData = int32(0);

92

50 end

51

52 persistent saveAddr

53 if(isempty(saveAddr))

54 saveAddr = int32(0);

55 end

56

57 %% Variable bands

58 persistent b1_DB;

59 if(isempty(b1_DB))

60 b1_DB = int32(0);

61 end

62

63 persistent b2_DB;

64 if(isempty(b2_DB))

65 b2_DB = int32(0);

66 end

67

68 persistent b3_DB;

69 if(isempty(b3_DB))

70 b3_DB = int32(0);

71 end

72

73 persistent b4_DB;

74 if(isempty(b4_DB))

75 b4_DB = int32(0);

76 end

77

78 persistent b5_DB;

79 if(isempty(b5_DB))

80 b5_DB = int32(0);

81 end

82

83 persistent b6_DB;

84 if(isempty(b6_DB))

85 b6_DB = int32(0);

86 end

87

88 persistent b7_DB;

89 if(isempty(b7_DB))

90 b7_DB = int32(0);

91 end

92

93 persistent b8_DB;

94 if(isempty(b8_DB))

95 b8_DB = int32(0);

96 end

97

98 persistent b9_DB;

99 if(isempty(b9_DB))

93

ANNEX I. ANNEX

100 b9_DB = int32(0);

101 end

102

103 persistent b10_DB;

104 if(isempty(b10_DB))

105 b10_DB = int32(0);

106 end

107

108 persistent b11_DB;

109 if(isempty(b11_DB))

110 b11_DB = int32(0);

111 end

112

113 persistent b12_DB;

114 if(isempty(b12_DB))

115 b12_DB = int32(0);

116 end

117

118 persistent b13_DB;

119 if(isempty(b13_DB))

120 b13_DB = int32(0);

121 end

122

123 %---------------

124 persistent b1_Data;

125 if(isempty(b1_Data))

126 b1_Data = int32(0);

127 end

128

129 persistent b2_Data;

130 if(isempty(b2_Data))

131 b2_Data = int32(0);

132 end

133

134 persistent b3_Data;

135 if(isempty(b3_Data))

136 b3_Data = int32(0);

137 end

138

139 persistent b4_Data;

140 if(isempty(b4_Data))

141 b4_Data = int32(0);

142 end

143

144 persistent b5_Data;

145 if(isempty(b5_Data))

146 b5_Data = int32(0);

147 end

148

149 persistent b6_Data;

94

150 if(isempty(b6_Data))

151 b6_Data = int32(0);

152 end

153

154 persistent b7_Data;

155 if(isempty(b7_Data))

156 b7_Data = int32(0);

157 end

158

159 persistent b8_Data;

160 if(isempty(b8_Data))

161 b8_Data = int32(0);

162 end

163

164 persistent b9_Data;

165 if(isempty(b9_Data))

166 b9_Data = int32(0);

167 end

168

169 persistent b10_Data;

170 if(isempty(b10_Data))

171 b10_Data = int32(0);

172 end

173

174 persistent b11_Data;

175 if(isempty(b11_Data))

176 b11_Data = int32(0);

177 end

178

179 persistent b12_Data;

180 if(isempty(b12_Data))

181 b12_Data = int32(0);

182 end

183

184

185 %% State Machine

186 if Enable ~= 0

187 switch state

188

189 case 1

190 switch counter

191 case 1

192 b1_Data = DataIn;

193 counter = counter + int32(1);

194 case 2

195 b2_Data = DataIn;

196 counter = counter + int32(1);

197 case 3

198 b3_Data = DataIn;

199 counter = counter + int32(1);

95

ANNEX I. ANNEX

200 case 4

201 b4_Data = DataIn;

202 counter = counter + int32(1);

203 case 5

204 b5_Data = DataIn;

205 counter = counter + int32(1);

206 case 6

207 b6_Data = DataIn;

208 counter = counter + int32(1);

209 case 7

210 b7_Data = DataIn;

211 counter = counter + int32(1);

212 case 8

213 b8_Data = DataIn;

214 counter = counter + int32(1);

215 case 9

216 b9_Data = DataIn;

217 counter = counter + int32(1);

218 case 10

219 b10_Data = DataIn;

220 counter = counter + int32(1);

221 case 11

222 b11_Data = DataIn;

223 counter = counter + int32(1);

224 case 12

225 b12_Data = DataIn;

226 state = int32(2);

227 counter = int32(1);

228 end

229

230 case 2

231 switch counter

232 case 1

233 b1_DB = DataIn;

234 counter = counter + int32(1);

235 case 2

236 b2_DB = DataIn;

237 counter = counter + int32(1);

238 case 3

239 b3_DB = DataIn;

240 counter = counter + int32(1);

241 case 4

242 b4_DB = DataIn;

243 counter = counter + int32(1);

244 case 5

245 b5_DB = DataIn;

246 counter = counter + int32(1);

247 case 6

248 b6_DB = DataIn;

249 counter = counter + int32(1);

96

250 case 7

251 b7_DB = DataIn;

252 counter = counter + int32(1);

253 case 8

254 b8_DB = DataIn;

255 counter = counter + int32(1);

256 case 9

257 b9_DB = DataIn;

258 counter = counter + int32(1);

259 case 10

260 b10_DB = DataIn;

261 counter = counter + int32(1);

262 case 11

263 b11_DB = DataIn;

264 counter = counter + int32(1);

265 case 12

266 b12_DB = DataIn;

267 counter = counter + int32(1);

268 case 13

269 b13_DB = DataIn;

270 state = int32(3);

271 end

272 end

273

274 if state == int32(3)

275 newDistance = int32((b1_Data - b1_DB)*(b1_Data - b1_DB) +

276 (b2_Data - b2_DB)*(b2_Data - b2_DB) +

277 (b3_Data - b3_DB)*(b3_Data - b3_DB) +

278 (b4_Data - b4_DB)*(b4_Data - b4_DB) +

279 (b5_Data - b5_DB)*(b5_Data - b5_DB) +

280 (b6_Data - b6_DB)*(b6_Data - b6_DB) +

281 (b7_Data - b7_DB)*(b7_Data - b7_DB) +

282 (b8_Data - b8_DB)*(b8_Data - b8_DB) +

283 (b9_Data - b9_DB)*(b9_Data - b9_DB) +

284 (b10_Data - b10_DB)*(b10_Data - b10_DB) +

285 (b11_Data - b11_DB)*(b11_Data - b11_DB) +

286 (b12_Data - b12_DB)*(b12_Data - b12_DB));

287 if newDistance < distance

288 distance = int32(newDistance);

289 newClassification = b13_DB;

290 end

291

292 counterDB = counterDB + int32(1);

293 if counterDB == DB_Size

294 counterDB = int32(0);

295 counterData = counterData + int32(1);

296 distance = int32(10000000);

297 EnableOut = int32(1);

298 classification = newClassification;

299 if counterData == Data_Size

97

ANNEX I. ANNEX

300 state = int32(1);

301 counterData = int32(0);

302 counter = int32(0);

303 else

304 counter = int32(1);

305 state = int32(1);

306 end

307 else

308 counter = int32(1);

309 state = int32(2);

310 end

311 end

312

313

314 end

315

316 classificationAux = classification;

317 end

98

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Context and Motivation
	Problem and Proposed Solution
	Outline

	State-of-Art
	Land Use/Land Cover Classification
	Classification Algorithms
	Cloud Free Imagery

	FPGA vs CPU vs GPU
	Analyse of Performance Power in FPGA
	Performance Analysis of FPGA in Image Processing

	Classification and Image Processing in Zynq UltraScale+

	Platform and Software Framework
	Xilinx Zynq UltraScale+ MPSoC ZCU102
	AXI Protocol
	Common Blocks

	Development Environments
	Preprocessing Data for Implementation in Zynq UltraScale+ board

	Classification Algorithms for Land Use/Land Cover
	Decision Tree
	Decision Tree Classifier - Software Support
	Simulink Model

	Minimum Distance
	Simulink Model

	Vivado Design Suite - Xilinx UltraScale+ MPSoC Classifiers Implementation

	Results
	Accuracy Assessment - Zynq board vs CPU
	Decision Tree Classifier - Accuracy
	Minimum Distance Classifier - Accuracy

	Processing Speed - Zynq board vs CPU
	Decision Tree
	Minimum Distance

	Conclusions and Future Work
	Bibliography
	Annex

