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General Abstract 

Environmental stresses are responsible for major losses in crop 

production worldwide. Due to an increasing world population, there is a 

higher demand for food, feed and fuel, which requires the development of 

new plant varieties with an increased yield, particularly under adverse 

environmental conditions. Transcription Factors (TFs) are promising 

candidates for plant improvement, since a single TF can modulate the 

expression of several genes. The AP2/ERF family of transcriptional 

regulators and, namely, the TFs belonging to the DREB1/CBF sub-family 

were described as major regulators of plant responses to abiotic stresses. 

Nevertheless, the transcriptional regulation of the genes coding for these 

TFs is still poorly understood. We focused our research on the rice gene 

OsDREB1B, whose gene expression had been previously described as 

responsive to abiotic stress, namely cold. Using semi-quantitative RT-PCR, 

we confirmed the cold-induction of this gene, but also observed that its 

response is different depending on the severity of the stress. Moreover, we 

observed that this gene is highly induced in response to drought stress in 

roots, and also in response to mechanical stress. Using the Yeast One-

Hybrid system and the promoter of OsDREB1B as bait, we have screened 

a rice cold-induced cDNA expression library. Thereby we identified eight 

TFs as binding to OsDREB1B promoter: seven Zinc Finger TFs, of which 

three C2H2-type and four Zn Finger-Homeodomain (ZF-HD) TFs, as well 

as one bHLH TF, predicted as a putative Phytochrome Interacting Factor 

(PIF).  

Regarding the Zn Finger TFs, we determined their gene expression 

patterns in response to several abiotic stress conditions and to ABA 

treatment. We observed that the genes coding for these TFs responded 

differently to the various stresses imposed. This is illustrative of the cross-

talk between stress-signalling pathways. Using a transactivation assay in 

Arabidopsis protoplasts, we observed that all the Zn Finger TFs are 
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repressors of gene expression when binding to the promoter of 

OsDREB1B. We also tested if the Zn Finger TFs interacted with one-

another and verified that the ZF-HD TFs formed several homo- and hetero-

dimers, whereas no interactions were observed for the C2H2-type TFs. 

Concerning the gene coding for the bHLH TF, that we named OsPIF4, we 

observed that it was regulated by several abiotic stress conditions at the 

transcriptional level and also that its transcript was alternatively spliced in 

response to cold stress. Using a transactivation system we showed that 

OsPIF4 is a negative regulator of OsDREB1B gene expression. This TF 

had been previously predicted as a putative PIF, since it had an Active 

Phytochrome Binding domain (APB). We observed that this protein 

interacted preferentially with the active Pfr form of the rice Phytochrome B 

(OsphyB). This was the first time that a PIF was shown to interact with 

phytochromes in rice and was an indication that the activity of this protein 

could be modulated by light. This was further supported by the finding that 

OsPIF4 abundance is reduced by light during the day of a diurnal light/dark 

cycle, compared to plants retained in prolonged darkness during the 

corresponding subjective day period. Concomitantly, we observed that 

OsDREB1B transcript levels are up-regulated by this daylight treatment, 

compared to darkness during the subjective day. These findings provide 

the first indication that OsPIF4 may be a link between light signalling and 

the OsDREB1 regulon in rice and suggest that light and cold-temperature 

signalling pathways converge on the regulation of OsDREB1B. 

This work provides new insights on the transcriptional regulation of 

OsDREB1B, being the first regarding the rice DREB1/CBF sub-family. This 

will allow a better understanding of the abiotic stress signalling pathways, 

as well as provide new possible targets for plant improvement in the future, 

particularly in what concerns abiotic stress tolerance. 
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Resumo Geral 

Factores ambientais adversos são responsáveis por avultadas perdas na 

produção agrícola, por todo o mundo. Devido à crescente população 

mundial, há cada vez uma maior necessidade de alimento, para pessoas e 

gado, assim como de combustíveis, o que implica o desenvolvimento de 

novas variedades de plantas, que possibilitem um maior rendimento, 

mesmo sob condições ambientais adversas. Factores de Transcrição (FT) 

são candidatos promissores para o melhoramento de plantas, uma vez que 

um só FT pode modular a expressão de vários genes. A família de 

reguladores transcricionais AP2/ERF e, nomeadamente, os FT 

pertencentes à sub-família DREB1/CBF, foram descritos como importantes 

reguladores das respostas das plantas a stresses abióticos. No entanto, a 

regulação da transcrição dos genes que codificam estes FT ainda é pouco 

compreendida. A nossa investigação focou-se no gene de arroz 

OsDREB1B, previamente descrito como induzido por stresses abióticos, 

nomeadamente frio. Usando RT-PCR semi-quantitativo, confirmámos a 

indução deste gene pelo frio, mas também observámos que esta resposta 

é dependente da intensidade do stress. Também verificámos que este 

gene é altamente induzido por secura nas raízes, e também por stress 

mecânico. Utilizando o sistema de Yeast One-Hybrid pesquisámos uma 

biblioteca de cDNA de arroz, induzida por frio, de modo a identificar FT que 

se ligassem ao promotor do gene OsDREB1B. Identificámos assim oito FT 

que se ligam a este promotor: sete “Zn Fingers”, três do tipo C2H2 e quatro 

“Zn Finger HomeoDomain” (ZF-HD), e um FT do tipo “basic Helix Loop 

Helix” (bHLH), previsto como um “Phytochrome Interacting Factor” (PIF). 

Em relação aos FT “Zn Fingers”, determinámos a expressão dos 

respectivos genes em resposta a vários stresses abióticos assim como a 

tratamento com ABA. Observámos uma grande variedade de respostas, 

uma vez que estes genes respondem diferentemente aos diversos 

stresses aplicados. Isto é ilustrativo da existência de elementos comuns 
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entre as várias vias de sinalização de stress. Usando um sistema de 

transactivação em protoplastos de Arabidopsis, observármos que todos os 

FT “Zn Fingers” são repressores da transcrição, quando ligados ao 

promotor de OsDREB1B. Testámos também a interacção entre os vários 

FT “Zn Fingers”: Verificámos que os ZF-HD formavam homo- e hetero-

dímeros, mas não detectámos quaisquer interacções para os Zn Fingers 

C2H2.  

Relativamente ao gene que codifica o FT bHLH, a que chamámos 

OsPIF4, observámos que era regulado por vários stresses abióticos, e 

também que o seu transcrito sofria “splicing” alternativo em resposta ao 

frio. Usando um sistema de transactivação mostrámos que o OsPIF é um 

regulador negativo da expressão do gene OsDREB1B. Este TF tinha sido 

previamente previsto como um PIF putativo, devido à presença de um 

domínio de ligação a fitocromos (ABP). Confirmámos então que este FT 

interagia com a forma activa Pfr do Fitocromo B de arroz. Esta foi a 

primeira vez que foi confirmada em arroz a interacção de um PIF com um 

fitocromo indicando que a actividade desta proteína poderia ser modulada 

pela luz. Isto foi corroborado pela observação de que a abundância de 

OsPIF4 era reduzida pela luz durante o dia de um ciclo luz/escuro, quando 

comparado com plantas mantidas em escuro constante, durante o 

respectivo dia subjectivo. Concomitantemente, observámos que o 

transcrito de OsDREB1B era positivamente regulado por este tratamento 

de luz, comparativamente com a escuridão do dia subjectivo. Estes 

resultados são a primeira indicação que o OsPIF4 poderá ser um elo de 

ligação entre a via de sinalização de luz e o regulão OsDREB1. Sugerem 

também que as vias de sinalização de luz e frio convergem na regulação 

do gene OsDREB1B.  

Este trabalho permitiu-nos obter novos conhecimentos acerca da 

regulação do gene OsDREB1B, e foi o primeiro estudo do género em 

elementos da sub-família DREB1/CBF em arroz. Tal permitirá uma melhor 
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compreensão das vias de sinalização de stress abiótico em arroz, assim 

como a identificação de novos alvos para o melhoramento de plantas, 

especialmente no que diz respeito à sua resposta a condições ambientais 

adversas. 
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A short history of rice 

Rice (Oryza sativa, L.) belongs to the genus Oryza of the Poaceae family 

and is the staple food for over half of the world population, namely in Asia, 

where 90% of rice is produced (Khush, 1997; Khush, 2005). There are two 

species of cultivated rice: the more common Oryza sativa, an Asian rice, 

and Oryza glaberrima, an African species, grown on a smaller scale in 

western Africa. The domestication of wild rice is believed to have started 

about 9000 to 10000 years ago in Asia and it was probably in China that 

rice cultivation was refined (Khush, 1997). Some authors claim that the two 

main sub-species of Oryza sativa (Indica and Japonica) have a single 

origin, having resulted from the dispersal of the species (Schaal et al., 

2011), while others argue that these two sub-species were domesticated 

independently, having arisen from independent genetic pools of a wild rice 

species, Oryza rufipogon (Kovach et al., 2007). Rice was eventually 

exported from Asia to Europe, probably through the expedition of Alexander 

the Great to India, and was slowly adopted in the Mediterranean region. At 

the same time, rice cultures spread throughout Asia, giving birth to different 

varieties, some tropical and some temperate (Khush, 1997). Portuguese 

priests are believed to have introduced temperate japonicas from Indonesia 

in Guinea-Bissau, which eventually led to the spread of this culture in 

Africa. Moreover, the Portuguese and the Spanish were also responsible 

for the introduction of rice in South America.  

Today, rice is a very diverse crop, being cultivated in very contrasting 

environments (Khush, 2005). In the past few decades, the green revolution 

allowed the production of rice to exceed the population growth, but it is now 

estimated that rice production will have to increase in 40% by 2030 to 

satisfy the demand (Khush, 2005). Nevertheless, this increase will have to 

occur using less land, less water and less chemicals. The improvement of 
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existing rice varieties is therefore of paramount importance in order to 

increase yield and cope with the increasing population numbers. 

 

Rice in Portugal 

The first references to rice cultivation in Portugal date from the XIIIth and 

XIVth centuries, where it is described as food for the wealthier classes 

(Silva, 1969). It is likely however, that rice was introduced in the Iberian 

Peninsula centuries earlier by the Arabs. Nevertheless, it was only some 

centuries later that rice cultures started to spread, mainly in the basins of 

the main Portuguese rivers. In the XXth century, with the adoption of 

improved irrigation techniques, the cultivation and gastronomical use of rice 

boosted, mainly in the North of the country (Silva, 1969). Several varieties 

were then adopted and their productivity was improved through the work of 

the former “Estação Agronómica Nacional”. Nowadays, Portugal is the 

largest rice consumer in Europe, with approximately 15kg of rice per capita, 

per year, while the second largest consumer, Spain, consumes 7kg of rice 

per capita, per year (according to the Food and Agriculture Organization of 

the United Nations (FAO), http://faostat.fao.org). Nevertheless, the 

production of rice in Portugal is not sufficient for the demand, and around 

40 to 50% of rice consumed in Portugal is imported (Negrão, 2008). 

According to FAO, in the past 50 years, the total production of rice in 

Portugal has not increased and in several years it was even below the 

production rates obtained in the beginning of the 1960’s. 

 

Rice as a model plant 

Even though Arabidopsis has long been used as the primary model for 

plant research, rice has been well established as the second model 

organism for plant systems (Rensink and Buell, 2004). This is not only due 

to its social and economical importance, but also to a growing number of 
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tools available, which have stimulated its study. Moreover, rice represents a 

different taxonomic group from Arabidopsis, the monocots, which 

comprises many important food crops. Rice has also a relatively small 

genome (390Mbp), especially when compared to other monocots, and is a 

diploid species (2n=24) with a relatively short life cycle (3-6 months), for 

which there are several genetic transformation tools available. Rice was 

also the second plant species to have its genome fully sequenced (Goff et 

al., 2002; Yu et al., 2002), which largely increased the amount of resources 

available for its study.  

 

 

Plant responses to Abiotic stress 

Impact of abiotic stress in plant development and productivity 

The negative impact of an abiotic stress condition as well as the response 

that it triggers in the plant depends on its duration, severity and the 

frequency by which it is imposed (Bray et al., 2000). Abiotic, as well as 

biotic stresses, account for a high percentage of crop yield losses every 

year. So far, the development of crop varieties with increased tolerance to 

abiotic stress conditions has been slow, since many mechanisms governing 

plant responses to these conditions are still poorly understood (Khush, 

2005). 

Water deficit is a common feature of several environmental conditions: 

Drought conditions limit water availability to the plant, but high salinity and 

low temperatures can also lead to water deficit in plants (Bray et al., 2000). 

Under high salt conditions, it is harder for plants to obtain water, due to 

decreased soil water potential. And, under freezing temperatures, water 

can also leave the cells and form ice crystals in inter-cellular spaces. 

Nevertheless, even temperatures that are not low enough for ice to form 

can cause chilling injury in plants that are normally grown at warm 
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temperatures, which is the case of many crops (Taiz and Zeiger, 2006). 

Rice plants are particularly sensitive to low temperature, especially at 

booting stage, in a process that affects the pollen formation, thus leading to 

male sterility (Mamun et al., 2006). 

 

Cellular mechanisms of abiotic stress perception and response 

In order to respond to adverse environmental conditions, plants have 

evolved several mechanisms of stress-adaptation, which comprise a series 

of physiological, biochemical and molecular changes. Even though some of 

those processes are common between stresses, there are also several 

response mechanisms that are specific to each kind of stress (Knight and 

Knight, 2001). 

 

Drought 

Although drought stress has been extensively studied, the primary 

perception of dehydration signals by the plant cells is still unknown. 

Nevertheless, several reports have highlighted the role of secondary 

messengers, such as calcium ions and phospholipid-derived compounds in 

the transduction of such signals (Zhu, 2002). The hormone abscisic acid 

(ABA) has long been known to play a prominent role in the response to 

drought stress, and its concentration in leaves can increase up to 50 times 

under drought conditions (Taiz and Zeiger, 2006). In response to a rapid 

dehydration, ABA induces stomata closure, which is the earliest 

physiological response to decrease evaporation of water (Shinozaki and 

Yamaguchi-Shinozaki, 2006; Taiz and Zeiger, 2006). But, in the case of 

gradual and prolonged dehydration, other developmental responses occur, 

like a decrease in leaf area and mobilization of resources to the roots, 

promoting their growth (Taiz and Zeiger, 2006). At cellular level, however, 

dehydration induces the accumulation of osmoprotectants. These 
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compounds, together with other proteins, work to protect the cellular 

components, namely membranes, from damage as well as to maintain 

osmotic balance within the cell (Shinozaki and Yamaguchi-Shinozaki, 

2006). One major group of proteins that has been described as involved in 

drought-related responses are the Late Embryogenesis Abundant (LEA) 

proteins. Although the role of these proteins remains unclear, due to their 

high hydrophilicity they are believed to help the cells retain water, as well 

as to prevent the crystallization of other proteins that are important for 

cellular function (Taiz and Zeiger, 2006). 

 

Salinity 

Drought and high salinity share common mechanisms of perception and 

response, since both these stresses result in the dehydration of the cells 

and in osmotic imbalance. Salinity stress, however, is composed both of an 

osmotic stress (physical), as well as of an ionic Na+ toxicity stress 

(chemical; Taiz and Zeiger, 2006). This means that some of the perception 

and response mechanisms are specific to salinity stress, namely in what 

regards protecting the cells from excessive Na+ ions.  

Although the primary sensor for salinity stress is still unknown, calcium 

signals have been shown to be major components of the plant response to 

ionic stress, in a pathway mediated by the SOS (Salt Overly-Sensitive) 

proteins (Zhu, 2003). This pathway is now known to be conserved in 

several plant species (Shi et al., 2000; Martinez-Atienza et al., 2007; Olias 

et al., 2009). SOS3, a calcium-binding protein, is essential for transducing 

the salt-stress signals in Arabidopsis (Liu and Zhu, 1998). This signal 

transduction is achieved together with SOS2, a protein kinase that 

regulates the activity of SOS1, a plasma membrane Na+/H+ exchanger (Qiu 

et al., 2002). The SOS1 transporter is active in salt-stressed plants and its 

greatest activity is detected in root epidermal cells, where it unloads Na+ 



General Introduction 

 

 

8 

 

ions from the cytosol, preventing its transport to the shoot by the vascular 

tissues (Zhu, 2003). Under high salt conditions, in addition to Na+ efflux, 

cells also work to compartmentalize Na+ ions in vacuoles and in other 

organelles, in order to maintain osmotic adjustment in the cytoplasm (Zhu, 

2003). Tonoplast ion transporters belonging to the NHX family have been 

shown in different plant species to play a fundamental role in ion 

compartmentalization, and consequently in salinity tolerance (Apse et al., 

2003; Fukuda et al., 2004; Zorb et al., 2005; Ye et al., 2009). Interestingly, 

the activity of these proteins in Arabidopsis seems to be mainly regulated 

by ABA (Shi and Zhu, 2002), being at least in part independent of the SOS-

pathway.  

 

Low temperature 

It is believed that plant cells perceive temperature changes primarily 

through changes in membrane fluidity (Orvar et al., 2000; Sangwan et al., 

2001; Penfield, 2008). In fact, membrane integrity and fluidity are severely 

affected under extreme temperatures, particularly under freezing stress 

(Bray et al., 2000). Given the crucial role of membranes under temperature 

stress, maintaining their stability is a priority for the cell. This is achieved 

through an increased synthesis of polyunsaturated fatty acids and changes 

in membrane components, such as sterols, which work to maintain 

membrane integrity and fluidity (Bray et al., 2000; Wallis and Browse, 2002; 

Falcone et al., 2004). The cytoskeleton has also been shown to play an 

important role in the temperature sensing mechanism, since the use of 

microtubule stabilizers prevents the cold-dependent expression of certain 

genes (Orvar et al., 2000; Sangwan et al., 2001). The changes in 

temperature perceived by the membrane are likely transmitted by the 

cytoskeleton to calcium channels. Oscillations in cytosolic [Ca2+] are 

believed to mediate temperature signalling, since EGTA, a calcium 
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chelator, when applied to Arabidopsis, reduced the KIN1 cold-induced gene 

expression (Knight et al., 1996). Moreover, the use of a calcium channel 

blocker, was reported to reduce the cold-induced expression of LTI78 

(Henriksson and Trewavas, 2003). Interestingly, the amplitude of calcium 

waves has even been shown to depend on the temperature shift (Plieth et 

al., 1999). These waves will most likely lead to the activation of calcium-

dependent kinases responsible for signal transduction, and ultimately to 

changes in gene expression (as reviewed by Chinnusamy et al. (2007)). 

These mechanisms of perception not only lead to short-term protective 

responses, but can also result in cold acclimation. Cold acclimation is the 

process through which plants become more tolerant to freezing after a 

period of exposure to low non-freezing temperatures (Chinnusamy et al., 

2007). Most plants from temperate regions have the ability to cold 

acclimate. Nevertheless, many important crops, such as rice, tomato and 

maize do not share this capability. The cold acclimation process is 

characterized by the reprogramming of metabolism and gene expression 

and the remodelling of cell and tissue structures (reviewed by Chinnusamy 

et al. (2007)). 

 

Ultimately, the abiotic stress responses result in a massive 

reprogramming of gene expression. Products of genes induced by stress 

can be classified in two groups (Yamaguchi-Shinozaki and Shinozaki, 

2006): (1) proteins that have a direct role in stress tolerance, such as 

chaperones, LEA proteins and enzymes involved in osmolyte biosynthesis; 

and (2) proteins that have a role in signal transduction, such as 

transcription factors (TFs), kinases and other signalling molecules. Another 

classification for stress-responsive genes depends on the timing of their 

induction/repression (Yamaguchi-Shinozaki and Shinozaki, 2006): The 

transcript level of the first group of genes is rapidly and transiently 
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regulated and they usually encode TFs and other regulatory proteins, 

whereas the second group shows a later transcript regulation and encodes 

LEA proteins and proteins involved in the biosynthesis of protective 

compounds, but also  TFs with a role in late stress-responses. 

 

 

Regulons in ABA-dependent and -independent signalling 

The hormone ABA has long been known to play an important role in plant 

responses to abiotic stresses, namely drought (Zhu, 2002). For example, it 

has been reported that Arabidopsis plants under water stress modulate 

their carbon usage and mobilization (Hummel et al., 2010), and ABA was 

found to have a direct role in that metabolic remodelling (Kempa et al., 

2008). Moreover, ABA accumulated during dehydration regulates the 

accumulation of various amino-acids and sugars, which correlates with the 

expression of ABA-regulated genes in the respective biosynthetic pathways 

(Urano et al., 2009). The regulation of stomatal closure under drought 

conditions has also been shown to be highly dependent on ABA. Mutants 

deficient in ABA synthesis cannot close the stomata and have a wilty 

phenotype (Taiz and Zeiger, 2006).  Even though ABA seems to play a 

more prominent role in the response to drought (Lang et al., 1994), the 

biosynthesis of this hormone is also required for cold acclimatization and 

thermotolerance (Gilmour and Thomashow, 1991). This is illustrative of the 

relevance of this hormone in the stress signalling pathways. 

Exogenous application of ABA induces stress-related genes, but several 

cold- and drought-related genes are not induced by this hormone 

(Yamaguchi-Shinozaki and Shinozaki, 2006). The study of cis-acting 

elements present in the promoter regions of stress-responsive genes 

allowed a better understanding of the pathways mediated, or not, by ABA. 

The Arabidopsis gene RD29a (also known as COR78 or LTI78) was 
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described as being induced by several abiotic stress conditions and by ABA 

(Yamaguchi-Shinozaki and Shinozaki, 1993). Nevertheless, the promoter of 

this gene was found to have both ABA-dependent and -independent cis-

acting elements, thus revealing the existence of two independent regulatory 

pathways (Yamaguchi-Shinozaki and Shinozaki, 1993). A summary of the 

transcriptional pathways involved in abiotic stress signalling can be found in 

Fig. 1. 

  

ABA-dependent pathway 

Many genes that are ABA-responsive have in their promoters a conserved 

cis-acting sequence, known as ABA Responsive Element (ABRE; 

PyACGTGG/TC). The ABRE was first identified in wheat (Guiltinan et al., 

1990) and in rice (Mundy et al., 1990) and it was reported that one copy of 

this element was not sufficient for ABA-dependent gene expression. Later, 

it was shown in barley that ABRE, together with the coupling element 3 

(CE3), was sufficient to confer ABA-induced gene expression (Shen et al., 

1996). These authors also reported the existence of another element 

(CE1), with similar function, and that can act in synergy with CE3. Coupling 

elements were further identified in other plant species, such as rice (Hobo 

et al., 1999a) and maize (Niu et al., 2002), which means that they are a 

conserved component in ABA-signalling. Interestingly, in Arabidopsis, the 

ABA-independent cis-acting element Drought Responsive Element/C-

Repeat  (DRE/CRT) may function as an ABRE-coupling element for ABA 

responses (Narusaka et al., 2003). By removing the DRE/CRT core-

elements in the promoter of RD29a, Narusaka et al. (2003) observed that 

this gene no longer responded to ABA, even though there was an intact 

ABRE cis-element in its promoter.  
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 Several basic leucine zipper (bZIP) TFs were identified as binding to 

ABRE cis-elements, thereby regulating ABA-dependent gene expression 

(Hobo et al., 1999b; Choi et al., 2000; Uno et al., 2000). In Arabidopsis, 

these TFs were named ABRE BINDING FACTORS (ABFs) and ABA-

RESPONSIVE ELEMENT BINDING PROTEINS (AREBs) by two 

independent groups (Choi et al., 2000; Uno et al., 2000). Both authors were 

able to identify AREB/ABFs with the Yeast One-Hybrid system, using the 

ABRE element as bait. The genes coding for these TFs were described as 

induced in response to ABA treatments, and also to several abiotic stress 

conditions, such as dehydration, cold and salinity (Choi et al., 2000; Uno et 

al., 2000; Fujita et al., 2005). It was also reported that the over-expression 

of these TFs in Arabidopsis resulted in enhanced drought tolerance and 

 
Figure 1. Transcription Factors in ABA-dependent and -independent pathways. 
TFs are shown in ovals. TF modifying enzymes are shown in circles. Ovals and 
circles with question marks represent regulatory elements yet to be identified. cis-
elements for TF binding sites are shown in boxes. Unknown binding elements are 
indicated with question marks. The red and black circles represent 
phosphorylation and ubiquitination of target proteins, respectively. The blue 
triangle represents SUMOylation of ICE1. Dotted lines indicate unknown 
mechanism of regulation.  
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also in hypersensitivity to ABA (Kang et al., 2002; Fujita et al., 2005). In the 

study by Kang et al. (2002), for instance, the authors observed that 

Arabidopsis plants over-expressing ABF3 and AREB2/ABF4 had reduced 

transpiration rates, when compared to the wild type plant, which correlated 

to smaller opening of the stomata. Moreover, ABF3 and AREB2/ABF4 over-

expressing plants had increased levels of ABA-responsive genes (Kang et 

al., 2002). These results provided evidence for the role of AREB/ABFs TFs 

in the regulation of ABA signalling. 

In the work by Fujita et al. (2005), the authors reported that the over-

expression of AREB1/ABF2 by itself was not sufficient to induce the 

expression of ABA-responsive genes. This TF could therefore need to be 

modified somehow in order to promote the induction of its target genes. 

This hypothesis was supported by the report that ABI5, which belongs to 

the AREB/ABF family, was phosphorylated after a treatment with ABA 

(Lopez-Molina et al., 2001). Moreover, Furihata et al. (2006) observed that 

AREB1/ABF2 is also phosphorylated in an ABA-dependent manner. This 

post-translational modification was shown to be mediated by the SNF1-

Related Protein Kinase 2 (SnRK2) family (Furihata et al., 2006). This 

mechanism seems to have been maintained throughout evolution, as the 

TRANSCRIPTION FACTOR RESPONSIBLE FOR ABA REGULATION 

(TRAB1) (Hobo et al., 1999b), a rice homologue of AREB2/ABF4, was also 

reported to be phosphorylated in response to ABA (Kagaya et al., 2002). 

Rice has ten genes coding for SnRK2 kinases, all of which respond to 

drought and three of them also respond to ABA (Kobayashi et al., 2004). 

These three ABA-responsive SnRK2 proteins were shown to be 

responsible for the ABA-dependent phosphorylation of TRAB1 (Kobayashi 

et al., 2005).  

While many data have been gathered on the ABRE-driven ABA-

dependent gene expression, it is known that the transcriptional responses 
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to this hormone are not exclusively dependent on the ABRE cis-element. 

The Arabidopsis gene RD22 has no ABRE motifs in its promoter and, 

nevertheless, it is ABA-responsive. Its transcriptional regulation was found 

to be determined by MYC and MYB-type TFs (Abe et al., 2003), which is 

illustrative of the presence of different signalling pathways regulating ABA-

dependent gene expression. 

 

ABA-independent pathway  

Even though ABA plays a major role in the plant responses to abiotic 

stress, namely drought, there are also stress signalling pathways that work 

independently of this hormone (Shinozaki and Yamaguchi-Shinozaki, 

2006). This ABA-independent mechanism was discovered through the 

observation that the Arabidopsis gene RD29a is induced by salinity and 

drought, even in aba and abi mutants, that are impaired in ABA synthesis 

and sensitivity, respectively (Yamaguchi-Shinozaki and Shinozaki, 1993). In 

this section, the regulons involved in ABA-independent signalling will be 

discussed. 

 

The DREB1/CBF Transcription Factors 

The DREB1/CBF regulon is by far the best characterized signalling 

pathway within the abiotic stress responses in plants. The DREB1/CBF 

sub-family of TFs is part of the APETALA2/ETHYLENE RESPONSE 

FACTOR (AP2/ERF) family (Sakuma et al., 2002), since these proteins 

have a canonical AP2/ERF DNA-binding domain. DREB1/CBF TFs were 

initially identified in Arabidopsis (Gilmour et al., 1998; Liu et al., 1998), but 

homologues have now been described in many other plant species, which 

illustrates their prominent role in plant biology (Dubouzet et al., 2003; 

Zhang et al., 2004; Skinner et al., 2005; Xiao et al., 2006; Qin et al., 2007; 

Shan et al., 2007; Zhang et al., 2010).  
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DRE/CRT cis-element and trans-acting Transcription Factors 

The cis-regulatory sequence, known as Drought-Responsive Element or 

C-Repeat (DRE/CRT) was identified in the promoter regions of abiotic 

stress-responsive genes by two independent groups (Baker et al., 1994; 

Yamaguchi-Shinozaki and Shinozaki, 1994). The nucleotide sequence of 

the cis-element DRE (TACCGACAT) in the promoter of the Arabidopsis 

RD29a gene was shown to be involved in the induction of this gene by cold, 

salinity and drought, but not by ABA (Yamaguchi-Shinozaki and Shinozaki, 

1994). This first report set the ground for this regulatory element as ABA-

independent. In parallel, Baker et al. (1994) identified a CCGAC core 

sequence in the DRE motif, named CRT, which was involved in the low-

temperature response of the Arabidopsis COR15a gene. Using a Yeast 

One-Hybrid system, a protein containing an AP2/ERF domain, named C-

REPEAT BINDING FACTOR 1 (CBF1), was the first TF identified as 

binding to the CRT/DRE element (Stockinger et al., 1997). Through a 

similar approach, DRE BINDING PROTEIN 1A (DREB1A), and DRE 

BINDING PROTEIN 2A (DREB2A) were identified as TFs that bind to the 

DRE element present in the promoter of RD29a (Liu et al., 1998). In this 

study, DREB1A and DREB2A were also proposed to function in two 

separate pathways: low temperature and dehydration/osmotic stress, 

respectively. Medina et al. (1999) later identified two other TFs, CBF2 and 

CBF3, that showed a high similarity to CBF1. It is important to clarify that, 

although reported by different groups, DREB1 and CBFs are the same 

proteins. DREB1A corresponds to CBF3, DREB1B to CBF1 and DREB1C 

to CBF2. These TFs were later on described as binding to the sequence 

A/GCCGAC, a component of the DRE cis-element (Sakuma et al., 2002). 

Two amino-acids, valine and glutamic acid, located in the AP2/ERF domain 

of DREBs, were found to be determinant for the binding of these TF 

proteins to DNA (Sakuma et al., 2002). Recently, it was shown that 
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mutations in the DREB1 signature sequence PKKPAGR, outside the 

AP2/ERF domain, abolishes the ability of these proteins to bind DNA 

(Canella et al., 2010), meaning that regions other than the canonical DNA-

binding domain have also a functional role in this process. It is interesting to 

note that the DREB1A/CBF3 and DREB2A proteins have slightly different 

DNA-binding specificities (Sakuma et al., 2006). This may help explaining 

why these TFs have different down-stream regulated genes (Sakuma et al., 

2006), which further supports the hypothesis that these two groups of TFs 

function in different pathways. 

 

The OsDREB1 TFs in rice 

In rice, several genes have been identified as homologues of the 

Arabidopsis DREB1/CBFs (Dubouzet et al., 2003; Chen et al., 2008; Wang 

et al., 2008). OsDREB1A-D were initially identified by Dubouzet et al. 

(2003) through sequence homology with the Arabidopsis TFs, while 

OsDREB1E-G were later identified by different groups (Chen et al., 2008; 

Wang et al., 2008). Dubouzet et al. (2003) described OsDREB1A and 

OsDREB1B as genes highly and quickly induced by cold, and OsDREB1A 

also showed a later induction under high salinity conditions. Drought and 

ABA did not seem to influence the expression of these genes. More 

recently, however, the rice gene OsDREB1B has been reported to be 

induced by stress conditions other than cold, such as osmotic stress, high 

salinity, salicylic acid, dehydration and methyl viologen (which triggers 

oxidative stress), but not by ABA (Gutha and Reddy, 2008). Regarding 

other OsDREB1 genes, OsDREB1C was observed to have a constitutive 

gene expression, not being regulated at transcript level under stress, while 

the OsDREB1D transcript could not be detected under the different 

conditions tested (Dubouzet et al., 2003). Wang et al. (2008) reported that 

OsDREB1F responded to drought, salinity and cold, but also to ABA. There 
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are no reports on the gene expression of OsDREB1E or OsDREB1G in 

response to abiotic stresses.  

Similarly to what has been reported for other plants (discussed below), 

the over-expression of OsDREB1 genes in rice usually leads to plants with 

improved tolerance to abiotic stress conditions. Rice plants over-expressing 

OsDREB1A and OsDREB1B (Ito et al., 2006) showed a higher tolerance to 

cold, dehydration and salinity, but also a dwarf phenotype (discussed 

below). These transgenic plants were reported to accumulate higher 

amounts of proline and sugars, both in control and stress conditions, when 

compared to wild-type plants. Moreover, the rice plants over-expressing 

either OsDREB1A or the Arabidopsis DREB1A had increased levels of 

COR-regulated genes. In wild type plants, these genes are induced only 

under cold conditions (Ito et al., 2006). In addition to an improved tolerance 

to cold, drought and high salinity, transgenic rice plants over-expressing 

OsDREB1F also showed increased transcript levels of ABA-dependent 

genes (Wang et al., 2008). This, together with the ABA-induction of 

OsDREB1F, means that this gene works in an ABA-dependent fashion. 

Regarding the other two OsDREB1 TFs, rice plants over-expressing 

OsDREB1G were reported to have an increased survival rate under 

drought conditions, but such a phenotype was less evident in the 

OsDREB1E over-expressing lines (Chen et al., 2008). These different 

phenotypes indicate that OsDREB1 proteins are not redundant and may act 

differently in abiotic stress signalling.  

The study by Gutha and Reddy (2008) unveiled a possible role for 

DREB1/CBFs, and particularly for OsDREB1B, in biotic stress signalling. 

These authors over-expressed OsDREB1B in tobacco plants and observed 

that the plants, not only were more tolerant than the wild type to drought, 

salinity and cold, but also to oxidative stress and, more interestingly, to 

infection by tobacco streak virus. Moreover, the transgenic plants also 
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showed a constitutive expression of some Pathogenesis-Related (PR) 

genes, which may explain the resistance phenotype (Gutha and Reddy, 

2008). So far, this is the only study reporting a direct involvement of 

DREB1/CBFs in biotic stress signalling. 

 

DREB1/CBFs in other plants 

As previously mentioned, DREB1/CBF genes were initially identified in 

Arabidopsis: three TF encoding genes, DREB1A/CBF3, DREB1B/CBF1 

and DREB1C/CBF2 were described as homologous genes, belonging to 

the DREB1/CBF sub-family (Gilmour et al., 1998; Liu et al., 1998; Medina 

et al., 1999). These genes are located in the Arabidopsis chromosome IV, 

in tandem, which means that they probably have a common origin. 

DREB1/CBFs were initially characterized as quickly and transiently induced 

by low temperatures, but not by drought or ABA (Gilmour et al., 1998; Liu et 

al., 1998; Medina et al., 1999). However, more recently, it was reported the 

activation of DREB1/CBFs by ABA, through the DRE/CRT element (Knight 

et al., 2004). Gilmour et al. (1998) also reported an induction of 

DREB1B/CBF1 and DREB1C/CBF2, but not of DREB1A/CBF3, by 

mechanical stress.  

Several genes in Arabidopsis have been identified as sequence-

homologues of DREB1/CBFs, but their function in stress signalling was 

apparently not conserved. These genes are sometimes referred to as 

DREB1/CBF-like genes. CBF4 was described as having extensive 

sequence similarity to DREB1/CBFs, even outside the AP2/ERF domain 

(Haake et al., 2002). This homology was even extended to the DREB1/CBF 

signatures that are specific to these TFs (Canella et al., 2010). 

Nevertheless, CBF4 is not induced in response to cold. According to Haake 

et al. (2002), CBF4 only responds to drought and ABA, and its over-

expression results in the up-regulation of COR genes. Sakuma et al. (2002) 
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identified three genes that had high nucleotide sequence similarity to 

DREB1/CBFs. They named these genes DREB1D, which corresponds to 

CBF4, DREB1E and DREB1F. Contrarily to Haake et al. (2002), these 

authors reported an induction of DREB1D/CBF4 by salinity, but not by 

drought or ABA. In the case of DREB1E, its gene expression could not be 

determined, while DREB1F was reported to be induced by salinity, but not 

by drought, cold or ABA (Sakuma et al., 2002). Haake et al. (2002) 

proposed that DREB1/CBFs and their related genes have probably the 

same evolutionary origin and arose due to gene duplication, followed by 

promoter evolution. This led to similar genes but with different gene 

expression patterns, and very likely involved in different signalling 

pathways. 

Since the identification of DREB1/CBFs as major components of the 

abiotic stress responses in Arabidopsis, many groups have focused their 

attention on trying to identify homologues of these genes in other plants. 

Many homologues have already been described, such as in cotton (Shan et 

al., 2007), grape (Xiao et al., 2006), soybean (Li et al., 2005), tomato 

(Zhang et al., 2004) or medicago (Chen et al., 2010), and also in monocots, 

such as rice (Dubouzet et al., 2003), maize (Qin 2004) and barley (Skinner 

et al., 2005), among others. In barley, for instance, the DREB1/CBF family 

has been described as composed of at least 20 genes (Skinner et al., 

2005). The number of DREB1/CBF genes in different barley cultivars was 

also correlated with the ability of these plants to tolerate cold (Knox et al., 

2010). Different numbers of DREB1/CBFs are thought to have arisen due 

to duplication events, and are enough to discriminate between winter and 

spring barley genotypes (Knox et al., 2010).  

Interestingly though, DREB1/CBFs seem to have maintained their 

function along speciation. Over-expression of DREB1/CBFs in different 

species resulted in phenotypes similar to the ones observed in Arabidopsis, 
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like increased tolerance to abiotic stress conditions and growth retardation 

(Ito et al., 2006; Chen et al., 2010). This was even observed in 

heterologous expression of DREB1/CBFs, meaning that these pathways 

are at least partly conserved across the plant kingdom. For example, the 

expression of the Arabidopsis DREB1A/CBF3 in wheat plants increased 

their tolerance to drought (Pellegrineschi et al., 2004). Similarly, 

Arabidopsis plants expressing the rice gene OsDREB1A showed an 

increased tolerance to freezing and high salt stresses (Dubouzet et al., 

2003). Curiously, the over-expression in tomato plants of DREB1/CBFs 

either from Arabidopsis or tomato itself (LeCBFs) did not result in an 

increased freezing tolerance (Zhang et al., 2004). In order to understand 

this, Zhang et al. (2004) analyzed the transcriptome of those plants and 

observed that very few genes were differentially expressed in response to 

DREB1/CBF over-expression. Therefore, the authors proposed that, even 

though tomato plants have a functional DREB1/CBF gene family, the 

regulon controlled by these TFs is much smaller in tomato than in other 

species, which explains the lack of freezing tolerance in these plants. 

 

The DREB1/CBF Regulon 

The DREB1/CBFs were confirmed as regulators of COLD-REGULATED 

(COR) gene expression and as having an important role in the plant 

responses to abiotic stresses, through their over-expression in several plant 

species (Jaglo-Ottosen et al., 1998; Liu et al., 1998; Kasuga et al., 1999; 

Cook et al., 2004; Gilmour et al., 2004). Transgenic Arabidopsis plants 

over-expressing these genes were shown to have increased transcription of 

DREB1/CBF down-stream genes, even without cold acclimation, resulting 

in plants that were more tolerant not only to cold and freezing stresses 

(Jaglo-Ottosen et al., 1998), but also to dehydration (Liu et al., 1998) and 

salinity (Kasuga et al., 1999). Nevertheless, in these studies, the authors 
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also reported that DREB1/CBF over-expression also caused a dwarf 

phenotype, resulting in plants smaller than the wild type. To better 

understand the molecular mechanisms triggered by DREB1/CBFs, 

microarray analysis were performed by several groups, in order to identify 

their down-stream-regulated genes (Seki et al., 2001; Fowler and 

Thomashow, 2002; Gilmour et al., 2004; Maruyama et al., 2004; Vogel et 

al., 2005). Initially, DREB1/CBFs were found to regulate at least 12% of the 

cold-regulated genes in Arabidopsis (Fowler and Thomashow, 2002). 

Gilmour et al. (2004) observed that over-expressing any of the Arabidopsis 

DREB1/CBFs induced the expression of the same down-stream genes. 

Based on this and also on the fact that the over-expression lines showed 

similar phenotypes, these authors proposed that the three DREB1/CBFs 

would have similar functions and, therefore, be redundant. Using two 

microarray systems, Maruyama et al. (2004) were able to identify 38 genes 

acting down-stream of DREB1A/CBF3. Among these genes, several had 

already been described as responsive to abiotic stress conditions, such as 

genes coding for LEA proteins and others such as RD29a and COR15a 

(Yamaguchi-Shinozaki and Shinozaki, 2006). Interestingly, genes coding 

for TFs were also identified as targets of DREB1A/CBF3, such as 

STZ/ZAT10 (Maruyama et al., 2004), indicating the presence of sub-

regulons down-stream of DREB1/CBFs. Later, Vogel et al. (2005), using a 

full genome array, were able to identify 93 genes as down-stream targets of 

DREB1C/CBF2. A recent report, however, has described that 

DREB1C/CBF2 can regulate the expression of as much as 286 genes in 

mature Arabidopsis leaves (Sharabi-Schwager et al., 2010). This growing 

number of known DREB1/CBF-regulated genes illustrates the relevance of 

these genes in the responses to abiotic stress. 

As discussed above, DREB1/CBFs were initially proposed to be 

redundant, since plants over-expressing them had similar phenotypes 
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(Gilmour et al., 2004). Nevertheless, an Arabidopsis cbf2 mutant was found 

to have increased tolerance to chilling, when compared to the wild type, 

and this correlated with increased levels of DREB1A/CBF3 and 

DREB1B/CBF1 (Novillo et al., 2004). The gene expression of these two 

genes at 4ºC also preceded that of DREB1C/CBF2 (Novillo et al., 2004; 

Medina et al., 2011). The authors proposed therefore that this gene plays a 

different role in the abiotic stress signalling pathway, negatively regulating 

the expression of DREB1A/CBF3 and DREB1B/CBF1. This was further 

confirmed by the finding that these two genes have a similar expression 

pattern during Arabidopsis development, that is different from the one 

observed for DREB1C/CBF2 (Novillo et al., 2007). Moreover, in this study, 

RNAi lines for DREB1A/CBF3 and DREB1B/CBF1 were impaired in the 

cold-induced expression of the same DREB1/CBF-target genes, and 

DREB1C/CBF2 could not compensate for that absence. Novillo et al. 

(2007) suggested that the DREB1/CBF regulon consists of at least two 

subsets of genes: one regulated in concert by DREB1A/CBF3 and 

DREB1B/CBF1 and the other one by DREB1C/CBF2. 

The changes in gene expression driven by DREB1/CBFs ultimately result 

in an adaptation to abiotic stress conditions, as discussed above. Plants 

over-expressing DREB1/CBFs showed an accumulation of compatible 

solutes, such as proline and soluble sugars (Gilmour et al., 2004). In fact, 

the Arabidopsis metabolome was shown to be extensively regulated by 

DREB1/CBFs (Cook et al., 2004; Maruyama et al., 2009). In the study by 

Cook et al. (2004), non-acclimated Arabidopsis plants over-expressing 

DREB1A/CBF3 were shown to have a metabolome similar to the one of 

cold-acclimated plants. These results indicate that stress-tolerant 

phenotypes of plants over-expressing DREB1/CBF should be due to the 

accumulation of certain metabolites. 
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Regulation of DREB1/CBFs by hormones and the circadian clock 

The phenotypes observed in DREB1/CBF over-expressing plants may 

also reflect the role of these TFs in pathways other than abiotic stress 

signalling (Fig. 2). As discussed previously, plants over-expressing 

DREB1/CBFs show growth retardation, in addition to their increased 

tolerance to abiotic stresses. The fact that it was possible to rescue this 

dwarf phenotype with the application of an exogenous gibberellin (GA), 

gibberellic acid, without affecting cold tolerance (Hsieh et al., 2002a; Hsieh 

et al., 2002b), raised the possibility of an interplay between these TFs and 

hormone signalling. This was further confirmed by the finding that 

DREB1B/CBF1 regulates plant growth by reducing GA content (Achard et 

al., 2008). This TF was observed to promote the expression of genes 

involved in the degradation of GAs, thus allowing the accumulation of 

DELLA proteins that, in turn, contribute to arrest plant growth. More 

recently, DREB1C/CBF2 has also been shown to play a role in suppressing 

the plant response to the plant hormone ethylene (Sharabi-Schwager et al., 

2010). Plants over-expressing DREB1C/CBF2 had decreased leaf 

senescence and their life span was extended in two weeks, when 

compared to wild type plants. These results highlight the role of 

DREB1/CBFs, not only in abiotic stress signalling, but also in pathways 

regulating plant development itself. The observation that Arabidopsis 

plants, expressing GUS driven by DREB1/CBF promoters, show GUS 

activity during the first stages of seedling development, gradually 

disappearing as the plants aged, also supports a role for these TFs during 

plant development (Novillo et al., 2007).  

DREB1/CBF genes have also been reported as regulated by the 

circadian clock (Harmer et al., 2000; Fowler et al., 2005; Bieniawska et al., 

2008). The first indications of this were provided by Harmer et al. (2000), 

who studied the transcription of 8000 Arabidopsis genes along 48h and 
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observed that the gene expression of DREB1A/CBF3 peaked at around 

midday. DREB1/CBF gene expression at 4ºC was also described to be 

dependent on the circadian clock (Fowler et al., 2005). In fact, the cold-

induction of DREB1/CBF genes in Arabidopsis was found to be gated by 

the clock, which means that the level of induction depends on the time of 

the day at which the stress is imposed. DREB1/CBF transcripts accumulate 

the most when stress is imposed 4h after subjective dawn and the least 

when plants are transferred to cold conditions 16h after subjective dawn 

(Fowler et al., 2005). Interestingly, in this study, the genes RD29a and 

COR6.6 that were described as down-stream components of the 

DREB1/CBF regulon (Jaglo-Ottosen et al., 1998), did not show a circadian 

cycling, nor was their expression gated by the clock. In addition, cold-

responsive [Ca2+] waves have also been shown to be gated by the clock 

(Dodd et al., 2006). Since these waves are a part of the cold-signal 

transduction pathway in the cell (as discussed above), this may have an 

effect on the gating of DREB1/CBF cold-dependent gene expression.  

The circadian-dependent expression of DREB1/CBFs was found to be 

dependent, at least in part, on the activity of the PHYTOCHROME 

INTERACTING FACTOR 7 (PIF7; Kidokoro et al., 2009). In the pif7 mutant, 

the circadian cycling of DREB1B/CBF1 and DREB1C/CBF2 was abolished, 

when Arabidopsis plants were transferred to continuous light, contrarily to 

what happened with wild type plants, where this cycling continued 

(Kidokoro et al., 2009). In this study, PIF7 and the circadian clock 

component TIMING OF CAB EXPRESSION 1 (TOC1) were actually shown 

to work together to repress the expression of DREB1C/CBF2. More 

recently, the circadian expression of the three DREB1/CBF genes in 

Arabidopsis has also been shown to be dependent on the two clock 

components CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE 

ELONGATED HYPOCOTYL (LHY; Dong et al., 2011). In this study the 
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authors observed that in the cca1/lhy double mutant, the circadian-driven 

expression of DREB1/CBFs was abolished. Whether these two TFs work 

together or independently to regulate DREB1/CBF gene expression, is still 

unknown. 

 

Phytochrome signalling and its cross-talk with the DREB1/CBF regulon 

As discussed, the gene expression of DREB1/CBFs has been shown to 

be dependent on circadian rhythms. However, several studies have also 

observed that the regulation of DREB1/CBF genes is dependent on light, 

whose quality is perceived, in part, by phytochromes (phys) (Kim et al., 

2002; Franklin and Whitelam, 2007). Phys are light sensing molecules 

composed of an apoprotein and of a light absorbing chromophore, which is 

responsible for the light-induced re-conformation of phys. In response to 

far-red light (Fr), or in the dark, phys are in their inactive state (Pr), and are 

localized in the cytosol. Upon a red light (R) pulse, these proteins change 

Figure 2. Cross-talk of DREB1/CBFs with other signalling pathways. TFs are 
shown in ovals. Other proteins are shown in circles. Ovals with question marks 
represent regulatory elements yet to be identified. Dotted lines indicate unknown 
mechanisms of regulation. GA – Gibberellin, GA2ox – GA2 oxidase.  
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conformation to their active state (Pfr) and migrate into the nucleus of the 

cell (Kircher et al., 2002). There they interact with a group of bHLH TFs 

called PHYTOCHROME INTERACTING FACTORS (PIFs) and promote 

their phosphorylation and ubiquitination, which will ultimately lead to the 

degradation of PIFs by the proteasome (Shen et al., 2005; Al-Sady et al., 

2006; Shen et al., 2007; Lorrain et al., 2008). This regulation of PIF protein 

levels results in a modulation of gene expression dependent on light quality 

(Shin et al., 2009). 

Phytochrome signalling has been implicated in several biological 

processes, such as germination, hypocotyl elongation and shade 

avoidance, among others, as recently reviewed (Franklin and Quail, 2010). 

There is also evidence on the interplay of phys with hormone signalling 

(Seo et al., 2006; Nozue et al., 2011), which further illustrates the 

prominent role of phys in plant development. The involvement of phys in 

these biological processes has been shown to be dependent, at least in 

part, on their interacting partners, the PIFs. In Arabidopsis, PIF3 was the 

first member of this group to be identified using the C-terminal non-

photoactive domain of phyB as bait for an Yeast Two-Hybrid screening (Ni 

et al., 1998). This TF has since then been implicated in diverse processes, 

such as in hypocotyl elongation and cotyledon development (Kim et al., 

2003), anthocyanin biosynthesis (Shin et al., 2007), flowering (Oda et al., 

2004) and chloroplast development (Monte et al., 2004; Terry et al., 2009). 

Later on, several other PIFs were identified in Arabidopsis, such as PIF1, 

PIF4, PIF5, PIF6 and PIF7 (Huq and Quail, 2002; Khanna et al., 2004; 

Leivar et al., 2008a). Several of these proteins, with the exception of PIF7, 

were described as being targeted to degradation upon interaction with the 

active form of phyB (Shen et al., 2005; Al-Sady et al., 2006; Shen et al., 

2007; Lorrain et al., 2008). PIF7, on the other hand, seems to be light-

stable even though it was shown to interact with phyB (Leivar et al., 2008a). 
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PIFs are therefore negative regulators of phy signalling and several studies 

have been performed in order to understand their biological functions. 

Some of these functions seem to be conserved among PIFs, in what 

regards photomorphogenesis (Leivar et al., 2008b; Shin et al., 2009), but 

some PIFs have been described as having particular biological roles. PIF6 

for instance, was shown to have a role in seed dormancy (Penfield et al., 

2010), while PIF4 was described as involved in plant adaptation to high 

temperature (Koini et al., 2009). PIF3 and PIF4 have also been described 

as directly involved in GA signalling, mainly through the regulation of their 

transcriptional activity by DELLA proteins (de Lucas et al., 2008; Feng et 

al., 2008). Even thought PIFs were shown to play prominent roles in plant 

biology, these proteins have not been studied in plants other that 

Arabidopsis. In rice, several putative PIFs have already been predicted 

(Nakamura et al., 2007), but their interaction with rice phys is yet to be 

tested. 

The first report on the regulation of DREB1/CBFs by phy signalling was 

the study by Kim et al. (2002), in which R light was observed to positively 

regulate the DRE/CRT-mediated gene expression. Furthermore, this 

positive effect was shown to be dependent on phyB, since it was 

attenuated in phyb mutants, but not in phya, for example. On the other 

hand, Franklin and Whitelam (2007) reported a positive effect of a low R/FR 

ratio on the circadian regulation of DREB1/CBFs. These authors also 

observed that Arabidopsis plants grown at a low R/FR ratio showed an 

increased survival rate after a freezing treatment, when compared to plants 

grown at a high R/FR ratio. PIFs, being TFs that transduce the phy-

mediated light information, are therefore very promising candidates to be 

the link between phy signalling and the DREB1/CBF regulon. Nevertheless, 

until now, only PIF7 was described as a regulator of DREB1/CBFs in 

Arabidopsis (Kidokoro et al., 2009). Moreover, this protein was only shown 
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to modulate the circadian-regulated expression of DREB1/CBFs. The 

factors responsible for DREB1/CBF regulation under light/dark conditions, 

as well as in response to R and Fr, are yet to be identified. 

 

Up-stream regulators of the DREB1/CBF regulon 

When Gilmour et al. (1998) identified the DREB1/CBFs, they proposed 

the existence of a TF, which they named INDUCER OF CBF 

EXPRESSION (ICE), that would be responsible for the regulation of 

DREB1/CBFs. This TF would be present in the cell in normal conditions 

and activated upon a cold stimulus, to promote the expression of the 

DREB1/CBFs. The same authors later analyzed the promoter of 

DREB1C/CBF2 in order to find cis-acting sequences that would be 

responsible for its cold-induced gene expression (Zarka et al., 2003). They 

identified two sequences, Inducer of CBF Expression region 1 and 2 (ICEr1 

and ICEr2) that were sufficient for the cold induction of DREB1C/CBF2. But 

it was another group that, using forward genetics, identified an ice1 

Arabidopsis mutant impaired in the cold-induction of DREB1A/CBF3 

(Chinnusamy et al., 2003). This allele was shown to code for a MYC-like 

bHLH TF with transcriptional activation activity and able to bind to MYC-

recognition elements in the promoter of DREB1A/CBF3 (Chinnusamy et al., 

2003). These authors also reported that over-expression of ICE1 in 

Arabidopsis did not induce DREB1/CBF expression, unless a low 

temperature signal was applied, like what had been proposed initially by 

Gilmour et al. (1998): ICE1 was constitutively expressed, but the encoded 

protein would need to be post-translationally modified to promote 

DREB1/CBF gene expression in cold conditions. The identification of HIGH 

EXPRESSION OF OSMITICALLY RESPONSIVE GENE (HOS1) as 

regulator of ICE1 protein levels shed some light on this subject (Dong et al., 

2006a). HOS1 is a RING E3 ligase that had been previously described as a 
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negative regulator of cold signal transduction (Ishitani et al., 1998), through 

the repression of DREB1/CBFs (Lee et al., 2001). Dong et al. (2006a) 

observed that HOS1 interacted with ICE1, promoting its ubiquitination and 

targeting to degradation by the proteasome. More recently, however, a 

SUMO E3 ligase, SIZ1, was also identified as a regulator of ICE1 in 

Arabidopsis (Miura et al., 2007). SIZ1 mediates the SUMOylation of ICE1, 

which reduces its availability to be ubiquitinated (Miura et al., 2007). The 

authors proposed that this post-translational modification may help 

stabilizing or even activate the ICE1 protein, promoting DREB1/CBF 

expression under cold. In fact, SIZ1 was shown to be a positive regulator of 

DREB1/CBF gene expression, and particularly of DREB1A/CBF3 (Miura et 

al., 2007). 

While ICE1 was identified as binding to a MYC element in the promoter 

region of DREB1A/CBF3 (Chinnusamy et al., 2003), another TF, MYB15, 

was described as binding to MYB elements present in the promoter regions 

of the DREB1/CBF genes (Agarwal et al., 2006). In this study, MYB15 was 

shown to interact with ICE1 but, in contrast to ICE1, it had a transcriptional 

repressor activity. The myb15 loss-of-function mutant had increased levels 

of DREB1/CBF under cold conditions (Agarwal et al., 2006). Interestingly, 

the over-expression of an ICE-mutated form, impairing its sumoylation, 

increased the transcript levels of MYB15, which means that ICE1 is a 

negative regulator of this gene (Miura et al., 2007).  

Other type of TFs that were described as regulators of DREB1/CBFs are 

the CALMODULIN BINDING TRANSCRIPTIONAL ACTIVATORS 

(CAMTA). CAMTA3 was shown to bind to a cis-acting element in the 

promoter region of DREB1C/CBF2 thus inducing its gene expression 

(Doherty et al., 2009). That cis-acting element partially overlaps with the 

previously described ICEr2 motif (Zarka et al., 2003). This way, CAMTA3 

modulates the expression of DREB1C/CBF2 in response to low 
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temperature (Doherty et al., 2009). Interestingly, CAMTA3 also showed to 

be a positive regulator of DREB1B/CBF1, even though its binding to the 

promoter of this gene still needs confirmation. 

As discussed above, DREB1/CBF gene expression was known to be 

dependent on both circadian rhythms and light quality (Harmer et al., 2000; 

Kim et al., 2002; Fowler et al., 2005; Franklin and Whitelam, 2007). The 

identification of PIF7 as a regulator of DREB1/CBFs provided new clues on 

the mechanisms involved in circadian-dependent DREB1/CBF gene 

expression (Kidokoro et al., 2009). PIF7 was described as binding to the 

promoters of DREB1B/CBF1 and DREB1C/CBF2, but not so efficiently to 

the promoter of DREB1A/CBF3. Kidokoro et al. (2009) reported that the 

pif7 mutant did not show a circadian repression of DREB1B/CBF1 and of 

DREB1C/CBF2 under constant light conditions, but it shows repression 

during dark conditions. Therefore, the TFs responsible for the dark-

dependent repression of DREB1/CBF are yet to be identified. More 

recently, Dong et al. (2011), observed that the TFs CCA1 and LHY bind to 

the promoter of the three Arabidopsis DREB1/CBF genes, and that both the 

circadian- and cold-induced expression of these genes is abolished in 

cca1/lhy double mutants. 

Even though there are no reports of TFs directly regulating DREB1/CBFs 

in plants other than Arabidopsis, the rice TF MYBS3 was shown to be a 

negative regulator of OsDREB1 expression (Su et al., 2010). Rice plants 

over-expressing this TF had a lower cold-induction of the OsDREB1A-C 

genes. Nevertheless, the binding of MYBS3 to the promoter of OsDREB1s 

is yet to be tested. 

 

Regulation of DREB1/CBFs by other factors 

Besides their regulation at gene expression level, DREB1/CBFs were 

also shown to be regulated by other molecular mechanisms. For example, 
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a mutation in TRANSLATION ELONGATION FACTOR 2 was reported to 

induce the expression of DREB1/CBFs under cold conditions (Guo et al., 

2002). Interestingly, the induction of these TFs did not correlate with an 

induction of their target genes. In this mutant, DREB1/CBF down-stream 

genes were actually repressed, as compared to the wild type, and the 

plants had a lower freezing tolerance. Guo et al. (2002) proposed that 

protein synthesis is impaired in this mutant, especially under cold. If this is 

the case, then the induction of DREB1/CBFs in this mutant does not lead to 

increased DREB1/CBF protein levels, consequently not promoting the 

expression of their down-stream genes, and is thus unable to confer cold 

tolerance. 

Another mechanism that was shown to be involved in cold-signalling and 

specifically in DREB1/CBF gene expression was the mRNA export (Gong 

et al., 2005; Dong et al., 2006b). Gong et al. (2005) identified an 

Arabidopsis los4-2 mutant that had increased levels of DREB1C/CBF2 

transcripts and, conversely, those plants were more sensitive to chilling 

than wild type plants. los4 was shown to code for a DEAD-box RNA 

Helicase with a role in nuclear export of mRNA (Gong et al., 2005). This 

effect was further confirmed by the findings by Dong et al. (2006b), who 

reported that a mutation in a Nucleoporin, AtNUP160, had an impact on 

DREB1A/CBF3 transcript level. This mutant has a defective mRNA nuclear 

export mechanism, which was observed to have a role in plant 

development and particularly in the response to low temperatures (Dong et 

al., 2006b).   

 

The DREB2 Transcription Factors 

In the pioneer work by Liu et al. (1998), together with the identification of 

DREB1 TFs, two DREB2 TFs were also identified as binding to the 

DRE/CRT element: DREB2A and DREB2B. Later, Sakuma et al. (2002) 
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identified another six genes coding for DREB2-related proteins in the 

Arabidopsis genome (DREB2C-H). DREB2 genes were initially described 

as highly induced by salinity and drought, but not by cold, in contrast to the 

DREB1/CBFs (Liu et al., 1998). More recently, DREB2 genes have also 

been implicated in the response to high temperatures, both in Arabidopsis 

(Sakuma et al., 2006; Lim et al., 2007; Chen et al., 2010) and in maize (Qin 

et al., 2007).  

Unlike what is observed when DREB1/CBF genes are over-expressed in 

different plants, the over-expression of DREB2 TFs did not result in an up-

regulation of their down-stream genes under non-stress conditions (Liu et 

al., 1998). DREB2 proteins could therefore need some kind of post-

translational modification in order to be activated under stress conditions. 

The finding that PgDREB2, a DREB2-related protein from Pennisetum 

glaucum, is phosphorylated, provided the first piece of evidence to support 

that hypothesis (Agarwal et al., 2007). The phosphorylation of this protein 

prevented its binding to the DRE/CRT element in the promoter of the 

Arabidopsis RD29a gene (Agarwal et al., 2007). Still, DREB2 proteins have 

been shown to be subjected to other types of post-translational 

modifications. Two proteins, DREB2A-INTERACTING PROTEIN 1 and 2 

(DRIP1 and 2) were identified as E3 ubiquitin ligases that promoted the 

ubiquitination of DREB2A (Qin et al., 2008). In this study, the induction of 

DREB2-target genes was delayed in DRIP over-expressing lines. Qin et al. 

(2008) therefore proposed that DRIPs may function in a way to restrict 

DREB2 transactivation under non-stress conditions.  

It is noteworthy that not only post-translational but also post-transcriptional 

mechanisms regulate DREB2s (Qin et al., 2004). Alternative splicing forms 

were identified for the maize gene ZmDREB2A, which showed different 

expression patterns in response to stress conditions.  
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Other regulons involved in abiotic stress signalling 

The NAC/ZF-HD regulon 

Even though major attention has been given to the DREB regulon, in what 

concerns ABA-independent signalling, other signalling pathways exist that 

have a role in abiotic stress tolerance. The NAM, ATAF1,2, CUC2 (NAC) 

transcriptional regulators are one of the most abundant plant-specific TF 

families and have a wide functional diversity in plant biology (Olsen et al., 

2005). Some of these proteins were described as being involved in abiotic 

stress signalling, since they bind to the promoter of the Arabidopsis gene 

EARLY RESPONSIVE TO DEHYDRATION STRESS (ERD1) (Tran et al., 

2004). This gene had previously been described as a protein similar to a 

regulatory ATPase subunit, and its transcription was observed to be 

induced by drought and high salinity (Nakashima et al., 1997; Simpson et 

al., 2003). Simpson et al. (2003) showed that the drought-induced 

expression of ERD1 was dependent on a MYC-like cis-acting sequence in 

its promoter, which was later described as the binding site for NAC TFs 

(Tran et al., 2004). Interestingly, Tran et al. (2004) observed that the over-

expression of genes coding for NAC TFs in Arabidopsis plants induced the 

expression of several stress-responsive genes, but not of ERD1. The same 

authors later reported that, when NAC TFs were expressed together with a 

Zn-Finger Homeodomain TF (ZF-HD1), there was an increased expression 

of ERD1 (Tran et al., 2006). ZF-HD1 would bind to another cis-element in 

the promoter of ERD1, acting together with NAC TFs to regulate the 

expression of that gene (Tran et al., 2006). 

NAC TFs have also been characterized in other plants, such as rice and 

wheat (Ohnishi et al., 2005; Hu et al., 2006; Uauy et al., 2006; Nakashima 

et al., 2007; Hu et al., 2008). The rice TF OsNAC6, for instance, has been 

described as induced by several abiotic stress conditions, but also by ABA, 

wounding and jasmonic acid, which indicates a possible role of this TF in 
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the responses to biotic stress (Ohnishi et al., 2005). This was confirmed by 

the findings by Nakashima et al. (2007), who reported that rice plants over-

expressing OsNAC6 not only had increased tolerance to abiotic stress 

conditions, but also to fungal infection. In addition, the work by Uauy et al. 

(2006) showed that NAC TFs from wheat have a role in senescence, and 

also in nutrient mobilization from leaves to developing grains, namely zinc 

and iron. These results highlight different functions for NAC TFs in different 

plants. It is yet to be determined whether these functions are conserved 

within the plant kingdom or if they are species-specific. 

 

The C2H2-type Zn Finger regulons 

Among the C2H2-type Zn Finger TFs identified in plants (Meissner and 

Michael, 1997), several have been described as regulators of abiotic stress 

responses (Sakamoto et al., 2004; Vogel et al., 2005; Mittler et al., 2006). 

Sakamoto et al. (2004) described several Arabidopsis genes coding for 

C2H2-type Zn Finger TFs as responsive to abiotic stress conditions. 

Moreover, these authors observed that all those TFs were transcriptional 

repressors, through the binding to specific cis-acting sequences in the 

promoters of target genes. One of the genes coding for these TFs is 

STZ/ZAT10, which is strongly induced in response to several abiotic stress 

conditions, such as cold, drought and salinity (Sakamoto et al., 2004). More 

interestingly though, both the over-expression and silencing of this gene in 

Arabidopsis resulted in plants more tolerant to abiotic stress conditions 

(Mittler et al., 2006). The authors of that study suggested that this TF may 

have a dual function in abiotic stress signalling and might be involved in 

different stress-responsive signalling pathways. In another report, 

Arabidopsis plants over-expressing DREB1A/CBF3 were found to have 

altered levels of STZ/ZAT10 (Maruyama et al., 2004). This cross-talk 

between regulons is further supported by the finding that ZAT12, a 
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transcriptional repressor also described as a regulator of several abiotic 

stress-responsive genes (Davletova et al., 2005), has a regulon partly 

overlapping that of DREB1C/CBF2 (Vogel et al., 2005). Moreover, ZAT12 

was also described as a negative regulator of DREB1A/CBF3 and 

DREB1B/CBF1 (Vogel et al., 2005). These results are illustrative of the 

interplay between different regulons. 

The C2H2-type Zn Finger TFs have also been reported as regulators of 

abiotic stress responses in plants other than Arabidopsis. For instance, 

SCOF-1 is a C2H2-type Zn Finger TF from soybean and its gene 

expression was described as highly induced in response to cold and ABA, 

but not by salinity or drought (Kim et al., 2001). SCOF-1 was shown to 

regulate COR gene expression through the ABRE cis-acting element. 

Therefore, Kim et al. (2001) proposed that SCOF-1 could be acting through 

and ABA-dependent pathway to modulate cold-regulated gene expression 

in soybean. In rice, the over-expression of another C2H2-type Zn Finger, 

ZFO252, was also observed to increase the tolerance of plants to drought 

and salinity (Xu et al., 2008). These plants showed an accumulation of 

stress-responsive transcripts, such as OsDREB1A, and of several 

compounds related to osmoregulation, such as proline and soluble sugars. 

Altogether, these results are illustrative of the important role this type of 

TFs have in stress signalling and also of the cross-talk between regulons, 

namely with the DREB1/CBFs.  

 

 

Approaches to improve plant tolerance to adverse abiotic 

stress conditions 

Given that a single TF can modulate the expression of many genes, these 

proteins have been proposed by several authors as promising targets for 

plant improvement. For instance, the over-expression of the TF AP37 in 
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rice increased tolerance to several abiotic stress conditions, such as  low 

temperature, high salinity and drought (Oh et al., 2009). More importantly, 

these transgenic plants had an increased grain yield of up to 57% under 

drought stress, as compared to wild type plants. The over-expression of 

SNAC1 and SNAC2 in rice was also reported to improve abiotic stress 

tolerance (Hu et al., 2006; Hu et al., 2008). The over-expression of SNAC1 

in particular was observed to increase the seed setting of rice plants 

subjected to drought conditions in the field (Hu et al., 2006). In both cases, 

AP37 and SNAC1 over-expression, the transgenic plants did not show 

major phenotypic differences, when compared to the wild type (Hu et al., 

2006; Hu et al., 2008; Oh et al., 2009). This is noteworthy, since the over-

expression of some TFs results in plants with dwarf phenotypes or other 

undesired alterations (Ito et al., 2006; Nakashima et al., 2007). These 

phenotypes are usually due to the use of strong constitutive promoters 

driving the expression of the TF gene of interest. Nevertheless, the use of 

stress-inducible promoters has proven successful to overcome such 

negative effects (Nakashima et al., 2007). These reports are illustrative of 

the importance of TFs as targets for plant improvement. The identification 

and functional characterization of these regulatory proteins is therefore 

crucial to improve crop yield, particularly when plants have to grow under 

adverse environmental conditions. 
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Thesis outline and research objectives 

With this work we aimed to identify and characterize novel components 

up-stream of the OsDREB1 genes in rice, namely of OsDREB1B, whose 

regulation is still poorly understood. Our main goal was to provide novel 

clues for the abiotic stress signalling mechanisms in plants and hopefully 

identify genes that may play prominent roles in stress tolerance, and that 

may be interesting targets for crop plant improvement in the future. 

To meet this goal, we proposed to screen a cDNA expression library for 

TFs that would bind to the promoter of OsDREB1B. Since this gene was 

initially described as strongly induced by cold, we prepared this library from 

cold-treated rice seedlings, hence enriched in cold-responsive transcripts. 

In order to screen the library for TFs that bind to the promoter of 

OsDREB1B, we used the Yeast One-Hybrid (Y1H) system. For that, we 

divided the promoter of OsDREB1B into four overlapping fragments that 

were used as baits in the Y1H screening. 

Having identified novel TFs that bind to the promoter of OsDREB1B, we 

proposed to perform their functional characterization, using molecular and 

biochemical tools. This characterization involved analysis of gene 

expression patterns under different abiotic stress conditions, transactivation 

activities of the TFs, protein-protein and protein-DNA interaction studies, 

among others. In order to identify and characterize cross-talks between 

different signalling pathways, we also proposed to investigate the possible 

involvement of the novel TFs identified in signalling pathways other than 

abiotic stress responses. 
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Abstract 

Plants have evolved several mechanisms in order to cope with adverse 

environmental conditions. Under abiotic stress, plants undergo dramatic 

changes in gene expression, which are modulated by different 

Transcription Factors (TFs). The TF proteins belonging to the DREB1/CBF 

sub-family have been described as major regulators of the plant responses 

to several abiotic stress conditions. Our study focused on the rice gene 

OsDREB1B, initially described as highly and specifically induced by cold. 

Nevertheless, we showed that OsDREB1B is not only induced by low 

temperatures, but also by drought and mechanical stress. In spite of its 

known relevance in abiotic stress signalling, the transcriptional regulation of 

OsDREB1B is still poorly understood. Therefore, in order to identify TFs 

that bind to is promoter, we have used a Yeast One-Hybrid system to 

screen a cold-induced cDNA expression library. Thereby, we have 

identified eight novel TFs that bind to the promoter of OsDREB1B. Among 

them, there were seven Zn Finger TFs, four Homeodomain (ZF-HD) and 

three C2H2-type, and one basic Helix-Loop-Helix (bHLH) TF, predicted as 

a Phytochrome Interacting Factor (PIF). This work provided the first insight 

into the transcriptional regulation of a DREB1 gene in rice. 
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Introduction 

Given their sessile nature, plants have adapted to cope with 

environmental stresses, such as extreme temperatures, drought and 

salinity. Many of these adaptations take place at the molecular level and 

are modulated by transcription factors (TFs), which mediate the stress 

responses. The APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) 

family of TFs plays a prominent role in the response to abiotic stress 

conditions, particularly through the action of the DROUGHT RESPONSE 

ELEMENT BINDING 1/C-REPEAT BINDING FACTOR (DREB1/CBF) sub-

family (Gilmour et al., 1998a; Liu et al., 1998; Medina et al., 1999). 

Elements of this sub-family were first identified in Arabidopsis, but are now 

known to be present in many other plant species, such as rice (Dubouzet et 

al., 2003), maize (Qin et al., 2004), grape (Xiao et al., 2006) and cotton 

(Shan et al., 2007), which illustrates their relevance in plant stress 

signalling. Even though several genes have been identified as targets of 

DREB1/CBFs (Seki et al., 2001; Fowler and Thomashow, 2002; Maruyama 

et al., 2004), there is still much to learn about their up-stream regulators. 

ICE1 in Arabidopsis was the first protein identified as a regulator of 

DREB1/CBF gene expression, through the binding to a specific cis-motif 

present in the promoter region of DREB1A (Chinnusamy et al., 2003). The 

TF MYB15 was also described as interacting with ICE1 and binding to the 

promoters of Arabidopsis DREB1/CBFs, working to repress their 

transcription (Agarwal et al., 2006). Moreover, CAMTA3 was shown to be a 

positive regulator of Arabidopsis DREB1C/CBF2, through its binding to the 

CM2 cis-motif, present in the promoter of that gene (Doherty et al., 2009), 

while PIF7, a negative regulator of phytochrome signalling (Leivar et al., 

2008), was established as a possible link between the light and cold 

signalling pathways, since it binds to the promoter of DREB1B and 

DREB1C (Kidokoro et al., 2009). More recently, CCA1 and LHY have also 
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been shown to bind to the promoters of DREB1/CBFs, and to be involved in 

their circadian regulation and also cold-induction (Dong et al 2011). 

Nevertheless, other than in Arabidopsis, very little is known about the 

regulation of DREB1/CBFs. The rice TF MYBS3 was described as a 

negative regulator of OsDREB1A and OsDREB1B, but confirmation of its 

binding to the promoters of these genes is still lacking (Su et al., 2010).  

This work focuses on the rice gene OsDREB1B, which was initially 

described as highly and specifically induced by low temperatures 

(Dubouzet et al., 2003), but later, it was also found to respond to high 

salinity, osmotic stress and salicylic acid (Gutha and Reddy, 2008). Our 

gene expression studies indicate that the cold-induction of OsDREB1B 

depends on the severity of the stress. Moreover, we have observed that 

this gene is highly induced in response to drought, only in the roots, and 

also by mechanical damage. In order to better understand the 

transcriptional regulation of OsDREB1B, we screened a rice cold-induced 

cDNA expression library to identify TFs binding to its promoter. We 

describe here the identification of seven Zn Finger and one bHLH proteins, 

which are the first TFs reported as direct regulators of a DREB1/CBF gene 

in plants other than Arabidopsis. 

 

 

Materials and methods 

Plant materials and construction of the cold-induced cDNA expression 

library  

Eight-days-old rice seedlings (Oryza sativa L. cv. Nipponbare) grown at 

28ºC and 12h/12h photoperiod, were subjected to an 8ºC treatment. Whole 

seedlings were sampled after 2h, 5h, and 24h of cold treatment. RNA was 

extracted using the RNeasy Plant Mini Kit (Qiagen). Total RNA samples 

from the three time points were pooled in equal amounts for mRNA 
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purification using the PolyATtract mRNA Isolation System IV (Promega). An 

unidirectional cDNA expression library was prepared in ACTII using the 

HybriZAP-2.1 XR cDNA Synthesis Kit and the HybriZAP-2.1 XR Library 

Construction Kit (Stratagene), following the manufacturer’s instructions. 

Three µg mRNA were used to perform the synthesis of first strand cDNA. In 

vivo mass excision of pACTII’ phagemid from λACTII was performed as 

described (Ouwerkerk and Meijer, 2001). 

 

Yeast One-Hybrid Screening 

The promoter of OsDREB1B was divided into four overlapping fragments 

to be used as baits for the Y1H screening. Fragment length and primer 

pairs used can be found in Supplemental Table 1. The fragments were 

cloned in the pHIS3/pINT1 vector system (Ouwerkerk and Meijer, 2001) 

and integrated into the Y187 yeast strain (Clontech). For each promoter 

fragment, over one million yeast colonies were screened in CM-His- 

medium supplemented with 5mM 3-amino-1,2,4-triazole (3-AT), as 

described (Ouwerkerk and Meijer, 2001). The plasmids from the yeast 

clones that actively grew on selective medium were extracted and the 

cDNA insert sequenced. These sequences were used to search for 

homology in the rice genome, using the BLAST algorithm. Plasmids 

containing genes encoding transcription factors were re-transformed into 

the respective bait strain, to confirm activation of the reporter HIS gene. 

 

Abiotic stress treatments 

Rice seedlings were grown hydroponically in rice growth medium 

(Yoshida et al. 1976) at 28ºC, 700µmol fotons.m-2.s-1, 70% humidity and 

12h/12h photoperiod for 14 days. The seedlings were then transferred to 

stress conditions 4h after dawn. At the same time, control seedlings were 

transferred to fresh growth medium (mock control). Cold treatments were 
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performed by transferring the seedlings to growth chambers at either 5ºC or 

10ºC in pre-cooled medium. For salt and ABA treatments, seedlings were 

transferred to growth media supplemented with 200mM NaCl or 100µM 

ABA, respectively. Drought treatment was performed by maintaining the 

seedlings over dry absorbent paper. The mechanical stress assay was 

carried out by damaging the seedlings before they were transferred to new 

growth medium (the leaves and stems were bent and broken). All other 

conditions were maintained throughout the assays. Ten plants were 

sampled for each time point, and roots and shoots were harvested 

separately.  

 

Semi-quantitative RT-PCR 

Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen). First 

strand cDNA was synthesized from 1µg total RNA, using an oligo-dT primer 

(Invitrogen) and the SuperscriptII reverse transcriptase (Invitrogen), 

following the manufacturer's instructions. The cDNA was then amplified by 

PCR using gene-specific primers (Supplementary Table 2). ACTIN1 

(Os03g50885) was used as an internal control for all experiments, except 

for shoots in the drought assay and roots at 10ºC, where EUKARYOTIC 

ELONGATION FACTOR 1-α (eELF1-α; Os03g08060) and UBIQUITIN-

CONJUGATING ENZYME E2 (UBC2; Os02g42314) were used, 

respectively (Jain et al., 2006). The results shown are representative of at 

least two biological replicates. 
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Results 

OsDREB1B transcript level is differentially regulated by several abiotic 

stress conditions 

We have tested OsDREB1B (Os09g35010) gene expression in response 

to several abiotic stress conditions, using semi-quantitative RT-PCR. For 

this, two-week-old rice seedlings were subjected to cold (5º and 10ºC), salt 

(200mM NaCl), drought and ABA treatments (100µM), for up to 24h. Our 

results confirmed that OsDREB1B is highly regulated by cold, as previously 

described (Dubouzet et al., 2003a). In addition, we observed that this 

regulation is temperature-dependent and shows a similar pattern in both 

shoots and roots (Fig. 1a). When rice seedlings were subjected to 10ºC, the 

OsDREB1B transcript level was rapidly induced (10min), reached a peak 

(1h/2h) and then started to decrease, returning to basal levels afterwards. 

At 5ºC, however, the induction of OsDREB1B only started after 40min of 

cold and remained high until the end of the assay. Rice seedlings treated 

with ABA or subjected to high salinity showed a similar gene expression 

pattern for OsDREB1B in both shoots and roots. The transcript level of 

OsDREB1B was rapidly (10min) up-regulated after the onset of stress and 

followed by a down-regulation after 20 to 40min. This pattern was also 

observed in shoots under drought stress, whereas in roots the transcript 

level of OsDREB1B was kept high at least during 24h after the start of the 

drought treatment. This suggests that OsDREB1B may play an important 

role in the plant response to drought, particularly at root level. In the case of 

NaCl and ABA treatments, there was also a transient up-regulation of 

OsDREB1B after 5-10h of NaCl treatment in shoots and 1-2h of ABA 

treatment in roots. Nevertheless, these increases also appear in the mock 

control, which may indicate that they are not specific to the NaCl and ABA 

treatments.  
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Under mock treatment, a circadian regulation of OsDREB1B could be 

observed, with the transcript level reaching a peak 2-5h after the start of the 

assay (6-9h after dawn), decreasing afterwards. Interestingly, OsDREB1B 

also showed a transient increase of gene expression at 10 and 20min. 

Since, in this case, the only change in conditions was the transfer of the 

plants to new growth medium, we hypothesised if this up-regulation could 

be due to a response to mechanical stress. Therefore, another assay was 

Figure 1. Analysis of OsDREB1B gene expression in rice seedlings subjected to 

different stress treatments.  

(a) OsDREB1B gene expression was analyzed by semi-quantitative RT-PCR in 

plants subjected to cold (5º and 10ºC), ABA (100μM), NaCl (200mM), drought and 

mock control. All treatments started 4h after dawn (time 0). Roots and shoots were 

analyzed separately. Internal control for each assay is described in the Materials 

and Methods section. 

(b) OsDREB1B gene expression was analyzed by semi-quantitative RT-PCR in 

plants subjected to mechanical stress. Whole plants were assayed. 
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performed, in the same conditions as above, but in which the plants were 

damaged and transferred to new nutritive medium. We observed that the 

OsDREB1B transcript level was rapidly and highly induced 10min after 

mechanical stress, stayed high for at least 20min and returned to basal 

levels afterwards (Fig. 1b). This may also explain the transient up-

regulation that we observed in the salt, drought and ABA treatments around 

10 and 20min after stress initiation (Fig. 1a), although in the salt and 

drought treatments the transient induction observed seems to be more 

significant than what is seen in the mock treatment. 

 

Eight TFs identified that bind to the promoter of OsDREB1B 

In order to identify TFs that bind to the promoter of OsDREB1B, we have 

performed an Y1H screening, using that promoter as bait. We considered 

the 2000bp up-stream of the OsDREB1B start codon (ATG), and divided 

that sequence into four overlapping fragments of around 500bp, numbered 

from 1 to 4 (Supplemental Table 1). Number 1 being the fragment further 

away from the start codon and number 4 the one closest to it (Fig. 2a). The 

four yeast bait strains (each fragment corresponds to one bait strain) were 

used to screen a rice cold-induced cDNA expression library, and at least 

one million yeast colonies were screened for each fragment. This allowed 

us to identify seven Zn Finger and one bHLH TFs as binding to the 

OsDREB1B promoter. Fig. 2a shows the relative position of these TFs 

along the promoter of OsDREB1B. Four Zn Finger Homeodomain (ZF-HD) 

TFs were found as interacting with the DNA sequence between -1527 to -

961bp up-stream of the OsDREB1B start codon; one C2H2-type Zn Finger 

TF was found between -1028 to -388bp, and two others between -488bp 

and -3bp. The bHLH TF was also identified in the promoter region spanning 

from -488bp to -3bp. No TFs were found interacting with the promoter 

fragment ranging from -1945 to -1447bp up-stream of the start codon. In 
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or

Figure 2. Transcription factors binding to the OsDREB1B promoter. 

(a) Schematic representation of the OsDREB1B promoter, divided in four fragments 

used as bait in the Y1H screening. The oval shapes represent the TFs identified as 

binding to each of the promoter fragments: White – Zn Finger-HD; Grey – C2H2-type 

Zn Finger; Black – bHLH. Positioning of the TFs along each promoter fragment is not 

indicative of the position of their binding sites.  

(b) Alignment of the N-terminal a.a. sequence of OsPIF4 with the same region of the 

Arabidopsis PIF3, PIF4, PIF5, and PIF7, showing the conserved APB domain. Dark 

shaded boxes show a.a. residues conserved in all the protein sequences and light 

shaded boxes show residues conserved between OsPIF4 and some of the 

Arabidopsis PIFs within the APB domain. 

(c) Schematic representation of the protein domains of each TF. Dark grey boxes – 

Zn Finger Homedomain (ZF-HD); light grey boxes – Homeodomain (HD); dotted 

boxes – Zinc Fingers (ZF); black – DLN-box/EAR-motif; horizontal stripes – putative 

APB domain; oblique stripes – bHLH domain. 
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der to confirm the protein-DNA interactions, the yeast bait strains were then 

re-transformed with the plasmids containing the TF coding sequences.  

Table 1 shows the names, gene locus and number of times each TF was 

identified in the screening. The seven Zn Finger TFs identified were named 

according to previous studies (Agarwal et al., 2007; Hu et al., 2008). 

Regarding the bHLH, predicted as a PIF, it had been previously named 

PHYTOCHROME INTERACTING FACTOR 3-LIKE 14 (OsPIL14) by 

Nakamura et al.  (2007). When comparing its predicted APB domain with 

that of some of the Arabidopsis PIFs (Fig. 2b), several amino acid residues 

are found conserved between all the proteins, but the rice PIF seems to 

have the highest degree of similarity to PIF4 and PIF5. This gene had been 

previously clustered with both these Arabidopsis PIFs, together with 

another putative rice PIF (Nakamura et al., 2007; Carretero-Paulet et al., 

2010). We therefore named this novel TF as rice PHYTOCHROME 

INTRACTING FACTOR 4 (OsPIF4). 

Fig. 2c shows the protein domains identified in each of the TFs under 

study. The ZF-HD TFs had a protein sequence with the Zn Finger 

Homeodomain up-stream of the C-terminal DNA-binding Homeodomain 

(HD), as described (Windhovel et al., 2001). OsZHD1 and 2 had very 

similar domain structures with the HD close to the C-terminus, whereas in 

OsZHD4 both domains were more central in the protein. In the case of 

OsZHD8, the HD domain was localized similarly to the one on OsZHD4, but 

the ZF-HD domain was closer to the N-terminal of the protein, when 

compared to the other ZF-HD TFs. As for the C2H2-type TFs, ZOS12-7 

was found to have three Zn Fingers, while the other two, ZOS3-12 and 

ZOS11-10, only had two. ZOS3-12 showed an additional feature at its C-

terminus: a DLN-box/EAR-motif, which was described as a transcriptional 

repressor domain (Ohta et al., 2001). No such motifs were identified in the 

other Zn Finger TFs under study.  
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Table 1 – TFs identified as binding to the promoter of OsDREB1B 

Promoter 
Fragment 

RGAP
1
 Gene 

locus 
Conserved 
Domains 

TF Name Ref. 

Number of 
times 

identified 
in 

screening 

-1527 to 
   -961bp 

Os09g29130 ZF-HD OsZHD1 

Hu et al. 
(2008) 

1 

Os08g37400 ZF-HD OsZHD2 2 

Os11g13930 ZF-HD OsZHD4 10 

Os04g35500 ZF-HD OsZHD8 2 

-1028 to     
-388bp 

Os12g38960 C2H2 ZOS12-7 

Agarwal 
 et al. 
(2007) 

2 

-488 to 
     -3bp 

Os03g32230 C2H2 ZOS3-12 1 

Os11g47630 C2H2 ZOS11-10 1 

Os07g05010 
bHLH 
APB 

OsPIF4 
Nakamura 

et al. 
(2007) 

1 

1
Rice Genome Annotation Project 

 

 

The coding sequence of OsPIF4 was predicted differently in two public 

databases (Genebank reference Os07g0143200 and Rice Genome 

Annotation Project reference Os07g05010). We identified a 1245bp coding 

sequence encoding a 414 amino acid-long protein (JN400276), with a 

molecular weight of 44.49kDa and a pI of 4.714. This protein has a 

conserved bHLH DNA binding domain, extending from a.a. 222 to 275, and  
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a putative phytochrome B interacting region (APB) at the N-terminal of the 

protein (Figure 2c).  

 

 

Discussion 

The rice gene OsDREB1B was initially reported as specifically and 

strongly induced by cold (Dubouzet et al., 2003) and shown to be also 

regulated, to some extent, by salt, osmotic and oxidative stresses and 

salicylic acid (Gutha and Reddy, 2008). We observed that OsDREB1B 

gene expression is indeed highly induced by low temperature and, 

interestingly, the pattern of induction is dependent on how low the 

temperature is (Fig. 1a). Moreover, we have also observed that OsDREB1B 

is very responsive to drought conditions, but only in the roots. This 

highlights the importance of analyzing different tissues separately, in order 

not to mask differences in gene expression between them. Gutha and 

Reddy (2008) reported an up-regulation of OsDREB1B under salt stress, 

which was not observed in our gene expression studies. The fact that these 

authors used a different rice variety may be an explanation for this 

difference. The experimental design may also account for some of the gene 

expression differences observed. However, these authors do not describe 

the conditions they used for the abiotic stress treatments. Additionally, we 

observed an early induction of OsDREB1B in the mock treated plants, 

which turned out to be a response to mechanical stress (Fig. 1b). The fact 

that this gene responded to the moving of the plants from one flask to 

another, i. e., responded to touch, indicates that OsDREB1B is highly 

responsive to mechanosensing. This is in agreement with the findings by 

Gupta and Reddy (2008), who observed that OsDREB1B transcription level 

is induced in response to salicylic acid and that tobacco plants over-

expressing this gene have an enhanced resistance to viral infection. 
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Moreover, Gilmour et al. (1998) also reported an activation of the 

Arabidopsis DREB1B/CBF1 in response to mechanical stress. Therefore, 

the involvement of this gene in mechanosensing and biotic stress 

responses seems to be conserved in different species.  

In spite of the fact that DREB1/CBF regulon has been the subject of many 

studies, in several plants, little is still known about the TFs that control the 

expression of the DREB1/CBF genes. In Arabidopsis, at least six TFs were 

reported to bind to the promoters of DREB1/CBFs and regulating their 

transcription: ICE1, MYB15, PIF7, CAMTA3, CCA1 and LHY (Chinnusamy 

et al., 2003; Agarwal et al., 2006; Doherty et al., 2009; Kidokoro et al., 

2009; Dong et al., 2011). In rice however, no TFs had been identified as 

direct regulators of OsDREBs.  

In this work we have identified eight TFs as binding to the promoter of 

OsDREB1B: seven Zn Finger and one bHLH TFs. The abundance of Zn 

Finger TFs, both Homeodomain and C2H2-type, is noteworthy. Zn Finger 

TFs had already been shown to interplay with DREBs in the response to 

abiotic stresses, both up- and down-stream of the DREB1/CBF regulon 

(Maruyama et al., 2004; Vogel et al., 2005). However, to the best of our 

knowledge, there are no reports on the direct regulation of DREB1/CBFs by 

Zn Finger TFs. Additionally, the identification of a putative Phytochrome 

Interacting Factor (OsPIF4; belonging to the bHLH family) as a regulator of 

OsDREB1B, suggests a possible regulation of DREB1/CBFs by light 

signalling in rice. This type of regulation has already been described in 

Arabidopsis (Kim et al., 2002; Franklin and Whitelam, 2007; Kidokoro et al., 

2009). In addition, Kidokoro et al., (2009) showed that PIF7 is a negative 

regulator of DREB1C and DREB1B circadian rhythm in Arabidopsis. 

Nevertheless, among the aligned APB motif sequences, OsPIF4 showed 

the highest similarity to PIF4 and PIF5, whereas PIF7 showed the least 

degree of similarity (Figure 2b). In rice, however, there are no reports on a 
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possible light regulation of OsDREBs, nor on the possible interaction of 

PIFs with rice phytochromes. 

This work allowed us to identify TFs that directly regulate an OsDREB1 

gene in rice. In the following chapters, the molecular and functional 

characterization of these TFs will be addressed. 
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Supplemental Materials 

 

Supplemental Table 1. Primers used to isolate the promoter fragments of 

OsDREB1B 

Fragment Primer Sequence
1
     5’-3’ 

Fragment 
Size (bp) 

Promoter 
Region 

1 
GCTCTAGATGAATTTGGCTTGAAGGATG 

498 
-1945 to   
-1447 bp 

GGACTAGTTCCGTCATTAACAAATGTGAGTT 

2 
GCTCTAGATCACGAGATGAATCTTTTGAGC 

566 
-1527 to   
-961bp 

GGACTAGTGCACCGTCAATTCTTCGATA 

3 
ATGCGGCCGCCAAAGTTTTGGCTTCTAATTGGT 

640
2
 

-1028 to     
-388bp 

GGACTAGTTGACTCTCTCTGGTTCACTTCG 

4 
ATGCGGCCGCTCGGAGTAACACTCGTGCAG 

485 
-488 to     
-3bp 

GGACTAGTTGACTCTCTCTGGTTCACTTCG 

1
Adaptors with restriction enzyme sites are underlined. 

2
Fragment obtained by enzymatic digestion with XbaI of a 1025bp fragment obtained with 

the primers indicated. 
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Supplemental Table 2. Primers used to for semi-quantitative RT-PCR 

Gene Primer Sequence    5’-3’ 

OsDREB1B 

CGCGAGGGGGGTCAGGGA 

TAGTAGCTCCAGAGCGGCAT 

ACTIN1 

GTCGCACTTCATGATGGAGTTG 

CATGCTATCCCTCATCTCGAC 

eEF1α 

ACCCTCCTCTTGGTCGTTTT 

AAATACCCGCATTCCACAAC 

UBC2 

CAAAATTTTCCACCCGAATG 

ATCACATGAATCAGCCATGC 
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Abstract 

Abiotic stress conditions are major constraints for crop development and 

productivity. Transcription Factors (TFs) belonging to the AP2/ERF family 

have been shown to mediate many abiotic stress responses, therefore 

playing a major role in plant responses to these conditions. The 

DREB1/CBF sub-family, in particular, has been described as a major 

component of the abiotic stress signalling pathways. In Chapter 2 we have 

reported the identification of eight TFs that bind to the promoter of the 

OsDREB1B rice gene: seven Zn Finger TFs and one bHLH TF. Here we 

will present and discuss the molecular and functional characterization of the 

Zn Finger TFs identified. Gene expression studies showed that these TFs 

are differentially regulated at transcriptional level by different abiotic stress 

conditions, which is illustrative of the cross-talk between stress signalling 

pathways. Using a transactivation assay in Arabidopsis protoplasts, we 

have observed that all the TFs identified repressed the expression of the 

reporter gene, driven by the promoter of OsDREB1B. Protein-protein 

interaction studies revealed the formation of homo- and hetero-dimers 

among the ZF-HD TFs identified, but not for the C2H2-type. Our results 

suggest a prominent role of Zn Finger TFs in the regulation of OsDREB1B. 
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Introduction 

Plants, being sessile organisms, have evolved several molecular 

mechanisms to respond to adverse environmental conditions and many 

transcription Factors (TFs) have been described as major regulators of 

abiotic stress responses in plants. Namely, the TFs belonging to the 

DREB1/CBF sub-family are known to play a prominent role in the stress 

signalling pathways in several species (Jaglo-Ottosen et al., 1998; 

Dubouzet et al., 2003; Ito et al., 2006; Shan et al., 2007; Zhang et al., 2010; 

Medina et al., 2011). Nevertheless, and despite the fact that many genes 

down-stream of DREB1/CBFs have been reported, the TFs that regulate 

DREB1/CBFs gene expression are mostly unknown. In Arabidopsis ICE1, 

MYB15, CAMTA3, PIF7, CCA1 and LHY were described as TFs regulating 

the expression of the DREB1/CBFs through binding to their promoters 

(Chinnusamy et al., 2003; Agarwal et al., 2006; Doherty et al., 2009; 

Kidokoro et al., 2009; Dong et al., 2011), but no such regulators have been 

identified in other plants. In rice, only MYBS3 was proposed as a regulator 

of OsDREBs (Su et al., 2010), but it is unknown whether this TF actually 

binds to the their promoter regions. 

There is much interplay in the stress signalling pathways, namely between 

different families of TFs. One group of TFs that has been described as 

interplaying with DREB1/CBFs, and having a major role in abiotic stress 

signalling, is the Zn Finger group. Among the different families of Zn Finger 

TFs, the C2H2-type were described as involved in several stress signalling 

pathways (Sakamoto et al., 2004; Mittler et al., 2006; Huang et al., 2007; 

Xu et al., 2008). These TFs, also referred to as TFIIIA-type finger, are 

characterized by two Cys and two His residues that bind to a zinc ion (Pabo 

et al., 2001). Among the members of this class, ZAT12 was described, 

together with DREB1C/CBF2, as a negative regulator of the DREB1/CBF 

regulon in Arabidopsis (Vogel et al., 2005), while the gene expression of 
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STZ/ZAT10 was shown to be dependent on DREB1A/CBF3 (Maruyama et 

al., 2004). C2H2-type TFs are therefore signalling components that can be 

located either up- or down-stream of the DREB1/CBF genes. Another 

family of Zn Finger TFs that has been implicated in abiotic stress signalling 

is the Zn Finger Homeodomain (ZF-HD) proteins. These TFs are 

characterized by the presence of Zn Finger-like motifs up-stream of a 

Homeodomain (Windhovel et al., 2001) and have been described as 

activators of EARLY RESPONSIVE TO DEHYDRATION (ERD) gene 

expression, when over-expressed together with NAC transcription factors in 

Arabidopsis (Tran et al., 2006). Nevertheless, there are no reports on the 

role of these TFs in the responses to abiotic stress in rice. 

In Chapter 2, we used the Yeast One-Hybrid (Y1H) system to identify TFs 

that bind to the promoter of the rice gene OsDREB1B. This gene had been 

previously described as highly induced by different stress conditions and as 

playing a role in both biotic and abiotic stress signalling in rice (Dubouzet et 

al., 2003a; Ito et al., 2006; Gutha and Reddy, 2008). Our Y1H strategy 

allowed the identification of seven Zn Finger TFs, three C2H2-type and four 

ZF-HD, and of a bHLH TFs, as binding to the promoter of OsDREB1B. In 

this chapter, the functional characterization of the Zn Finger TFs will be 

discussed. We observed that the genes coding for these TFs are regulated 

by different abiotic stress conditions. Moreover, all these TFs function as 

transcription repressors and only the ZF-HD can form homo- and/or hetero-

dimers. We report for the first time a direct regulation of a DREB1/CBF 

gene by Zn Finger TFs.  
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Materials and methods 

Plant materials and treatments 

Rice seedlings (Oryza sativa L. cv. Nipponbare) were grown 

hydroponically in rice growth medium (Yoshida et al. 1976) at 28ºC, 

700µmol fotons.m-2.s-1, 70% humidity and 12h/12h photoperiod for 14 days. 

Treatments were performed as described in Chapter 2. Ten plants were 

sampled per each time point, and roots and shoots were harvested 

separately. 

 

Semi-quantitative RT-PCR 

Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen). First 

strand cDNA was synthesized from 1µg total RNA, using an oligo-dT primer 

and the SuperscriptII reverse transcriptase (Invitrogen), following the 

manufacturer's instructions. The cDNA was then amplified by PCR using 

gene-specific primers (Supplemental Table 1). ACTIN1 (Os03g50885) was 

used as an internal control for all experiments, except for shoots in the 

drought assay and roots at 10ºC, where EUKARYOTIC ELONGATION 

FACTOR 1-α (eELF1α; Os03g08060) and UBIQUITIN-CONJUGATING 

ENZYME E2 (UBC2; Os02g42314) were used, respectively. The results 

shown are representative of at least two biological replicates. 

 

Transactivation assay 

The reporter plasmids were built using the pCAMBIA1391z promoter-

cloning vector backbone, where the kanamycin plant resistance gene, 

down-stream of the full CaMV35S promoter, was removed using XhoI and 

replaced by the Luciferase gene, excised from plasmid pGL3-basic 

(Promega) with XhoI and SalI. The minimal CaMV35S promoter (-90 to 

+8bp) was cloned up-stream of the GUS gene as a SmaI-EcoRI fragment. 

This plasmid was confirmed by restriction analysis and sequencing, and 
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named pLUCm35GUS. The OsDREB1B promoter fragments used in the 

Y1H screening in Chapter 2 were cloned in the pLUCm35GUS reporter 

vector, using the restriction sites SalI and PstI. Effector plasmids were 

constructed by cloning the coding region of the TFs in pDONR221 

(Invitrogen), according to the manufacturer’s instructions, to obtain the 

vector pENTR-TF. The sequences were then recombined into plasmid 

pH7WG2 (VIB, Ghent), to be under the control of the full CaMV35S 

promoter. 

Arabidopsis protoplasts were prepared as previously described (Anthony 

et al., 2004). For each independent transformation, 5μg of reporter plasmid 

and 10µg of effector plasmid were used. Each transformation was 

performed in triplicate. Cells were incubated for 24h at 22ºC in the dark and 

then collected at 450g for 1min in a swing-out rotor. Cell lysis was 

performed by ressuspension in 150µL 100mM K2PO4 (from a 1M pH7.8 

stock solution), 1mM EDTA (from a 0.5M pH8 stock solution), 7mM 2-

mercaptoethanol, 1% Triton X-100 and 10% glycerol, followed  by two 

freeze-thaw cycles. The lysate was then cleared by centrifugation 2min at 

17000g. For the GUS quantification assay, 0.5µL 50mM MUG (4-

methylumbelliferyl-β-D-glucuronide) were added to 20µL of the lysate (in 

triplicate). Reactions were carried at 37ºC in the dark for 1h and stopped 

with 180µL 200mM Na2CO3. Fluorescence was detected using a 

spectrofluorimeter (Fluoromax-4 with Micromax plate reader, Horiba) with 

excitation at 365nm, emission at 455nm and a slit of 1.5nm. Readings were 

performed in triplicate. Luciferase levels were determined by adding 150µL 

LUC reagent (20mM Tricine pH7.8, 5mM MgCl2, 0.1mM EDTA, 3.3mM 

DTT and 2mM ATP) to 20µL of the cell lysate. Seventy five microliters of 

1.5mM luciferin were added to each sample and light intensity was read for 

10s in a luminometer (Modulus Microplate, Turner Biosystems). Readings 
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were performed in triplicate. Activation of gene expression was calculated 

as a GUS/LUC ratio. 

 

Yeast Two-Hybrid 

The full coding sequences of the TFs under study were cloned into vector 

pAD-WT (Stratagene), by replacement of the coding region of the wild-type 

lambda cI (fragment C) down-stream of the GAL4 activation domain, using 

the enzymes EcoRI and PstI. Cloning of the TFs to be in fusion with the 

GAL4 binding domain was performed by recombining their coding 

sequences from vector pENTR-TF (see above) into vector pBD-GW. This 

vector was obtained by cloning a Gateway (GW) cassette into plasmid 

pBD-GAL4 Cam (Stratagene).   

The pAD and pBD plasmids were transformed into yeast strain YRG2 

(Stratagene), as described (Ouwerkerk and Meijer, 2001). Yeast colonies 

were plated on CM-Leu-Trp-His media and growing colonies were 

confirmed by PCR. The vectors pAD-WT and pBD-WT (Stratagene) were 

used as positive control. 

 

Bimolecular Fluorescence Complementation 

The regions coding for the TFs in analysis were recombined from plasmid 

pENTR-TF (see above) into vectors YFPC43 and YFPN43, to be in fusion 

with the N- and C-terminal portions of the Yellow Fluorescent Protein 

(YFP), respectively. Cloning was done according to Gateway technology 

(Invitrogen). To use as negative control in the interaction assays with the 

TFs, the Arabidopsis SNF1 KINASE HOMOLOG 10 (Akin10) was tested in 

fusion with the N-terminal portion of the YFP. 

Transformation of Arabidopsis protoplasts was performed as described 

for the transactivation assay. For each transformation 3µg of each plasmid 
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were used. The protoplasts were incubated overnight in the dark at 22ºC 

and observed under a fluorescence microscope (Leica DMRA2). 

 

 

Results 

The genes encoding the Zn Finger TFs identified are differentially regulated 

under abiotic stress 

In Chapter 2 we reported the identification of seven Zn Finger TFs, as 

binding to the promoter of OsDREB1B. Among them, there are four ZF-HD 

TFs and three C2H2-type TFs. To understand whether the seven Zn 

Fingers identified have a role in the plant response to abiotic stress 

conditions, we have analyzed their gene expression in rice seedlings 

subjected to cold (5ºC and 10ºC), high salinity (200mM NaCl), ABA 

(100μM) and drought. We observed that all genes under analysis showed a 

constitutive basal expression in both roots and shoots, and the mock 

control revealed that some genes undergo a circadian rhythm regulation 

(Fig. 1). This is most striking for genes OsZHD2 and ZOS3-12 in roots and 

ZOS11-10 in roots and shoots.  

Regarding the four ZF-HD genes, their expression in shoots was not 

significantly or consistently altered throughout most treatments. There were 

however some exceptions, such as the induction of both OsZHD4 at 5ºC 

and OsZHD8 by high salinity and drought. We also observed a repression 

of OsZHD2 and OsZHD4 2h after onset of drought and of OsZHD8 10min 

after the start of the ABA treatment. Nevertheless, for most stress assays, 

the changes in ZF-HD gene expression in shoots were not significant. The 

same does not apply however to root transcription profiles. The transcript 

level of OsZHD1 in roots seemed to be transiently induced by cold (only at 

5ºC) and by drought. The expression of gene OsZHD2, on the contrary, 

was induced by all stress conditions, even if only for a short period, 
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Figure 1. Transcriptional profile of the TFs identified as binding to the promoter of 
OsDREB1B. 
The transcriptional profile was obtained by semi-quantitative RT-PCR for plants 
subjected to cold (5º and 10ºC), ABA (100μM), NaCl (200mM) and drought, and 
mock control. All treatments started 4h after dawn (time 0). Genes used as internal 
controls for each assay are described in the Material and Methods section. 
(continued on the next page). 

 

 

f

followed by a return to basal levels. OsZHD4 was mainly induced by ABA, 

but also by NaCl and drought to a lesser extent. OsZHD8 showed an 

increase in expression under several stress conditions – cold, ABA and 

drought, with a return to basal levels at the latter stages of the treatments.  
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Concerning the C2H2-type Zn Finger TFs, the three genes showed very 

distinct expression patterns. The ZOS3-12 transcript level was rapidly and 

highly up-regulated in response to all the stress conditions tested, both in 

roots and in shoots (except for ABA in roots). The transient induction of this 

transcript after 10min in the mock control suggests a response to 

mechanical stress, as observed for OsDREB1B (see Chapter 2). Therefore, 

the rapid induction (10-20min) upon 10ºC and ABA might be biased. 

Interestingly, and similarly to OsDREB1B, the ZOS3-12 transcript level is 

more rapidly induced at 10ºC than at 5ºC. The ZOS11-10 gene expression 

 
Figure 1. (continued) 

 

 



Seven Zinc Finger TFs in rice are novel regulators of OsDREB1B 

 

 

84 

 

seemed to be particularly induced under cold in both shoots and roots. The 

induction occurs later in the roots, but with higher transcript accumulation. 

ZOS11-10 was slightly induced under salt (roots) and drought (roots and 

shoots), but this regulation might be biased by the circadian rhythm 

observed in the mock control. In roots, this gene was down-regulated in 

response to ABA treatment. Regarding ZOS12-7, it was late (5-10h) and 

transiently induced in shoots by ABA and in roots it was induced at 10ºC 

(after 10h of treatment).  

 

The Zn Finger TFs binding to the OsDREB1B promoter have repressor 

activity 

In order to determine whether the TFs identified as binding to the 

promoter of OsDREB1B were repressors or activators of gene expression, 

we have performed transactivation assays in Arabidopsis protoplasts. The 

constructs used for this assay can be found in Fig. 2a. We have used 

different reporter vectors in which the GUS gene is under the control of the 

minimal CaMV35S promoter plus the respective OsDREB1B promoter 

fragment that was used in the Y1H screening described in Chapter 2. Using 

this strategy, this assay also allowed us to validate the interactions of the 

TFs with the promoter fragments of OsDREB1B.  

Regarding the C2H2-type TFs, ZOS3-12 had a predicted transcriptional 

repressor DLN-box/EAR-motif domain (Ohta et al., 2001), but for ZOS11-10 

or ZOS12-7 no trans-acting domains could be predicted (see Chapter 2). 

Nevertheless, in Arabidopsis, C2H2-type TFs were shown to repress 

transcription through a A(G/C)T-X3-4-A(G/C)T cis-element (Sakamoto et al., 

2004), which is present in both OsDREB1B promoter fragments used in the 

Y1H screening to identify ZOS11-10 or ZOS12-7. As for the ZF-HD TFs, no 

predicted repressor or activator domains, that we could identify, were 

present in any of these proteins. Our results indicated that, in the conditions 
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Figure 2. Transactivation activity of the TFs identified as binding to the OsDREB1B 

promoter. 

(a) Constructs used for Arabidopsis protoplast transformation. Effector constructs 

used correspond to the TF coding region under the control of the full CaMV35S 

promoter. Reporter constructs contain the GUS gene driven by the minimal 

CaMV35S promoter (m35S) plus the fragment of the OsDREB1B promoter 

(promOsDREB1B) used as bait in the Y1H screening. The LUC gene under the 

control of the full 35S promoter was used to normalize GUS expression levels.  

(b) Transactivation or repression analysis as a GUS/LUC activity ratio. Each plot 

refers to a specific OsDREB1B promoter fragment, as used for the Y1H screening in 

Chapter 2, which is highlighted in the schemes on top right corners. Values shown 

are multiples of the GUS/LUC ratio obtained with the reporter vector without 

effector. Data represents mean +/- SD (n=3). Differences are statistically significant 

(t-test, p<0,05). 
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tested, all the seven TFs are repressors of gene expression (Fig. 2b). The 

repressor activity, measured as a GUS/LUC ratio, ranges from 20% for 

ZOS3-12 to almost 80% for ZOS11-10, which was the strongest repressor. 

All the other TFs had intermediate activities, in the range of 40-60% of the 

initial GUS/LUC ratio. Curiously, the only Zn finger having a canonical 

repressor domain (ZOS3-12) showed the lowest repressor activity.  

 

The Zn Finger-HD, but not the C2H2-type, TFs form homo- and hetero-

dimers 

To test whether the TFs under study would form homo- or hetero-dimers, 

and also to verify if they would interact with one another, we have 

performed a direct Yeast Two-Hybrid (Y2H) assay. Each TF was tested for 

interactions with itself and with each of the other six TFs under study. As 

shown in Fig. 3, we could only detect interactions for the ZF-HD TFs, and 

not for any of the C2H2-type TFs under study. The only TFs that were 

shown to homo-dimerize in this assay were OsZHD1 and OsZHD4. These 

two proteins also interacted in yeast with all the other ZF-HD TFs under 

study, whereas OsZHD2 and OsZHD8 only interacted with OsZHD1 and 

with OsZHD4, but not with each other.  

In order to confirm these interactions, we performed a BiFC assay with the 

TFs that yielded positive results for the Y2H (Fig. 4). Using this system we 

were able to validate all the interactions previously observed. In all cases, 

the fluorescence signal was clearly localized, most likely in the nucleus of 

the cell. For some of the interactions several spots of fluorescence could be 

seen, in what could be nuclear bodies.  
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Discussion 

In Chapter 2 we reported the identification of novel TFs binding to the 

promoter of OsDREB1B. This gene had been previously described as 

playing an important role in abiotic stress responses in rice (Dubouzet et 

al., 2003; Ito et al., 2006; Gutha and Reddy, 2008), but there were no 

reports on the TFs regulating its expression. We identified eight TFs as 

novel regulators of OsDREB1B and in this chapter we reported the 

molecular characterization of seven of them: three C2H2-type Zn Finger 

TFs and four ZF-HD TFs. In Chapter 4 the characterization of the other TF 

identified, a bHLH TF, will be addressed.  

Figure 3. Direct Yeast Two-Hybrid assay to test interactions between the Zn 

Finger TFs. 

TFs were cloned in fusion with both the GAL4-AD and GAL4-BD and all the 

plasmid combinations were transformed into the yeast strain YRG2. Left panel: 

yeast growth on -His-Leu-Trp selection medium. Right panel: yeast growth on 

+His-Leu-Trp selection medium. Positive control used was the interaction of pAD-

WT and pBD-WT. Selection medium for the interactions of pAD-ZOS3-12 and 

pAD-ZOS11-10 was supplemented with 5mM 3-AT, whereas for pAD-OsZHD2 

10mM 3-AT was used. 
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The gene expression of ZF-HD and C2H2-type TFs has been already 

described as regulated by abiotic stress conditions in Arabidopsis 

(Sakamoto et al., 2004; Tan and Irish, 2006) and in rice (Agarwal et al., 

2007; Jain et al., 2008). In our gene expression assays (Fig. 1), we could 

identify genes whose expression was highly altered by all stresses applied 

(such as ZOS3-12), others that did not show significant variations (such as 

 

 

 

 

 

 

 

 

Figure 4. BiFC assay to confirm 

interactions between the Zn 

Finger-HD TFs.  

On the top panel is the interaction 

of OsZHD1 with itself and with 

the other three ZF-HD TFs that 

bind to the OsDREB1B promoter. 

On the middle panel is the 

interaction of OsZHD4 with itself 

and other two Zn Finger-HD TFs. 

Negative control used was the 

interaction of the TFs of interest 

with the Arabidopsis Akin10, in 

fusion with N-terminal portion of 

YFP as well as the absence of 

homodimerization between 

OsZHD2 (bottom panel). 
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OsZHD1), and others that responded specifically to one particular type of 

stress (such as ZOS12-7, both in shoots and roots). Again, similarly to what 

we described in Chapter 2 for OsDREB1B, for some of the genes analyzed 

here we observed major differences between their expression patterns in 

roots and shoots, indicating that stress responses are tissue-specific. In 

Arabidopsis it has been observed that several genes are differentially 

regulated in shoots and roots in response to several abiotic stress 

conditions (Kreps et al., 2002; Kilian et al., 2007). The fact that the 

expression of genes encoding regulators of OsDREB1B is modulated by 

these many environmental conditions is indicative of the cross-talk between 

different stress signalling pathways, where OsDREB1B seems to play an 

important role. 

Interestingly, the faster induction of OsDREB1B gene expression at 10ºC, 

as compared to 5ºC, which we described in Chapter 2, was also observed 

for ZOS3-12 and ZOS11-10 (Fig, 1). This may be due to the fact that 5ºC is 

a very severe stress for rice plants. When subjected to such severe 

conditions, rice plants are most likely biochemically impaired, resulting in a 

delay in molecular responses. In our lab, this response has also been 

observed for other rice genes (Serra et al., unpublished results).  

Microarray data was already available on the expression profiles of rice 

ZF-HD TFs under abiotic stress conditions (Jain et al., 2008). These 

authors observed an up-regulation of OsZHD1 in drought and of OsZHD4 

in cold, which correlates with our data. Regarding the C2H2-type TFs, our 

gene expression data for ZOS3-12, indicating an induction by several types 

of stress, also correlates with previous microarray data that report its up-

regulation by cold, salt and drought (Agarwal et al., 2007). In that study, the 

authors have also observed an induction of ZOS11-10 by cold, similarly to 

what we have observed both in roots and shoots. The fact that a time 

course up to 24h was analyzed here, instead of single time-point, as 
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performed by Jain et al. (2008) and Agarwal et al. (2007), may explain why 

some gene expression responses described here were not observed in 

those studies. 

In our transactivation assay in Arabidopsis protoplasts, the TFs identified 

as binding to the promoter of OsDREB1B all functioned as transcription 

repressors. Among previously described ZF-HD TFs, the Arabidopsis 

ZHD11/ATHB29/ZFHD1 was described as having transcriptional activation 

activity, while all the other ZF-HD TFs in this plant did not show such 

activity (Tan and Irish, 2006; Tran et al., 2006). It was not determined 

however if those TFs would work to repress transcription. Interestingly, the 

members of this family have been proposed to be redundant in Arabidopsis 

(Tan and Irish, 2006), which may explain the fact that the ZF-HD we 

identified in rice as regulators of OsDREB1B all act in the same way, to 

repress its transcription. Regarding the C2H2-type TFs, different members 

of this family had already been described as transcriptional repressors 

under several abiotic stress conditions, including cold, in Arabidopsis 

(Sakamoto et al., 2004). Moreover, a cis-element present in the 

OsDREB1B promoter fragments used in the Y1H screening (see Chapter 

2) was described as a binding site for C2H2 TFs and as a negative 

regulator of transcription (Sakamoto et al., 2004), which correlates with our 

findings. Nevertheless, other C2H2-type TFs involved in abiotic stress 

conditions have also been described as transcriptional activators (Huang et 

al., 2009; Sun et al., 2010). 

 The identification of seven transcriptional repressors binding to the 

promoter of OsDREB1B¸ a gene known to be highly induced by cold 

(Dubouzet et al., 2003), lead to the question of why no TFs that promote 

transcription were identified. Our hypothesis is the following: when rice 

seedlings are subjected to 10ºC, the OsDREB1B gene expression is 

quickly induced, reaches a peak at 2h and then starts to decrease (see 



Chapter 3 

 

 

91 

 

Chapter 2). In addition, the cold-induced cDNA expression library used for 

the Y1H screening was prepared from plants subjected to 8ºC and 

collected 2h, 5h and 24h after the start of the stress (see Materials and 

Methods in Chapter 2). Thus, if at 8ºC the regulation of OsDREB1B gene 

expression is similar to what happens at 10ºC, it is expected that after 2h at 

8ºC, the cDNA library will be enriched in OsDREB1B repressors rather than 

activators. 

We also tested whether the Zn Finger TFs we have identified interact with 

themselves and one-another. We have only observed interactions between 

the ZF-HD TFs. The C2H2-type TFs did not interact with one-another, nor 

with the ZF-HD TFs, in yeast. Homo- and hetero-dimers had already been 

described for ZF-HD TFs in Arabidopsis (Tan and Irish, 2006) and in 

Flaveria (Windhovel et al., 2001), meaning that this feature is conserved in 

several species for this type of TFs. It is possible that hetero-dimerization 

plays a role in regulating the binding of the TFs to DNA and also in their 

transactivation activity. The heterodimerization of two Homeodomain 

proteins from the mushroom Coprinus cinereus was shown to be necessary 

for their function as transcriptional regulators, namely in what concerns 

their targeting to the cell nucleus (Spit et al., 1998). Moreover, homo- and 

hetero-dimers of  two homeodomain proteins, Alx4 and Gcs, were 

described as having different DNA-binding specificities, as well as 

transactivation activities (Tucker and Wisdom, 1999). Nevertheless, the 

functional significance of ZF-HD homo- and hetero-dimers is yet to be 

analyzed. 

 With this work we described seven novel players in the abiotic stress 

signalling pathway. These novel TFs bind to the promoter and repress the 

expression of OsDREB1B and are regulated by several abiotic stresses. 

Together with previous reports, our data suggests that Zn Finger TFs are a 

pivotal component in the regulation of DREB1/CBF genes in plants. 
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Supplemental Materials 

 

Supplemental Table 1 – Primers used for semi-quantitative RT-PCR  

Gene Primer Sequence    5’-3’ 

OsZHD1 
CAGCAGTTCTGTGACGAGGT 

TAGAGCCGAGAACGAATGCT 

OsZHD2 
GGATGCACAACAACAAGCAC 

AGAACCCAACCACAATGGAA 

OsZHD4 
AGCCATTGTTGCTGTGTCTG 

CCCATTGTTACCCACATGCT 

OsZHD8 
CTGAGCCTGGTGCCCTAC 

ACGGACGACGGGAGGAAG 

ZOS3-12 
AGGAGGAGGAGGTGCAGAGT 

TTGAGCAGATTGAGTACATTAATTTTT 

ZOS11-10 
GGTGAGTCGTAATGGCACAA 

TGAACATTACAAAATCAAAGACGAA 

ZOS12-7 
GTGGTGTGTCACGAGCAATC 

GCATGCAACATGGAAATCAG 

ACTIN1 
GTCGCACTTCATGATGGAGTTG 

CATGCTATCCCTCATCTCGAC 

eEF1α 
ACCCTCCTCTTGGTCGTTTT 

AAATACCCGCATTCCACAAC 

UBC2 
CAAAATTTTCCACCCGAATG 

ATCACATGAATCAGCCATGC 
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Abstract 

Plants have evolved several molecular mechanisms in order to cope with 

adverse environmental conditions. DREB1/CBF genes, which encode 

members of the AP2/EREBP transcription factor (TF) family, are rapidly 

and transiently induced by low temperatures and have been described as 

major regulators of cold-stress responses. In Chapter 2, we identified 

OsPIF4, a putative Phytochrome Interacting bHLH Factor, as a TF that 

binds to the OsDREB1B promoter. Here we present the molecular 

characterization of this TF, regarding its involvement in abiotic stress, but 

also in light signalling. The OsPIF4 transcript is repressed by different 

treatments, such as drought, salt, cold and ABA. Under cold stress, the 

OsPIF4 transcript also undergoes alternative splicing, leading to the 

formation of a premature stop codon. Using a transactivation assay, we 

showed that OsPIF4 is a repressor of OsDREB1B gene expression. The 

activity of OsPIF4 may be negatively modulated by light, as it preferably 

binds to the Pfr active form of rice phytochrome B. Additionally, its 

abundance is reduced by light during the day of a diurnal light/dark cycle, 

compared to plants retained in prolonged darkness during the 

corresponding subjective day period. Concomitantly, OsDREB1B transcript 

levels are up-regulated by this daylight treatment, compared to darkness, 

during the subjective day. The data suggest that OsphyB may target the 

OsPIF4 protein for degradation or sequestration during the daylight period. 

These findings provide the first indication that OsPIF4 may be a link 

between light signalling and the OsDREB1 regulon in rice and suggest that 

light and cold-temperature signalling pathways converge on the rice gene 

OsDREB1B.  
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Introduction 

Plant growth and development are extremely influenced by environmental 

conditions. Abiotic stresses such as cold, drought and salinity are 

responsible for major losses in crop yield worldwide. In response to these 

environmental factors, plants have evolved mechanisms in order to cope 

with extreme conditions, like the production of osmoprotectants and 

regulatory proteins involved in signalling pathways (Saibo et al., 2009; 

Hirayama and Shinozaki, 2010). Among these proteins, TFs play a very 

important role in the response to these stresses, since they can regulate 

the expression of many genes by binding to specific cis-acting elements in 

the promoter regions. A single TF can therefore have a major effect in the 

response to a specific stimulus.  

The DREB1/CBF TFs belong to the AP2/ERF family and have been 

described as being quickly and transiently induced by low temperatures 

(Gilmour et al., 1998; Liu et al., 1998; Medina et al., 1999; Dubouzet et al., 

2003). When present in the cell nucleus, DREB1/CBF proteins bind to a 

conserved cis-motif, the Dehydration-Responsive Element/C-Repeat 

(DRE/CRT), present in the promoter region of stress-inducible genes, thus 

regulating their transcription (Gilmour et al., 1998; Liu et al., 1998). Our 

work focuses on the gene OsDREB1B, that was initially described as highly 

and specifically induced in response to cold (Dubouzet et al., 2003). More 

recently, this gene has been shown to respond to osmotic and oxidative 

stress as well as to ABA and salicylic acid (Gutha and Reddy, 2008). Gutha 

and Reddy (2008) also observed that this TF plays an important role in the 

response to biotic stress. 

 Temperature and light signalling have been previously described to 

cross-talk (Franklin, 2009), and phytochrome signalling in particular was 

described as a regulator of DREB1/CBF expression in Arabidopsis (Kim et 

al., 2002; Franklin and Whitelam, 2007; Kidokoro et al., 2009). 
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Phytochromes are photosensitive chromoproteins that can reversibly 

interconvert between two different forms: the inactive red light (R) 

absorbing Pr and the active far-red light (FR) absorbing Pfr (Franklin and 

Quail, 2010). In Arabidopsis there are five genes that code for 

phytochromes (A-E), whereas in rice there are three members (A-C), which 

function as the only photoreceptors to perceive R and FR light (Takano et 

al., 2009). Upon activation by R, the Pfr active form of phytochromes 

migrates into the nucleus, where it interacts with a series of TFs, of the 

basic helix-loop-helix family (bHLH), referred to as Phytochrome Interacting 

Factors (PIFs; as reviewed by Franklin and Quail, 2010). This interaction 

usually results in a proteasome-dependent degradation of the PIFs and is a 

way to modulate the expression of genes regulated by these TFs. This 

regulatory mechanism was observed for example for PIF1 (Shen et al., 

2005), PIF3 (Al-Sady et al., 2006) and PIF5 (Shen et al., 2007), but in the 

case of the more recently identified PIF7, even though it co-localizes with 

phyB in nuclear speckles after a R pulse, this protein appears to be light-

stable (Leivar et al., 2008). A set of putative PIFs has been described in 

rice (Nakamura et al., 2007), but so far the interaction between these 

proteins and the rice phytochromes is yet to be shown, as well as their 

stability under light/dark conditions. 

The expression of DREB1/CBFs in Arabidopsis was described as being 

dependent on both the circadian clock and light signalling (Kim et al., 2002; 

Fowler et al., 2005; Franklin and Whitelam, 2007; Kidokoro et al., 2009; 

Dong et al., 2011). Phytochrome B was initially reported as a positive 

regulator of cold-stress signalling in response to light, particularly regarding 

the expression of DREB1/CBFs during cold stress (Kim et al., 2002). These 

results were further supported by the finding that PIF7, a negative regulator 

of phytochrome-mediated signalling (Leivar et al., 2008), is a transcriptional 

repressor of DREB1/CBF under circadian control (Kidokoro et al., 2009). 



OsPIF4 unveils a possible convergence of light and cold on OsDREB1B 

 

 

102 

 

On the other hand, Franklin and Whitelam (2007) reported that a low red to 

far-red ratio (R/FR) increased DREB1/CBF gene expression in a circadian 

clock-dependent manner.  

In Chapter 2 we reported the identification of a bHLH protein, predicted as 

a putative PIF, as binding to the promoter of OsDREB1B. We named this 

protein OsPIF4. In this chapter, we report that OsPIF4 transcript level is 

regulated by different abiotic stresses and that it is alternatively spliced 

under cold stress conditions. Moreover, we demonstrate that OsPIF4 can 

act as a repressor of OsDREB1B transcription. OsPIF4 is also shown to 

interact with the active form of rice phyB, suggesting a possible 

involvement in the light-dependent expression of OsDREB1B that we also 

observe. 

 

 

Materials and methods 

Plant materials treatments 

Rice seedlings (Oryza sativa, L. cv Nipponbare) were grown 

hydroponically in nutritive medium (Yoshida et al., 1976) at 28ºC, 700μmol 

fotons.m-2.s-1, 70% humidity and 12h/12h photoperiod for 14 days. 

Treatments were performed as described in Chapter 2. For semi-

quantitative RT-PCR analysis, time points consisting of ten plants were 

sampled (roots and shoots separately). For quantitative RT-PCR analysis, 

seedlings were grown in the conditions described above and two different 

assays were performed both at 28ºC and 5ºC. The first assay (light/dark) 

was performed using the above-mentioned conditions, while in the second 

(continuous dark), the lights were maintained switched off during the 24h of 

treatment. A time-point common to all assays was taken at the transition 

from dark to light. For the 28ºC assays, plants were transferred to pots with 

new nutritive medium 4h after the start of the light period (light/dark assay) 
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or four hours after start of subjective dawn (continuous dark assay). The 

same was done for the 5ºC assays but, in this case, the plants were 

transferred to pre-cooled nutritive medium. For all treatments an average of 

10 whole plants were harvested at each time-point. 

Arabidopsis thaliana ecotype Col-0 seeds were vernalized for 4 days at 

4ºC in the dark and then germinated at 22ºC on MS plates (MS basal salts, 

0.05% MES buffer, 1% sucrose, pH 5.7, 0.6% agar) in a 16h/8h 

photoperiod. For the cold treatment assay, 10-days-old seedlings were 

transferred to 5ºC 4h after the start of the light period, and kept there for 1h 

or 4h. Ten whole seedlings were collected at each time point. 

 

Semi-quantitative RT-PCR and RT-qPCR 

Total RNA from both rice and Arabidopsis was extracted using the 

RNeasy Plant Mini Kit (Qiagen). For semi-quantitative RT-PCR analysis, 

first strand cDNA was synthesised from 1μg total RNA, using an oligo-dT 

primer and the SuperscriptII reverse transcriptatse (Invitrogen) following the 

manufacturer's instructions. The cDNA was then amplified by PCR using 

gene-specific primers (Supplemental Table 1). For rice, ACTIN1 

(Os03g50885) was used as an internal control for all experiments, except 

for shoots in the drought assay and roots at 10ºC, where EUKARYOTIC 

ELONGATION FACTOR 1-α (eELF1α; Os03g08060) and UBIQUITIN-

CONJUGATING ENZYME E2 (UBC2; Os02g42314) were used, 

respectively. The results shown are representative of at least two biological 

replicates.  

For quantitative PCR analysis, RNA extraction was conducted as 

described above. First strand cDNA synthesis was performed using 2μg 

total RNA with an oligo-dT primer using Transcriptor High Fidelity cDNA 

Synthesis Kit (Roche), according to the manufacturer’s instructions. UBC2 

was used as internal control. Real-time PCR was done in a Lightcycler 
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480II (Roche), using Lightcycler 480 SYBR Green I Master mix (Roche). 

Besides a biological replicate, measurements were performed in triplicate 

for each time point and efficiency curves were prepared in duplicate. The 

sequences for the primers used for RT-qPCR can be found in 

Supplemental Table 2. 

 

Transactivation assay 

The OsPIF4 full coding sequence was cloned in vector pDONR221 

(Invitrogen), according to the manufacturer’s instructions. The effector 

plasmid was built by recombining OsPIF4 coding sequence from 

pDONR221 into vector pH7WG2 (VIB, Ghent), to be under the control of 

the full CaMV35S promoter. The reporter vector used was pLUCm35GUS, 

described in Chapter 3. The OsDREB1B promoter fragment used in the 

Yeast One-Hybrid screening to identify OsPIF4 (see Chapter 2) was cloned 

up-stream of the minimal CaMV35S promoter, as a SalI fragment.  

Arabidopsis protoplasts were prepared as described (Anthony et al., 

2004). For each independent transformation, 5μg of reporter plasmid and 

10μg of effector plasmid were used. Each transformation was performed in 

triplicate. Cells were incubated for 24h at 22ºC in the dark and then 

collected at 450g for 1min in a swing-out rotor. Cell lysis, luciferase and 

GUS determinations were performed as described in Chapter 3. Readings 

were performed in triplicate. Activation of gene expression was calculated 

as a GUS/LUC ratio. 

 

Yeast-two hybrid assay 

The full coding sequence of the OsPIF4 gene was cloned into vector pAD-

WT (Stratagene), by replacement of the coding region of the wild-type 

lambda cI, fragment C, down-stream of the GAL4 activation domain, using 

the enzymes EcoRI and PstI. The sequences coding for the C-terminal 
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non-photoactive regions of rice phytochromes A, B and C were cloned in 

vector pDONR221 (Invitrogen), according to the manufacturer’s 

instructions. The cDNA sequences that were used encoded a.a. 620-1129 

for OsPHYA, 654-1172 for OsPHYB and 620-1138 for OsPHYC. These 

sequences were then recombined into vector pBD-GW (see Chapter 3). 

Sense orientation and translational fusion between GAL4-BD and PHY 

encoding genes were confirmed by restriction digestion and sequencing, 

respectively. 

The bait and prey plasmids were transformed into yeast strain AH109 

(Stratagene), as described (Ouwerkerk and Meijer, 2001). Yeast colonies 

were plated on CM-Leu-Trp-His media and growing colonies were 

confirmed by PCR. 

 

Bimolecular Fluorescence Complementation 

The OsPIF4 coding region was recombined from pDONR221 into the 

vector YFPC43, to be in fusion with the N-terminal portion of the Yellow 

Fluorescent Protein (YFP). The non-photoactive C-terminal portions of the 

three rice phytochromes were cloned in vector YFPN43, to be in fusion with 

the C-terminal portion of the YFP. Cloning in YFNC43 and YFCN43 vectors 

was done according to Gateway technology (Invitrogen). To use as 

negative control in the interaction assays with OsPIF4, the Arabidopsis 

SNF1 kinase homolog 10 (Akin10) was tested in fusion with the N-terminal 

portion of the YFP. These plasmids, together with a construct harboring the 

silencing suppressor HcPro (Wydro et al., 2006), were transformed into 

Agrobacterium thumefaciens strain LBA4004. Agro-infiltration of tobacco 

leaves was performed as described by Wydro et al. (2006), with 

modifications. Briefly, Agrobacterium cultures harbouring the constructs 

were grown overnight in LB medium supplemented with 150μM 

acetosyringone. The bacteria were centrifuged and the pellets 
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ressuspended in 10mM MgCl2 150μM acetosyringone and incubated for 2h 

at RT. The Agrobacterium strains were diluted and combined to a 

maximum total OD600 of 0.5 (0.2 OD from each of the YFP reporter vectors 

and 0.1 OD from HcPro) to infiltrate Nicotiana benthamiana leaves. After 

incubation in the dark for 2 days, the abaxial epidermis of the leaves was 

detached after gluing on a microscope slide with medical adhesive 

(Hollister). The samples were observed with a confocal microscope (Leica 

SP5). 

 

In vitro co-immunoprecipitation assay 

The vectors for this assay were prepared as following: the OsPIF4:GAD 

was constructed by removing the Arabidopsis PIF7 coding region from 

plasmid PIF7:GAD (Leivar et al., 2008) and replacing it with the OsPIF4 

coding region, using NdeI and BamHI. Vectors for in vitro expression of the 

rice phytochromes were obtained by recombining their full coding 

sequences from pDONR221 into pDEST17 (Invitrogen). Control constructs 

GAD:PIF3 and GAD were previously described (Ni et al., 1998). 

Recombinant proteins were produced in vitro using the TNT Quick Coupled 

Transcription/Translation System (Promega) in the presence of 

[35S]Methionine. Preparation of bait and prey was performed as described 

by Khanna et al. (2004). Light treatments were performed by exposing the 

samples to 4min of R (660nm) or 4min of R followed by 4min of FR 

(750nm). Binding and washes were carried out as described (Khanna et al., 

2004), and samples run on 10% SDS-PAGE gels. Gels were dried and 

signals obtained using a STORM 860 PhosphorImager (Molecular 

Dynamics). 
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OsPIF4 antibody production and antibody inhibition assay 

The non-conserved peptide H2N-TPTPRAAARSDDVSSR-CONH2, 

spanning a.a. 112 to 127 of OsPIF4, was used as an antigen to raise a 

rabbit polyclonal antibody (Eurogentec). The synthetic peptide was coupled 

to keyhole limpet hemocyanin (KLH). The competition assay was 

performed by pre-incubation of anti-OsPIF4 antibody with the immunizing 

peptide (10μg peptide per μL of antibody) overnight at 4ºC in blocking 

solution.  

 

Protein extraction and Western blotting analysis 

Plant tissue samples (100mg) were ground in liquid nitrogen and mixed 

with 200µL protein extraction buffer (50mM TrisHCl pH8, 150mM NaCl, 

2mM EDTA pH8, 0.4% Triton X-100, 2xComplete protease inhibitor 

(Roche)). Samples were cleared at 17000g at 4ºC for 15min and quantified 

using Bradford’s method (Bio-Rad). Total protein extracts (100µg) were 

separated on a 12% SDS-PAGE gel and transferred to PVDF membranes 

(Amersham). After blocking for 1h in PBS-T 5% skim milk, the membrane 

was incubated with anti-OsPIF4 (1:2000) in blocking solution overnight at 

4ºC. Incubation with secondary antibody (anti-rabbit-HRP; Abm) diluted 

1:20000 in blocking solution was performed for 1h at RT. Detection was 

carried out with ECL Western Blot Analysis System and Hyperfilm ECL 

(Amersham). Loading control was performed with Ponceau S staining.   

 

 

Results 

OsPIF4 transcript is regulated by alternative splicing under cold stress 

In Chapter 2 we identified OsPIF4 as a TF that binds to the promoter of 

OsDREB1B. To understand how OsPIF4 influences the plant responses to 

cold, and whether it is also involved in the responses to other stresses, we 
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have investigated OsPIF4 gene expression under different abiotic stress 

conditions. Two week-old rice seedlings were subjected to cold (5ºC and 

10ºC), salt (200mM NaCl), drought and ABA (100µM) treatments over a 

period of 24h (Fig. 1).   

The gene expression studies showed that OsPIF4 transcript level slightly 

increases in shoots under control conditions during late afternoon and night 

period (5h and 10h in Fig. 1a, respectively), indicating a light/dark 

responsive behavior, as previously described (Nakamura et al., 2007). In 

rice seedlings subjected to different treatments, the OsPIF4 gene 

expression appeared to be repressed after 20min under salt and drought 

and 1h after ABA treatment. The transcript was then up-regulated some 

hours afterwards, except in shoots under drought and in ABA-treated roots.  

The transcriptional regulation of OsPIF4 under cold was unique in this set 

of stress assays, since an upper band appeared after 20 to 40min of cold, 

both in shoots and roots and at 5ºC and 10ºC. After cloning and 

sequencing, we found that the second band was an alternative splice form 

of the transcript (Fig. 1b). Under cold conditions, the alternative splicing of 

the OsPIF4 transcript leads to the retention of the first intron, and 

consequent formation of a premature stop codon. We named this splice 

form OsPIF4β, whereas the splice form under control conditions will be 

referred to as OsPIF4α. Interestingly, the gene expression pattern of both 

splice forms seems to be slightly different when rice seedlings were 

subjected to different temperatures (Fig. 1a). At 5ºC, transcripts of the β-

form started to be detected 40min after stress onset, increasing along the 

treatment, whereas the α-form started to decline after 1-2h. In seedlings 

subjected to 10ºC the transcript level of the β-form appeared 20min after 

stress onset, reaching a peak at 5h and declining to non-detectable levels 

afterwards. The α-form did not show significant alterations along the 10ºC 
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treatment. The expression pattern of both forms was similar in both roots 

and shoots.  

Given that PIF7 was described as a regulator of DREB1/CBF expression 

in Arabidopsis (Kidokoro et al., 2009), we wanted to know whether, under 

cold conditions, any of the Arabidopsis PIF transcripts would also undergo 

alternative splicing. Thus, 10-day-old Arabidopsis seedlings were subjected 

to 5ºC for 4h and the gene expression of PIF1, 3, 4, 5, 6 and 7 was 

analyzed by semi-quantitative RT-PCR, using intron-spanning primers (Fig. 

2). We identified alternative splice forms for PIF3, 6 and 7. The PIF6 splice 

 

Figure 1. Transcriptional profile of OsPIF4.  

(a) Analysis of OsPIF4 gene expression under different treatments as determined 

by semi-quantitative RT-PCR. Treatments started 4h after the beginning of the 

light period. All time-points correspond to the light period, except the 10h, which 

corresponds to 2h after the start of the dark period. 

(b) Schematic representation of the OsPIF4 transcript present under control 

conditions (top) and the alternative splice form that appears under cold stress 

(bottom). APB - Active Phytochrome Binding motif (dotted box); bHLH - basic 

Helix Loop Helix domain (oblique stripes). Thick arrows represent RT-PCR primer 

locations. Black boxes represent translated exons, white boxes represent non-

translated exons and lines represent introns.  
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forms observed had been previously reported (Penfield et al., 2010). For 

PIF3 and PIF7, the splicing events corresponded to the retention of introns 

in the vicinity of the bHLH coding region (Fig. 2b), leading to the formation 

of premature stop codons, similarly to what happens with OsPIF4. 

Nevertheless, none of these splicing events seems to be triggered by cold, 

since they are present even at 22ºC. 

 

OsPIF4 is a repressor of OsDREB1B 

To investigate whether OsPIF4 was a repressor or activator of 

transcription, we have performed a transactivation assay in Arabidopsis 

protoplasts. The full length OsPIF4 was used as effector, while the GUS 

gene driven by the OsDREB1B promoter fragment, used as bait in the Y1H 

screening (Chapter 2), was used as reporter (Fig. 3a). Fig. 3b shows that 

co-transformation of OsPIF4 with the reporter vector resulted in a 

statistically significant, albeit modest, decrease in GUS activity, as 

compared to the reporter vector alone. This decrease was not observed 

when the reporter did not contain the promoter fragment of OsDREB1B, 

indicating that the presence of this sequence is necessary for the binding of 

OsPIF4 and consequent repression of transcription. These results also 

provide further evidence that OsPIF4 indeed binds to the promoter of 

OsDREB1B.  

 

OsPIF4 interacts with the active form of OsphyB  

The interaction between rice phytochromes (A, B, and C) and putative 

PIFs had not yet been shown in rice. Thus, we have analyzed whether 

OsPIF4 interacted with any of the rice phytochromes. We performed a 

Yeast Two-Hybrid assay (Y2H), using as prey the coding region of OsPIF4, 

and as baits the C-terminal non-photoactive coding regions of the three rice 

phytochromes (Fig. 4a). From the yeast growth in His-lacking medium (Fig. 
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4b), our results indicated that OsPIF4 interacts with OsPHYB in a stronger 

manner than it does with OsPHYA or C. To further confirm these results, a 

Bimolecular Fluorescence Complementation assay   (BiFC) was also 

performed (Fig. 5). YFP fluorescence signals could be detected in the 

nucleus of Nicotiana benthamiana leaf cells co-infiltrated with the 

OsPIF4::YFPN and OsPHYB::YFPC fusion proteins (Fig. 5b). No 

fluorescence was detected when leaves were co-infiltrated with 

OsPIF4::YFPN plus either OsPHYA::YFPC or OsPHYC::YFPC. 

The Y2H and BiFC results support the hypothesis that OsPIF4 can bind to 

the C-terminal of OsPHYB. In order to test whether this binding was 

Figure 2. Expression pattern and alternative splice forms of the PIF genes in 
Arabidopsis seedlings subjected to low temperature conditions.  
(a) Analysis of the Arabidopsis PIF transcript levels by semi-quantitative RT-
PCR in cold-treated plants. Indication of bands corresponding to alternative 
splice forms for PIF3, PIF6 and PIF7 can be found on the right-hand side 
column.  
(b) Schematic representation of the different alternative splice forms identified 
for PIF3 and PIF7. APB - Active Phytochrome Binding motif (dotted box); bHLH - 
basic Helix Loop Helix domain (oblique stripes). Thick arrows represent RT-PCR 
primer locations. Black boxes represent translated exons, white boxes represent 
non-translated exons and lines represent introns. 
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dependent on the active or inactive form of the phytochrome, we have 

expressed OsPIF4 and the full length OsphyB proteins in vitro and 

analyzed their interaction using a co-immunoprecipitation assay (Fig. 6). As 

shown in Fig. 6b, OsPIF4 interacts preferably with the active Pfr form of 

OsphyB. Interestingly, OsphyB also interacts conformer-specifically with 

Arabidopsis PIF3. 

 

The expression of OsDREB1B is dependent on light conditions 

Given that OsPIF4 binds to the promoter of OsDREB1B to repress its 

transcription and that it binds preferably to the active form of OsphyB, we 

wanted to test whether the expression of OsDREB1B, under control or cold 

stress conditions, was influenced by light conditions. We therefore analyzed 

the expression of OsDREB1B in plants previously grown in control 

conditions (photoperiod 12h/12h and 28ºC) and then transferred or not to 

5ºC, under control photoperiod or in constant dark (Fig. 7). At 28ºC and in 

photoperiodic conditions, OsDREB1B showed an increased expression 

during the day time, reaching a peak 8h after the start of the light period, 

and then decreased during the night period (Fig. 7a). Interestingly, this 

cycling was attenuated when the plants were transferred to continuous 

dark, indicating a light regulation of this gene. At 5ºC, OsDREB1B 

expression was induced to a level of more than 100-fold greater than at 

28ºC, but no clear difference in expression between the two light treatments 

(photoperiod vs. continuous dark) was observed. However, after 24h of 

cold stress, we observed a more pronounced decrease in the expression of 

OsDREB1B in continuous dark conditions, as compared to normal 

photoperiod. We also analyzed the expression of both splice forms of 

OsPIF4 at 5ºC under both light and dark conditions, but no differences were 

found between them (data not shown). 
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The OsPIF4 protein level is stable under white light and not regulated by 

cold 

In order to test whether the abundance of the OsPIF4 protein is 

dependent on light conditions, and also if the expression of OsDREB1B 

correlates with OsPIF4 levels, we have raised an antibody against an 

OsPIF4 specific peptide. The immunoblot analysis detected a protein of a 

little less than 50kDa, which is the expected size for OsPIF4 (Fig. 7c). An 

antibody depletion assay was carried out to test the specificity of the 

antibody to OsPIF4, using the OsPIF4-specific peptide as competitor. In 

this case, the expected band could no longer be detected, indicating that it 

indeed corresponds to OsPIF4 (Fig. 7c).  

 

Figure 3. Transactivation activity of OsPIF4 in Arabidopsis protoplasts.  

(a) Constructs used for protoplast transformation. Effector construct used 

corresponds to the OsPIF4 coding region under the control of the full 35S 

promoter. Reporter constructs contain the GUS gene driven by the minimal 35S 

promoter (control vector) or under the minimal 35S promoter plus the fragment of 

the OsDREB1B promoter used as bait in the Y1H screening (Chapter 2). The LUC 

gene under the control of the full 35S promoter was used to normalize GUS 

expression levels. 

(b) Transactivation analysis of OsPIF4 as a GUS/LUC activity ratio. Data from a 

representative experiment is shown. Values shown are multiples of the GUS/LUC 

ratio obtained with the control vector without effector. Data represents mean +/- 

SD (N=3). * - Differences statistically significant (t-test, p<0,05).  
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The OsPIF4 protein levels were analyzed for the same time points and 

using the same assay design previously described for the RT-qPCR. Fig. 

7d shows that no major differences were detected between the 28ºC and 

5ºC assays. In addition, under the 12h/12h photoperiod, OsPIF4 levels did 

not show a significant fluctuation when the plants were exposed to white 

light (Fig. 7d, top panels). This indicates that OsPIF4 protein levels remain 

relatively stable during the light period of the diurnal day/night cycle. By 

contrast, however, there was an apparent accumulation of the protein 

during the subjective day of the prolonged darkness treatment (bottom 

panels), suggesting that OsPIF4 protein level is repressed by light during 

the day under normal diurnal conditions. Interestingly, after 24h of 

Figure 4. Analysis of the interaction between OsPIF4 and the three rice 

phytochromes, using a Yeast Two-Hybrid assay.  

(a) Protein constructs used in the Y2H assay. OsPIF4 was used as prey, in a 

translational fusion with GAD. The C-terminal non-photoactive regions of rice 

PHYA, B and C were fused with GBD to be used as baits.  

(b) Analysis of protein-protein interactions in yeast growing in His-lacking medium. 

Positive control used was the interaction between pAD-WT and pBD-WT, and 

negative control was the absence of interaction between GAD:OsPIF4 and pBD-

WT. Bottom panel shows yeast growth in His-supplemented medium. 
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continuous dark, at both 28ºC and 5ºC, the protein could no longer be 

detected.  

Given that OsPIF4 transcript is alternatively spliced in response to cold, it 

could be expected that the OsPIF4β form of the transcript would yield a 

truncated protein. This form would have a predicted molecular weight of 

29.59kDa. Nevertheless, in our immunoblot conditions, no band was 

detected in that size range for the samples subjected to the 5ºC assays. 

 

 

Discussion 

The DREB1 /CBF regulon has long been shown to play an important role 

in the cold stress response in plants. Furthermore, it had already been 

reported that, in Arabidopsis, DREB1/CBF genes are light regulated, their 

expression being dependent on light quality (Kim et al., 2002; Franklin and 

Whitelam, 2007). PIF7 was recently described as a possible link between 

light and cold signalling in Arabidopsis, since it binds to the promoter of 

DREB1C, and the pif7 null mutant was shown to have altered transcript 

levels of DREB1B and DREB1C (Kidokoro et al., 2009). In Chapter 2, using 

the Y1H system, we have identified OsPIF4 as a TF binding to the 

promoter of OsDREB1B and in this chapter we aimed to test its role in the 

regulation of OsDREB1B and possible involvement in the link between light 

and cold signalling in rice. Even though PIF7 was described as a regulator 

of DREB1C and DREB1B in Arabidopsis (Kidokoro et al., 2009), among the 

aligned APB motif sequences, OsPIF4 showed the highest similarity to 

PIF4 and PIF5, whereas PIF7 showed the least degree of similarity (see 

Chapter 2). 

OsPIF4 was shown to be regulated at the transcriptional level under 

several abiotic stress conditions. In response to salt, drought, and ABA 

treatments, the transcript levels are down-regulated within 20min to 1h and, 
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in most cases, the levels are recovered after a few hours (Fig. 1a). This 

suggests that OsPIF4 could have a potential role in rice responses to 

different abiotic stresses, through the regulation of OsDREB1B and/or 

possibly other down-stream genes. Phytochrome signalling has already 

been implicated in the response to salt stress in Mesembryanthemum 

crystallinum (Cockburn et al., 1996), to drought in tomato plants (Biehler et 

al., 1997), and to ABA metabolism in Nicotiana plumbaginifolia (Kraepiel et 

Figure 5. Analysis of the interaction between OsPIF4 and different rice 

phytochromes, using a BiFC system in detached tobacco leaf epidermis. 

(a) Protein constructs used for the assay. The C-terminal region of YFP was 

expressed in fusion with OsPIF4 and the N-terminal region of YFP was 

expressed in fusion with the C-terminal non-photoactive domains of the rice 

phytochromes.  

(b) YFP fluorescence obtained under 520nm emission for the interaction of 

OsPIF4 with OsPHYB, followed by chlorophyll fluorescence, bright field and 

overlay images of the agro-infiltrated N. benthamiana leaves. No YFP 

fluorescence was observed for the interactions between OsPIF4 and rice 

OsPHYA or C or for the negative control, in which a fusion of YFPN with 

Arabidopsis Akin10 was used.  
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al., 1994). Nevertheless, so far, in Arabidopsis and rice, there are no  

reports regarding a possible cross-talk between these pathways. 

In contrast to the above-mentioned treatments, the effect of phytochrome 

signalling in general, and of PIFs in particular, in the Arabidopsis responses 

to cold has been well described (Kim et al., 2002; Franklin and Whitelam, 

2007; Franklin, 2009; Kidokoro et al., 2009). In our work, we observed that 

low temperatures induced the formation of an alternative splice form of the 

OsPIF4 transcript (Fig. 1b). Interestingly, the expression patterns of both 

splice forms, α and β, was different when rice seedlings were subjected to 

5ºC or 10ºC (Fig. 1a). In response to a more severe stress (5ºC), the 

constitutive α–form seems to be replaced by the β–form along the 

treatment. When rice seedlings were subjected to a mild stress (10ºC), the 

 

Figure 6. Analysis of the interaction between OsPIF4 and the Pr and Pfr forms of 

OsphyB, using a co-immunoprecipitation assay. 

(a) Schematic representation of the protein constructs used for the assay. OsPIF4 

was used as bait, in a translational fusion with GAD. GAD alone was used as a 

negative control for the interaction, whereas a fusion of GAD with the Arabidopsis 

PIF3 was used as the positive control. The Pr and Pfr forms of OsphyB were used 

as prey.  

(b) SDS-PAGE separation of pellet fractions for each interaction and inputs for the 

proteins used in the assay. Data from a representative experiment is shown. 
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expression of the α–form is not significantly altered, whereas the β–form is 

only transiently expressed. These results indicate a differential response of 

OsPIF4 to low temperatures, depending on how severe the stress is. We 

also demonstrated that the Arabidopsis PIF3, 6 and 7 also show alternative 

splice forms (Fig. 2), similarly to what happens with OsPIF4. PIF6 had 

already been shown to have two alternative splice forms with different roles 

in Arabidopsis seed dormancy (Penfield et al., 2010). These results, 

together with ours, indicate that alternative splicing in PIFs may be a 

common mechanism for the regulation of PIF protein levels in the cells, in 

response to environmental conditions or certain developmental stages. We 

cannot rule out other putative splice forms for the genes tested, eventually 

not detected in our assays. It is yet to be shown whether these PIF 

alternative splice forms so far identified code for proteins that maintain the 

ability to bind phytochromes, since they have an intact APB domain. If so, 

this mechanism of regulation may be more than a simple way to modulate 

PIF protein levels, but also to regulate phytochrome signalling itself. The 

Arabidopsis PIF3 has been previously described to control hypocotyl cell 

elongation through its binding to phyB, modulating the abundance of this 

photoreceptor, independently of being able to bind DNA (Al-Sady et al., 

2008). PIF5 and PIF7 have also been reported to modulate phyB levels, in 

a process involving the proteasome pathway (Khanna et al., 2007; Leivar et 

al., 2008). This was further confirmed by the recent finding that PIF3, 4 and 

5 modulate phyB levels by enhancing its in vitro polyubiquitination by COP1 

(Jang et al., 2010). A question thus arises on whether the OsPIF4β 

transcript, that has a longer 3’UTR when compared to the α-form, is 

eliminated by nonsense-mediated mRNA decay (Kertesz et al., 2006) or 

results in a shorter, truncated protein. If the OsPIF4β transcript is translated 

into a functional protein, it is possible that it has a role in the regulation of 

phytochrome protein levels in rice, modulating the light signalling pathway, 
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Figure 7. Expression of OsDREB1B and OsPIF4 protein levels in rice seedlings 

subjected to control or cold treatments in different light regimes.  

(a) OsDREB1B gene expression pattern as determined by RT-qPCR in 14-day-

old rice seedlings grown at 28ºC, 12h/12h photoperiod and maintained in the 

same temperature conditions during the assay. The seedlings were exposed or 

not to a continuous dark period (black and grey lines, respectively). Black boxes 

represent dark period and white boxes represent light period. The expression of 

UBC2 was used as an internal control. Relative expression levels were 

normalized to expression at time zero. Data represents mean +/- SD (N=3). 

(b) Same as above but with plants subjected to a 5ºC treatment. 

(c) Depletion assay for the antibody raised against a OsPIF4 peptide. The left 

panel shows immunoblot performed with anti-OsPIF4 serum, while the panel on 

the right shows immunoblot performed with anti-OsPIF4 serum previously 

incubated with the antigen. Loading control is the total protein extract dyed with 

Ponceau S. 

(d) Immunoblot assay to analyze OsPIF4 protein levels in the same samples 

described above for qRT-PCR. The 28ºC assay is shown on the left and the 5ºC 

assay on the right. White boxes represent samples taken during the day time, and 

black boxes represent samples taken in dark conditions. 
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for example under cold conditions. In our immunoblot assays, using an 

antibody against OsPIF4, we could only detect a band corresponding to the 

OsPIF4α transcript form, even in the 5ºC assays (Fig. 7d). This may 

indicate that either OsPIF4β transcript is not translated into a protein or its 

protein level could not be detected in our assay. 

Since the OsPIF4 transcript level was down-regulated during cold, this 

raised the question of whether the OsPIF4 protein was an activator or 

repressor of OsDREB1B transcription. Our transactivation studies in 

Arabidopsis protoplasts showed an activation of the reporter gene even 

without the effector (35S::OsPIF4). This induction is most probably due to 

the fact that OsDREB1B promoter is stress-inducible, and the process of 

Arabidopsis protoplast preparation surely triggers a stress response. 

Nevertheless, OsPIF4 represses the expression of the reporter gene driven 

by the OsDREB1B promoter, reducing its induction. These results are in 

agreement with what was described for the Arabidopsis PIF7, which acts as 

a repressor of DREB1B/CBF1 and DREB1C/CBF2 (Kidokoro et al., 2009). 

On the other hand, it is interesting to note that several Arabidopsis PIFs, 

including PIF7, have been described as activators of transcription (Huq et 

al., 2004; Al-Sady et al., 2008; Leivar et al., 2008). This may indicate that 

transcriptional activity of these proteins depends on promoter context, as 

recently suggested (Leivar and Quail, 2010). 

In Arabidopsis, several PIFs have been shown to interact with the active 

forms of the phytochromes (Ni et al., 1998; Khanna et al., 2004; Shen et al., 

2007; Leivar et al., 2008). However, to the best of our knowledge, no 

reports have yet been published on the interaction between PIFs and 

phytochromes in rice. Our co-immunoprecipitation results showed that 

OsPIF4 preferably binds to the active form of OsphyB (Fig. 6). 

Nevertheless, the Y2H assay, performed using the C-terminal non-

photoactive forms of the rice phytochromes, also indicated that this terminal 
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portion of the phytochrome B appears to be sufficient for the binding (Fig. 

4b). Similar results had already been published for PIF3 in Arabidopsis (Ni 

et al., 1998; Zhu et al., 2000). Interestingly, the Y2H assays also showed 

that OsPIF4 could bind weakly to the C-terminal domains of the rice 

phytochromes A and C (Fig. 4b). However, we were not able to validate this 

interaction either by BiFC or co-immunoprecipitation assays. It is also 

interesting to note that the heterologous Arabidopsis PIF3 binds to OsphyB 

more efficiently than OsPIF4 does (Fig. 6b).  

Given that OsPIF4 can act as a repressor of OsDREB1B expression, and 

interacts preferably with the active form of OsphyB, we hypothesized that 

light could influence the expression of OsDREB1B. We found that this is 

indeed the case: the up-regulation of OsDREB1B expression that was 

observed in response to light during the normal diurnal cycle at 28ºC was 

attenuated in response to prolonged darkness during the corresponding 

subjective day period (Fig. 7a).  OsPIF4 protein levels rose concomitantly in 

darkness during this subjective day, but not in the light of the diurnal cycle, 

a correlation consistent with the possible action of OsPIF4 in repressing 

OsDREB1B expression in the dark. This repression of OsPIF4 

accumulation in the light might result from light-activated-phyB-induced 

degradation of OsPIF4, a suggestion supported by the Pfr specific binding 

of OsphyB to OsPIF4 demonstrated here. It may be that the increase in 

OsPIF4 protein levels during subjective day is somehow circadian-driven, 

being suppressed, under light conditions, by degradation of OsPIF4 

through interaction with photoactivated OsphyB. Alternatively, this 

interaction might result in the sequestration of OsPIF4 instead of targeting it 

for degradation. In Arabidopsis, PIF7 has also been described as light 

stable even though it interacts with the active form of phyB (Leivar et al., 

2008). It is possible, therefore, that OsPIF4 is functionally more similar to 

PIF7, even though its a.a. sequence is more similar to PIF4 and 5 (see 
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Chapter 2). Although the above suggestion that the light-dependent 

changes in OsDREB1B expression at 28ºC are mediated by phyB-

regulated OsPIF4 abundance is consistent with the data, this remains to be 

rigorously tested. The analysis of a rice OsPIF4 knock-out or silencing line 

will be crucial to test this hypothesis. 

When rice seedlings are subjected to low temperature (5ºC), the light 

effect on OsDREB1B gene expression is not as evident as it is in control 

conditions and is not correlated with OsPIF4 levels. In addition, the 

absolute level of induction is more than 100-fold greater than observed for 

light under diurnal conditions at 28ºC. This suggests that the mechanism of 

cold induction of this gene is different from that of light regulation. However, 

the decline in OsDREB1B transcript levels, after about 12h of cold stress, is 

somewhat faster for plants that were maintained in continuous dark. This 

indicates that light also plays a role controlling OsDREB1B gene 

expression under prolonged cold stress. Given that we could not detect the 

OsPIF4 protein after 24h of cold in continuous dark (Fig. 7d), the faster 

decrease (as compared to photoperiodic conditions) in OsDREB1B 

expression is likely to be due to other TFs. 

Our results, together with the results by Kidokoro et al. (2009), suggest 

that DREB1/CBF genes may be negatively regulated by PIFs both in rice 

and in Arabidopsis under normal diurnal conditions. These results correlate 

with what was shown by Kim et al. (2002), who reported a red light 

activation of DREB1/CBF gene expression through the C/DRE element in 

Arabidopsis, dependent on phyB. However, results by Franklin and 

Whitelam (2007) showed that at 16ºC, but not at 22ºC, phytochrome 

signalling negatively regulates expression of DREB1/CBF, as well as of 

their down-stream targets (COR genes). These findings put together 

suggest that the phyB-PIF-DREB1/CBF signalling pathway may be 

differentially regulated at different temperatures. In our work we have 
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shown that the OsPIF4 transcript is regulated by low temperature and, in 

addition, it has been reported that phyB protein levels are dependent on 

PIFs in Arabidopsis (Khanna et al., 2007; Leivar et al., 2008; Jang et al., 

2010). Thus, it may be that the regulation of PIFs by temperature has an 

effect in phytochrome levels, modulating their down-stream signalling at 

different temperatures.  

Overall our data provide evidence that both light and cold-temperature 

signalling pathways converge on the OsDREB1B regulon of rice, likely via 

different mechanisms. Fig. 8 shows a scheme of the proposed model for 

the regulatory network identified in our work. The action of OsPIF4 may be 

regulated through its preferential interaction with the red light active form of 

OsphyB, which in turn can target OsPIF4 for degradation or, alternatively, 

sequester it and abrogate its function (as repressor of OsDREB1B gene 

expression). It will be important to determine whether OsPIF4-OsphyB 

interaction prevents OsPIF4 from binding OsDREB1B promoter. The 

OsPIF4 activity regulating OsDREB1B may be also modulated through 

alternative splicing of OsPIF4 transcript. Moreover, we cannot rule out that 

other TFs repress the OsDREB1B expression, which under different light 

and temperature conditions is certainly regulated by additional TFs that are 

yet to be identified. 
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Figure 8. Proposed model for the regulation of OsDREB1B by OsPIF4 under 

light/dark and cold conditions.  

Top panels represent regulation under different light conditions at optimal growth 

temperature. During the day OsPIF4 interacts with the Pfr form of OsphyB, leading 

to its degradation or sequestration. Therefore, the expression of OsDREB1B is not 

repressed by OsPIF4 and other TFs activate its expression. During the night time, 

OsPIF4 does not interact with the Pr-form of OsphyB, and is available to repress 

the transcription of OsDREB1B. Bottom panel represents the regulation of 

OsDREB1B expression under low temperature conditions. In these conditions the 

OsPIF4 transcript is regulated by alternative splicing yielding OsPIF4α and β. The 

OsPIF4β transcript may be degraded or result in a truncated protein that does not 

have the bHLH domain, hence not being able to bind DNA. In this case, the 

transcription of OsDREB1B is highly induced through the action of other TF 

(activators) that are induced by low temperature. Thickness of the arrows reflects 

response intensity. 
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Supplemental Materials 

  

Supplemental Table 1 – Primers used for semi-quantitative RT-PCR 

Gene Primer Sequence    5’-3’ 

OsPIF4 
CAGCAGTTCTGTGACGAGGT 

TAGAGCCGAGAACGAATGCT 

PIF1 
GAGGCTGAGAGGGGATTTTA 

ATGAACTTCAGCAGCACGAG 

PIF3 
CCATCCGAAAGTCCTTCACT 

CTCGATGGCTTCATCTAGCA 

PIF4 
ACCGACCGTAAGAGAAAACG 

CCATCCACATCACTTGAAGC 

PIF5 
AGGTTTGACCTCAACCGATG 

GGGAAACATCATCGGACTTG 

PIF6 
CATGGATTTGTATGAGGCAGAG 

TCTGTTACCCATCGTCATCA 

PIF7 
CCAATATGTCTTGGGCGTCT 

GTGGCAAGTTGGCTCTTAGG 

ACTIN1 
GTCGCACTTCATGATGGAGTTG 

CATGCTATCCCTCATCTCGAC 

eEF1α 
ACCCTCCTCTTGGTCGTTTT 

AAATACCCGCATTCCACAAC 

UBC2 
CAAAATTTTCCACCCGAATG 

ATCACATGAATCAGCCATGC 
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Supplemental Table 2 – Primers used for quantitative RT-PCR 

Gene Primer Sequence    5’-3’ 

OsDREB1B 
CCAGAAATTGGGGGAAAAA 

GGAATCACAAAAGGAGGGAGA 

UBC2 
TTGCATTCTCTATTCCTGAGCA 

CAGGCAAATCTCACCTGTCTT 
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 In today’s world, with a fast-growing population, the demand for food, 

feed and fuel will substantially increase in the next few decades. 

Challenging these increasing needs, abiotic stress conditions account for 

massive losses in crop production worldwide, what results in reduced yield 

and higher prices. The development of novel crop varieties that are more 

tolerant to environmental stresses is therefore of paramount importance in 

the coming years. However, unlike improving resistance to biotic stress 

conditions, which is often dependent on a single gene, the tolerance to 

abiotic stresses is a multigenic trait. This makes plant improvement much 

more complex and time-consuming. Transcription Factors (TFs) have 

emerged as promising candidates for plant breeding, given that one TF 

alone can regulate the expression of many target genes. Nevertheless, our 

understanding of the transcriptional regulatory pathways is still scarce, 

especially in plants that are economically relevant. The main goal of the 

work presented here was to characterize the regulation of the rice gene 

coding for OsDREB1B, a protein belonging to the DREB1/CBF sub-family 

of TFs, described as key regulators of abiotic stress responses in plants. In 

order to identify TFs that bind to the promoter of OsDREB1B, we have used 

a Yeast One-Hybrid (Y1H) system to screen a cold-induced cDNA 

expression library.  Thereby, eight TFs were identified as binding to that 

promoter (Chapter 2). Among these TFs there were seven Zn Finger 

proteins and one bHLH TF, which was predicted as a putative rice 

Phytochrome Interacting Factor (OsPIF4). In chapters 3 and 4, the 

characterization of the TFs identified was addressed.  

Even though Zn Finger TFs had already been described as interplaying 

with DREB1/CBFs, our work is the first report on Zn Finger TFs as direct 

regulators of a DREB1/CBF gene. The identification of seven Zn Finger 

TFs as binding to the promoter of OsDREB1B suggests a prominent role of 

this type of TFs in the DREB1/CBF regulon in rice. It is also noteworthy that 

all these TFs identified as binding to the promoter of OsDREB1B are 
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repressors of gene expression. This might be due to the fact that the cDNA 

expression library, used for the Y1H screening, was prepared from plants 

stressed at 8ºC. As described in Chapter 2, we observed that at 10ºC the 

OsDREB1B transcript level reaches a peak at 1-2h after stress, declining 

after that. Since the cDNA library was prepared from rice seedlings 

collected after 2, 5 and 24h after the stress initiation, it should be enriched 

in TFs that are repressors of OsDREB1B transcription and not activators. 

For comparison, it would be interesting to screen a cold-induced cDNA 

expression library prepared from seedlings collected earlier during the cold 

stress, or even subjected to a harsher stress, such as 5ºC. This would 

probably allow the identification of TFs that activate the expression of 

OsDREB1B. Moreover, we observed that OsDREB1B is also induced in 

response to drought in roots, and to mechanical stress. The screening of 

cDNA libraries prepared from seedlings subjected to those stresses would 

also be interesting, since the TFs that regulate OsDREB1B gene 

expression may be different in these conditions. 

Regarding the Zn Finger TFs that we identified as binding to the promoter 

of OsDREB1B, we observed that each gene coding for these TFs 

responded differently to different abiotic stress conditions. Moreover, the 

expression of some of these genes did not show much variation under 

stress. It is possible that the activity of those TFs may be modulated by 

other mechanisms, such as post-translational modifications. Interestingly, 

two of these proteins (ZHD1 and ZOS12-7) have a high probability of being 

SUMOylated (SUMOplot, Abgent). It will be important to confirm these 

bioinformatics predictions in an in vitro SUMOylation system, which is 

currently being developed in our group. If these are confirmed, it will also 

be interesting to understand what role SUMOylation plays in regulating the 

activity of these TFs. Nevertheless, we cannot rule out that the TFs we 

identified may be targets for other types of post-translational modifications, 

like ubiquitination or phosphorylation. 
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 We have also observed the formation of homo- and hetero-dimers for 

some of the ZF-HD TFs, but not for the C2H2-type. The functional 

significance of these interactions is still to be determined. Transactivation 

assays using combinations of these TFs could help understand if the 

formation of dimers affects the transcription of OsDREB1B, or of other 

down-stream genes. It may be that dimerization influences the DNA-binding 

specificity of the proteins. It is also possible that it allows the integration of 

different stimuli, in case there is a differential expression of the genes 

coding for these TFs, under different environmental or developmental 

conditions.  

In this work, we showed for the first time the interaction of a rice PIF with 

Phytochromes. OsPIF4 binds preferentially to the active form of the rice 

phytochrome B, as well as to the promoter of OsDREB1B, repressing its 

expression. This TF is therefore a promising candidate for regulating the 

light-dependent gene expression that we have observed for OsDREB1B. 

The analysis of a T-DNA insertion line (close to the OsDREB1B 5´UTR) is 

currently underway. Only further studies will allow drawing robust 

conclusions on the possible link between the light and OsDREB1 regulon in 

rice.  

Our gene expression studies showed an alternative splice form for 

OsPIF4 that is triggered by cold. Moreover, we also identified alternative 

splice forms for Arabidopsis PIF encoding genes, which means that this 

might be a common mechanism for the regulation of PIF transcripts in 

different plant species. The biological significance of these alternative 

splicing events is mostly unknown and should be addressed in the future. It 

is interesting to note that we could not detect a protein corresponding to the 

alternative OsPIF4β transcript. Future work should therefore focus on trying 

to understand whether PIF alternative splicing forms code for proteins, 

functional or not, and if so, test their putative role in the light signalling 

pathway. If these transcripts do not code for proteins, it will also be 
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interesting to understand whether they have a functional role or if they are 

only a way to target PIF transcripts for degradation. 

Similarly to what was previously observed for DREB1/CBFs in 

Arabidopsis, we observed that the rice gene OsDREB1B shows a circadian 

rhythm in light/dark photoperiodic conditions. The biological significance of 

the light regulation and circadian rhythm observed for genes coding for 

DREB1/CBFs is yet to be fully understood. It may be that an increased 

expression of DREB1/CBFs during the day results in an increased amount 

of DREB1/CBF-targets during the night, which is when temperatures are 

lower. Interestingly, it has also been shown that DREB1/CBFs are 

differentially expressed during some developmental stages in Arabidopsis. 

Again, the question remains on whether that increased expression occurs 

in stages when plants are more sensitive to low temperatures, or if 

DREB1/CBFs have other roles, such as in plant development. The cross-

talk between the DREB1/CBF regulon and gibberellin signalling has already 

been described in Arabidopsis. It may be that these TFs play a role in plant 

growth even in normal, non-stressful, conditions.  

The role of the TFs we have identified as regulators of OsDREB1B in 

abiotic stress signalling is yet to be explored. The analysis of mutant and/or 

over-expressing rice lines will provide more insight into the biological 

function of these proteins. Several rice mutant lines for the genes that 

encode these TFs are currently under study in our group. This will allow a 

better understanding of the function of these TFs in abiotic stress signalling 

in rice. Interestingly, preliminary analyses are showing that a mutation in 

the gene coding for ZOS11-10, which is mainly expressed in roots under 

cold conditions, has an impact in root development. Therefore, the 

functional studies of these TFs might also shed some light on the cross-talk 

between abiotic stress and other signalling pathways, some possibly 

involved in plant development. 
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Our work provides clues on the transcriptional regulation of DREB1/CBFs 

by novel TFs. Nevertheless, there is a growing knowledge of other 

mechanisms that regulate transcription, such as DNA and histone 

modifications. These epigenetic factors can be responsible for the 

modulation of gene expression and can therefore be responsible, at least in 

part, for some of the changes observed in gene transcript levels. In our 

group there is on-going work focused on the characterization of possible 

epigenetic factors involved in the regulation of OsDREB1B gene 

expression. To have an integrative view and a comprehensive 

understanding of transcription regulation, it is essential to combine our 

knowledge regarding the DNA-binding TFs and the possible involvement of 

epigenetic mechanisms.  

Even though there is a growing understanding of the molecular 

mechanisms governing plant responses to abiotic stress conditions, many 

intervening players are yet to be identified and many pathways remain 

undiscovered. Moreover, most of what is known is in the model species 

Arabidopsis, which does not have social or economical relevance. While 

fundamental research is certainly required, the study of plant species that 

are relevant to society, such as food crops, should be intensified.  

With this work we were able to gain new insights into the regulation of the 

rice gene OsDREB1B. We have identified and characterized eight novel 

TFs that bind to its promoter and are involved in the abiotic stress signalling 

pathway. The further functional characterization of these TFs will prove 

useful, not only to better understand the stress signalling pathways in 

plants, but also to provide new possible candidate genes for plant 

improvement in the future. 
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