We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,300 Open access books available
116,000 International authors and editors
125M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter

Pseudophase Model in Microemulsions

Antonio Cid, Aangel Acuña, Manuel Alonso-Ferrer, Gonzalo Astray, Luis García-Río, Jesus Simal-Gándara and Juan C. Mejuto

Abstract

The kinetic behaviours in microemulsions can be easily modelled using an extension of the pseudophase model previously developed for micellar catalysis. This model considers that the microheterogeneous media can be considered as the sum of different conventional reaction media, where the reagents are distributed and in which the reaction can occur simultaneously. The reaction rate observed in the microheterogeneous system will be the sum of the velocities in each one of the pseudophases. This use can be considered as an extension of the pseudophase model, which has been developed for the quantitative analysis of nitrosation reactions in AOT/isooctane/water microemulsions and has been applied successfully in the literature in a large variety of chemical reactions.

Keywords: microemulsions, reverse micelles, kinetic model, pseudophase model

1. Introduction

The use of microemulsions, in particular, colloidal self-aggregates, and in general, as reaction media [1] makes the application of kinetic models necessary for the quantitative interpretation of the observed results. In this sense, a simple thermodynamic model was developed for its application in micelles [2] and it was called the pseudophase model [3]. This model was successfully applied through extensions to different microheterogeneous systems over the last 50 years [4–10].

2. The pseudophase model

This model considers that the micellar system can be considered as the sum of two conventional reaction media, the continuous pseudophase and the micellar pseudophase, where the reagents are distributed and in which the reaction can occur simultaneously (see Figure 1).

In this figure, A and B are the reagents, k is the kinetic constant and the subscripts w and m denotes the reaction loci (w corresponds to the continuous pseudophase and m is the micellar pseudophase). Finally, K_A and K_B are the distribution coefficients of both reactants between different pseudophases.
The model considers that the reaction rate observed in the microheterogeneous system will be the sum of the velocities in each one of the pseudophases, and it can be expressed as shown in the following equations assuming a first-order reaction for each reactant:

\[v_T = v_w + v_m \]
\[v_T = k_{obs}[A_T][B_T] \]
\[v_w = k_w[A_w][B_w] \]
\[v_m = k_m[A_m][B_m] \]
\[k_2[A_T][B_T] = k_w[A_w][B_w] + k_m[A_m][B_m] \]

The mass balance on both pseudophases and the consideration of the distribution coefficients between them allow us to establish the existing relationship between the total concentrations of the reactants and the concentrations in each of the pseudophases considered.

\[[A]_T = [A]_w + [A]_m \]
\[[B]_T = [B]_w + [B]_m \]
\[K_A = \frac{[A]_m}{[A]_w[D_n]} \]
\[K_B = \frac{[B]_m}{[B]_w[D_n]} \]
\[[A]_w = \frac{[A]_T}{1 + K_A[D_n]} \]

In Eqs. (8) and (9), \(D_n \) denotes the concentration of surfactant micellized and \([D_n] = [D] \text{-CMC} \) (where \(D \) is the total surfactant concentration and CMC is the critical micellar concentration). Using Eqs. (8) and (9), the following equations can be written:

\[[A]_m = K_A[A]_w[D_n] \]
\[[B]_m = K_B[B]_w[D_n] \]
\[[A]_T = [A]_w + K_A[A]_w[D_n] \]
\[[B]_T = [B]_w + K_B[B]_w[D_n] \]
\[[A]_w = \frac{[A]_T}{1 + K_A[D_n]} \]
Using Eqs. (14)–(17) on Eq. (5), the following expressions can be deduced (Eq. (18)–(21)):

\[
[B]_{i,w} = \frac{[B]_T}{1 + K_B[D_n]} \\
[A]_{i,m} = \frac{[A]_T K_A[D_n]}{1 + K_A[D_n]} \\
[B]_{i,m} = \frac{[B]_T K_B[D_n]}{1 + K_B[D_n]}
\]

Using Eqs. (14)–(17) on Eq. (5), the following expressions can be deduced (Eq. (18)–(21)):

\[
k_2[A_T][B_T] = k_w \frac{[A]_T}{1 + K_A[D_n]} \frac{[B]_T}{1 + K_B[D_n]} + k_m \frac{[A]_T K_A[D_n] [B]_T K_B[D_n]}{1 + K_A[D_n] (1 + K_B[D_n])}
\]

\[
k_2[A_T][B_T] = k_w \frac{1}{1 + K_A[D_n]} \frac{1}{1 + K_B[D_n]} [A_T][B_T] + k_m \frac{K_A[D_n]}{1 + K_A[D_n]} \frac{K_B[D_n]}{1 + K_B[D_n]} [A_T][B_T]
\]

\[
k_2 = k_w \frac{1}{1 + K_A[D_n]} \frac{1}{1 + K_B[D_n]} + k_m \frac{K_A[D_n]}{1 + K_A[D_n]} \frac{K_B[D_n]}{1 + K_B[D_n]}
\]

\[
k_2 = k_w \frac{1}{(1 + K_A[D_n])(1 + K_B[D_n])} + k_m \frac{K_A[D_n]^2}{1 + K_B[D_n] (1 + K_A[D_n])}
\]

According to the pseudophase model, each pseudophase is evenly distributed in the total micellar dispersion volume. The value of rate constant must be corrected taking into account the molar volume of each pseudophase to compare the intrinsic reactivity in the two different domains due to this reactant distribution between both pseudophases [10].

Equation (21) can be simplified according to the distributions of A and B, and the presence of chemical reaction in one or both pseudophases. This model predicts the catalysis or inhibition processes with success due to the compartmentalising effect of these colloidal aggregates [11–28]. However, this model must be expanded to take into account possible ion exchange processes between the continuous medium and the micelle, which give rise to more complicated expressions [29]. In some cases, it is necessary to resort to Poisson-Boltzmann distribution to evaluate the concentration of the different ions in the Stern and Gouy-Chapman layers to be able to model the ion exchange process between the continuous medium and the micellar electric double layer [30].

The pseudophase model applied to micelles has also been satisfactory for the analysis of the kinetic results in more complex micellar systems such as mixed micellar-cyclodextrin systems [31–37] or pseudo-micellar humic acids aggregates [38–42].

3. The pseudophase model in microemulsions

The pseudophase model was first extended by our research group in order to quantitatively analyse the kinetic behaviour of nitrosation reactions in microemulsions based on AOT [43, 44]. Afterwards, this extended model, with minor corrections, has been satisfactorily tested on microemulsions covering all possible cases [45–55] such as: (i) different chemical reactions (ionic or non-ionic),
(ii) reactants distributed throughout the different hydrophobic domains or (iii) with different reaction loci.

Unlike in normal micelles, where we recognised two different domains (micelles and bulk water), in a microemulsion system three domains can be found: (i) the microdroplets of the dispersed phase, (ii) the continuous phase and (iii) the surfactant film (or surfactant + cosurfactant) that stabilises the system. Due to this, in this case, three pseudophases will be considered, taking into account the same proposed considerations for the micellar model.

We will assume that the reactants can be located in each of these three pseudophases, and their distribution will be governed by the distribution coefficients defined in an analogous way to that proposed in micelles. The chemical reaction can take place in each one of the three pseudophases. In this way, the model can be explained according to Figure 2, where A and B are the reagents, k corresponds to the kinetic constant and the subscripts d, i and c denotes the loci (c corresponds to the continuous pseudophase, d with the dispersed pseudophase and i with the surfactant film -or interphase-). \(K_{A,ic} \) and \(K_{B,ic} \) are the distribution coefficients of both reactants between the interphase and the dispersed phase. \(K_{A,ic} \) and \(K_{B,ic} \) correspond to distribution coefficients of both reactants between the interphase and the continuous phase.

As in the case of micelles, the reaction rate observed in the microemulsions will be the sum of the velocities in each one of the pseudophases as it shown in the following equations (as in the case of micelles –vide supra–, assuming a first order reaction for each reactant):

\[
\begin{align*}
 v_T &= v_c + v_i + v_d \\
 v_T &= k_{obs}[A_T][B_T] \\
 v_d &= k_d[A_d][B_d] \\
 v_i &= k_i[A_i][B_i] \\
 v_c &= k_c[A_c][B_c]
\end{align*}
\]

\[
k_2[A_T][B_T] = k_d[A_d][B_d] + k_i[A_i][B_i] + k_c[A_c][B_c]
\]

\[\text{Products} \]

\[\text{Interphase} \]

\[\text{Dispersed Pseudophase} \]

Figure 2. Pseudophase model applied to microemulsions reaction media.
As quoted above, the mass balance on the three pseudophases and the consideration of the distribution coefficients between them allow us to establish the existing relationship between the total concentrations of the reactants and the concentrations in each of the pseudophases considered.

\[
[A]_T = [A]_c + [A]_i + [A]_d \quad (28)
\]

\[
[B]_T = [B]_c + [B]_i + [B]_d \quad (29)
\]

\[
K_{A, id} = \frac{[A]_i[Dis]}{[A]_d[D_n]} \quad (30)
\]

\[
K_{B, ic} = \frac{[B]_i[C]}{[B]_d[D_n]} \quad (31)
\]

where \([C]\) is the continuous phase concentration and \([D_n]\) corresponds to the concentration of surfactant in the microemulsion. In the case of micelles, \([D_n] = [D] - \text{CMC}\); but in the case of microemulsions, CMC = 0. It means that the surfactant concentration in the microemulsion is equal to the total surfactant concentration. Similar expressions can be obtained for the partition coefficients between the dispersed pseudophase and the interphase. In this case, \([Dis]\) corresponds to the dispersed phase concentration.

\[
K_{A, id} = \frac{[A]_i[Dis]}{[A]_d[D_n]} \quad (32)
\]

\[
K_{B, id} = \frac{[B]_i[Dis]}{[B]_d[D_n]} \quad (33)
\]

The previous equations (Eqs. (30)–(33)) can be rewritten using the characteristic parameters of microemulsions: \(w\) and \(z\). Both of them are mole ratios related with the microemulsion geometry. The \(w\) ratio is the molar ratio between the disperse phase concentration and the surfactant concentration, and \(z\) is the molar ratio between continuous phase concentration and the surfactant concentration (Eqs. (34) and (35)). The \(w\) ratio is directly proportional to the droplet radius and \(z\) is inversely proportional to the number of microdroplets of the dispersed phase in the microemulsion.

\[
w = \frac{[Dis]}{[D_n]} \quad (34)
\]

\[
z = \frac{[C]}{[D_n]} \quad (35)
\]

Hence,

\[
K_{A, id} = \frac{[A]_i}{[A]_d} \cdot w \quad (36)
\]

\[
K_{B, id} = \frac{[B]_i}{[B]_d} \cdot w \quad (37)
\]

\[
K_{A, ic} = \frac{[A]_i}{[A]_c} \cdot z \quad (38)
\]
Using Eqs. (28), (29) and (36)–(39), the following equations can be written:

\[K_{B,ic} = \frac{[B]}{[B]_c} \]
\[(39) \]

Then, using Eqs. (46)–(51), the following expressions are obtained:

\[k_2[A_T][B_T] = k_d \left(\frac{w}{K_{A,ld}} \right) \frac{[A]_T}{1 + \left(\frac{w}{K_{A,ld}} \right) + \left(\frac{z}{K_{A,ic}} \right)} \frac{[A]_T}{1 + \left(\frac{w}{K_{B,id}} \right) + \left(\frac{z}{K_{B,ic}} \right)} + \]
\[+ k_i \frac{[A]_T}{1 + \left(\frac{w}{K_{A,ld}} \right) + \left(\frac{z}{K_{A,ic}} \right)} \frac{[B]_T}{1 + \left(\frac{w}{K_{B,id}} \right) + \left(\frac{z}{K_{B,ic}} \right)} + \]
\[+ k_c \left(\frac{z}{K_{A,ic}} \right) \frac{[A]_T}{1 + \left(\frac{w}{K_{A,ld}} \right) + \left(\frac{z}{K_{A,ic}} \right)} \frac{[B]_T}{1 + \left(\frac{w}{K_{B,id}} \right) + \left(\frac{z}{K_{B,ic}} \right)} \]
\[(52) \]
The presented model is capable of modelling, as shown in Table 1, all the possible circumstances that can occur when the microemulsion is used as a chemical nanoreactor. In all the cases, the adjustment of the experimental data to the model is satisfactory, which shows us that despite its simplicity it presents a great versatility.

We must also indicate that it has not only been applied to micellar systems and microemulsions but also, with satisfactory results, to kinetic processes in other colloidal aggregates such as vesicles [61, 62].
<table>
<thead>
<tr>
<th>Reaction</th>
<th>A</th>
<th>B</th>
<th>Reaction Loci</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrolysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrophenyl Acetate (A) + OH⁻ (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[56]</td>
</tr>
<tr>
<td>Cristal Violet (A) + OH⁻ (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[57]</td>
</tr>
<tr>
<td>Malachite Green (A) + OH⁻ (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[57]</td>
</tr>
<tr>
<td>Sodium nitroprusside (A) + OH⁻ (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[58]</td>
</tr>
<tr>
<td>Carbofuran (A) + OH⁻ (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[46]</td>
</tr>
<tr>
<td>3-hydroxy-carbofuran (A) + OH⁻ (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[46]</td>
</tr>
<tr>
<td>3-keto-carbofuran (A) + OH⁻ (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[46]</td>
</tr>
<tr>
<td>Nitrosation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piperazine (A) + N-Methyl-N-nitroso-p-toluene sulfonamide (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[43]</td>
</tr>
<tr>
<td>N-Methyl-benzyl amine (A) + N-Methyl-N-nitroso-p-toluene sulfonamide (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[43]</td>
</tr>
<tr>
<td>Methyl-ethyl amine (A) + N-Methyl-N-nitroso-p-toluene sulfonamide (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[48]</td>
</tr>
<tr>
<td>Methly-butyl amine (A) + N-Methyl-N-nitroso-p-toluene sulfonamide (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[48]</td>
</tr>
<tr>
<td>Methyl-hexyl amine (A) + N-Methyl-N-nitroso-p-toluene sulfonamide (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[48]</td>
</tr>
<tr>
<td>Methyl-octyl amine (A) + N-Methyl-N-nitroso-p-toluene sulfonamide (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[48]</td>
</tr>
<tr>
<td>Methyl-dodecyl amine (A) + N-Methyl-N-nitroso-p-toluene sulfonamide (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[48]</td>
</tr>
<tr>
<td>N-Methyl-benzyl amine (A) + Ethoxy-ethyl nitrite (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[44]</td>
</tr>
<tr>
<td>N-Methyl-benzyl amine (A) + Bromo-ethyl nitrite (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[44]</td>
</tr>
<tr>
<td>Piperidine (A) + N-Methyl-N-nitroso-p-toluene sulfonamide (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[43]</td>
</tr>
<tr>
<td>Nitrosation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethylamine (A) + N-Methyl-N-nitroso-p-toluene sulfonamide (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[43]</td>
</tr>
<tr>
<td>Mophroline (A) + N-Methyl-N-nitroso-p-toluene sulfonamide (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[43]</td>
</tr>
<tr>
<td>Pyrrolidine (A) + N-Methyl-N-nitroso-p-toluene sulfonamide (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[43]</td>
</tr>
<tr>
<td>Piperazine (A) + Ethoxy-ethyl nitrite (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[44]</td>
</tr>
<tr>
<td>Piperazine (A) + Bromo-ethyl nitrite (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[44]</td>
</tr>
<tr>
<td>Mopholine (A) + Ethoxy-ethyl nitrite (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[44]</td>
</tr>
<tr>
<td>Mopholine (A) + Bromo-ethyl nitrite (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[44]</td>
</tr>
<tr>
<td>Aminolysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarcosine (A) + Nitrophenyl Acetate (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[49]</td>
</tr>
<tr>
<td>Piperazine (A) + Nitrophenyl Acetate (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[49]</td>
</tr>
<tr>
<td>Glycine (A) + Nitrophenyl Acetate (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[50]</td>
</tr>
<tr>
<td>N-decyl amine (A) + Nitrophenyl Acetate (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[49]</td>
</tr>
<tr>
<td>N-methyl-benzyl amine (A) + Nitrophenyl Acetate (B)</td>
<td>DIC</td>
<td>D I C</td>
<td>D I C</td>
<td>[51]</td>
</tr>
</tbody>
</table>
Acknowledgements

Financial support from Xunta de Galicia is gratefully acknowledged. Astray G. would like to give his warm thanks to Xunta de Galicia, Consellería de Cultura, Educación e Ordenación Universitaria for the post-doctoral grant B, POS-B/2016/001, which he received from them. Cid A acknowledges the post-doctoral grant SFRH/BD/78849/2011 granted to Requimte and UID/MULTI/04378/2013 granted to Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), both from the Portuguese Foundation for Science and Technology.

This chapter is dedicated to Professor Julio Casado Linarejos (*sit tivi terra levis*) who taught us chemistry and, what really matters, to be better people.

Table 1.

Examples of reactions in microemulsions satisfactorily modelled with the pseudophase model.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>A Partition</th>
<th>B Partition</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael addition Piperazine (A) + N-ethylmaleimide (B)</td>
<td>D I C</td>
<td>D I C</td>
<td>D I C</td>
</tr>
<tr>
<td>Solvolysis Benzoyl chloride (A) + H₂O (B)</td>
<td>D I C</td>
<td>D I C</td>
<td>D I C</td>
</tr>
<tr>
<td>4-Methoxy-benzoyl chloride (A) + H₂O (B)</td>
<td>D I C</td>
<td>D I C</td>
<td>D I C</td>
</tr>
<tr>
<td>Diphenylmethyl chloride (A) + H₂O (B)</td>
<td>D I C</td>
<td>D I C</td>
<td>D I C</td>
</tr>
</tbody>
</table>

D and C correspond to the dispersed or the continuous phase, respectively, I denotes the surfactant film. Reactions in w/o microemulsions of AOT/isooctane/water.
Author details

Antonio Cid¹,², Aangel Acuña¹-³, Manuel Alonso-Ferrer¹, Gonzalo Astray¹*, Luis García-Río³, Jesus Simal-Gándara⁴ and Juan C. Mejuto³

1 Department of Physical Chemistry, Faculty of Science, University of Vigo, Ourense, Spain
2 UCIBIO@REQUIMTE, Chemistry Departamento, Faculdade de Ciências e Tecnologia - Universidade Nova de Lisboa, Caparica, Portugal
3 Departamento de Química Física, Facultad de Química, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
4 Departamento de Química Analítica y Alimentaria, Universidad de Vigo, Ourense, Spain

*Address all correspondence to: gastray@uvigo.es

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

[16] Bravo-Díaz C, Romero-Nieto MA, Gonzalez-Romero E. Micellar-promoted homolytic dediazoniation of...

[29] Bunton CA, Nome F, Quina FH, Romsted LS. Ion binding and reactivity atcharged aqueous interfaces. Accounts
of Chemical Research. 1991;24:357-364. DOI: 10.1021/ar00012a001

[55] García-Río L, Mejuto JC, Pérez-Lorenzo M. Simultaneous effect of
microemulsions and phase-transfer agents on aminolysis reactions. The Journal of Physical Chemistry. B. 2007; 111:11149-11156. DOI: 10.1021/jp0743323

[57] Leis JR, Mejuto JC, Peña ME. Comparison between the kinetics of the alkaline fading of carbocation dyes in water/sodium bis(2-ethylhexyl) sulfosuccinate/isoctane microemulsions and in homogeneous media. Langmuir. 1993;9:889-893. DOI: 10.1021/la00028a003

