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Testing Moderating Effects in PLS Path Models with
Composite Variables

Introduction

The detection and estimation of direct effects in causal models, i.e. when an independent
variable X causes a dependent variable Y, is a central domain of partial least squares (PLS)
path modeling. Besides the examination of direct effects, researchers are more and more
interested in more complex relationships between variables like e.g. mediating® or moderating
effects. Moderating effects are evoked by variables whose variation affects the strength of a
relation between an independent and a dependent variable (Baron and Kenny, 1986, p. 1174).
Such causes of moderating effects are called “moderator variables” or just “moderators”.

To date, only a few methodologically oriented articles have been dedicated to the
detection of moderating effects in PLS path models, among them Chin et al. (2003), Henseler
and Chin (2010), and Henseler and Fassott (2010). In the light of the recent changes in the
understanding of what PLS is and does (Henseler et al., 2016), our article presents a tutorial
on the analysis of moderating effects in PLS path models. While covariance-based structural
equation modeling is the method of choice if the hypothesized model consists of one or more
common factors (i.e. purely reflective measurement models), variance-based SEM like PLS is
the method of choice if the hypothesized model contains at least one or more composites
(Henseler et al., 2016). Therefore we focus this tutorial to cases when at least one of the

variables in a moderated relationship uses a composite measurement model.

! For mediating effects, see Nitzl et al. (forthcoming).



PLS Path Modeling and Moderating Effects

Moderating effects in the context of PLS path modeling describe a moderated
relationship within the structural model. This means that one construct moderates the direct
relationship between two other constructs. As an exemplary model we will use a basic
structural model consisting of a dependent variable Y, an independent variable X, and a
moderator variable M. As shown in Figure 1, the moderating effect (B3) is symbolized by an
arrow pointing to the relationship between X and Y (i.e., B1) that is hypothesized to be

moderated.
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Figure 1: A basic model with a moderating effect (Bs)

However, such a structural model cannot be drawn in the available software for variance-
based SEM such as ADANCO or SmartPLS. In order to estimate moderating effect, a more
profound look at PLS path modeling is required. PLS path models are traditionally estimated
in two steps: (1) An iterative algorithm provides approximations for each latent variable (so-
called latent variable scores) and (2) linear regression is applied to these scores. Because of
this procedure, most of the recommendations for analyzing moderating effects in multiple
regression hold for PLS path modeling as well. Thus the two basic approaches as discussed in
the literature on the estimation of moderating effects in multiple regression (see for example
Aiken and West, 1991, Spiller et al., 2013), namely the integration of an interaction term and

the use of group comparisons, can be applied (with adaptations) in PLS path modeling.



The interaction term approach is a straightforward implementation of a moderating effect
if the moderator variable influences the strength of the moderated relationship in a linear
fashion (as shown in equation (4)). As long as the moderator variable is dichotomous, the
interaction term approach and the group comparison approach (see Sarstedt et al., 2011, for a
tutorial on PLS multigroup analysis) lead to quite comparable results. However, the group
comparison approach is suboptimal for continuous moderating variables because due to the
necessary dichotomization a part of the moderator variable’s variance is lost for analysis.
Only if the moderator variable is categorical (for instance in experimental designs, see
Streukens et al., forthcoming), or if the researcher wants a quick overview of a possible
moderator effect, should the group comparison approach be considered (Henseler and Fassott,
2010, p. 721). Therefore, this tutorial discusses issues related to the integration of an
interaction term as an additional latent variable in the PLS path model only.

In order to develop the moderation model, we first depart from the main effects model,
which simply contains the linear effects of X and M on Y. This leads to Equation (1):

Y=Po"+P1 - X+p2-M+d 1)

Here, Bo’ is the intercept, and B1” and 2’ are the slopes of X and M, respectively, while
the unexplained variance is captured by the error term d’. Obviously, B:” and 2’ are first
partial derivatives quantifying the change in Y depending on the change in one predictor if the
other predictor is held constant.

In moderated multiple regression, the idea of a moderating effect is that the slope of the
independent variable is no longer constant, but depends linearly on the level of the moderator.
The structural equation of the model depicted in Figure 1 can thus be formulated as follows:

Y=PBot (PrtPs M) X+p2-M+d ()

Equation (2) can be mathematically rearranged to have either of the following two forms:

Y=Bo+Pr - X+P2-M+p3-(X-M)+d 3

Y = (Bo+ B2 M)+ (B + B3~ M) - X +d (4)



In Equation (3), the so-called interaction term (X - M) is introduced, built by multiplying
the independent and the moderator variable. This answers the question of how moderating
effects can be integrated into a PLS path model. The interaction term can be treated as an
additional construct leading to the graphical representation of Equation (3) as shown in
Figure 2. Equation (4) provides another way of looking at the model: For a fixed level of M,
(Bo + B2 - M) is the intercept, and (B1 + B3 - M) is the slope of the independent variable X. In

particular, Bo and B1 represent the intercept and the slope of X when M equals zero.
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Figure 2: Transcript of the model in Figure 1 for PLS path models

Typically, the regression coefficients obtained from Equation 1 will differ from those of
Equations 2 to 4. This fact is emphasized by the use of the apostrophe for the regression
coefficients in Equation 1. As soon as the interaction term is integrated into the regression
function, the regression parameters no longer represent main effects but single effects
(sometimes also called “simple effects”). Single effects mean that they describe the strength
of an effect when all the other components of the interaction term have a value of zero. Thus
if the value of the moderator variable M is zero, then the dependent variable Y is expressed by
the independent variable X in the form of a single regression with the intercept o and the
slope B1. How the intercept and the slope of this single regression change when the moderator
variable has a value different from zero can be seen from equation (4). It should be noted that

“the interaction term, i.e. the product of the independent variable X and the moderator



variable M, is as such commutative. This fact implies that mathematically it does not matter
which variable is the independent and which one the moderator variable. Both the
interpretations are equally legitimate” (Henseler and Fassott 2010, p. 719).

As Henseler and Chin (2010) point out PLS does not calculate the regression parameters
as used in equation (3). The reason for this is that PLS estimates a regression in which all
variables, including the interaction term, are standardized. Thus the regression equation of the
structural model as estimated by PLS takes the following form:

Ystd = D1 Xsta + D2 - Mstg + B3 - (Xstd * Mstd)sta + € (5)

Equation (5) takes into account that the product of two standardized variables is not
necessarily a new standardized variable. Rather the product has to be standardized before
entering the regression. As a consequence, the value of bs for a particular score of M cannot
be derived by simply rearranging equation (5). However, standardized regression coefficients
can be transformed into unstandardized regression coefficients taking into account the
standard deviations of the dependent and independent variables. Equation (6) shows this
relationship for the independent Variable X.

Br=(sv/sx) - bs (6)

We can use this relationship to derive the size of b for a specific score of M by replacing
the left side of equation (6) with the unstandardized regression coefficient (1 + 3-M) from
equation (4). Replacing B1 (and B3) with the right side of equation (6) and multiplying with (sx
/ sxv) leads to equation (7) providing b1(M) as a function of M and the regression coefficients
b1 and bs as calculated from equation (5), i.e. representing M equal zero.

b1 (M) = b1 + (Sx/Sxm)- bs-M (7

While PLS computes standardized regression coefficients according to equation (5), some

variance-based SEM software like ADANCO (Henseler and Dijkstra, 2015) provides the

unstandardized scores of the latent variables. Thus the parameters in equation (3) can easily



be calculated by regressing the scores of Y to the scores of X, M, and X - M. In addition, the

standard deviations needed for equation (7) can be calculated.

Modeling Moderating Effects via Interaction Terms

While the use of the interaction term X - M as additional latent variable in the PLS path
model covering the product of the exogenous and the moderator variable looks
straightforward, there are several approaches available to provide indicators for this
interaction term. The product indicator approach and the two-stage approach are often used
when modeling moderating effects in PLS path models. Henseler and Chin (2010) elaborated
two more approaches (the orthogonalizing and the hybrid approach) and compared them with
the former two approaches in a Monte Carlo experiment. They concluded that the
orthogonalizing approach is recommendable under most circumstances whereas the hybrid
approach does not outperform the other approaches and in addition is not readily available in
PLS software packages. Thus we will not deal with the hybrid approach in this paper.
Product Indicator Approach

The basic idea of the product indicator approach is to build product terms between the
indicators of the latent independent variable and the indicators of the latent moderator variable
(Kenny and Judd, 1984). These product terms serve as indicators of the interaction term in the
path model. Chin et al. (1996, 2003) were the first to apply this approach to PLS path
modeling. They suggested to calculate the products of each indicator of the latent independent
variable with each indicator of the moderator variable. Thus all possible pairwise products
become the indicators of the latent interaction variable (see Henseler and Chin, 2010, for a
discussion why all possible products should be used).

However, the product indicator approach is restricted to common factors (see Fassott and
Henseler, 2015, for a discussion of the differences between factor and composite

measurement models). Since the indicators of a composite are not assumed to reflect the same



underlying factor, the resulting product indicators will not necessarily tap into the same
underlying interaction effect (Chin et al. 2003, appendix D). Nevertheless, if the independent
and the moderator variable are both single-indicator variables, the product term can be built,
because in PLS path modeling latent variables with only one indicator are set equal to this
indicator. Thus, if both the independent and the moderator variable have only one indicator,
the product indicator approach is identical with stage 2 of the two-stage approach described in
the next section. In any case, researchers should pay attention to the reliability of the
interaction term. Since the error terms of the product indicators cannot be expected to be fully
orthogonal, it is better not to let PLS estimate the reliability of the interaction term, but to
manually define it as the product of the reliability of the independent and the reliability of the
moderator variable.
Two-Stage Approach

If the independent and/or the moderator variable use composite measurement models, the
pairwise multiplication of indicators is not advisable. Instead, one can exploit that PLS path
modeling explicitly approximates construct scores. In this way, the interaction term does not
need product indicators at all. Henseler and Fassott (2010) suggest the following two-stage
approach:

Stage 1: In the first stage, the main effects PLS path model is run in order to obtain
construct scores of the independent and the moderator variable. These scores
are calculated and saved for further analysis.

Stage 2: In the second stage, the interaction term X - M is built up as the element-wise
product of the construct scores of X and M. This interaction term as well as the
latent variable scores of X and M are used as independent variables in a
multiple regression on the latent variable scores of Y.

This approach is also applicable if the independent or the moderator variable is modeled

as common factor. In this case, the correlations of the interaction term with the other



constructs in the model need to be disattenuated by the product of the reliabilities of the
independent and the moderator variable.
Orthogonalizing Approach

Both the product indicator and the two-stage approach will provide an interaction term
which can be correlated to both the independent and the moderator variable. As a
consequence, the typical phenomena of multicollinearity may occur, such as unexpected signs
of coefficients or increased standard errors. Although multicollinearity caused by interaction
terms is not a problem per se, it can hamper the interpretation (Echambadi & Hess, 2007).
This negative consequence can be avoided by adapting the use of residual centering as
described by Lance (1988) for moderated multiple regressions. Little et al. (2006) suggested
an orthogonalizing approach for modeling interactions among latent variables which was
applied to PLS path modeling by Henseler and Chin (2010). It is essentially a two-step OLS
procedure where a product term is regressed on its factors and the residuals of the regressions
are then used as indicators of the latent interaction variable.

As a consequence of the orthogonality of the interaction term, the parameter estimates of
the effects of X and M in the PLS path model are identical to the parameter estimates of the
direct effects in a model without interaction term, i.e. they represent main effects of the
exogenous and the moderator variable respectively according to equation (1). However, the
standardized regression coefficients may be slightly different (see Table 3).

While Henseler and Chin (2010) have demonstrated the superiority of the
orthogonalization approach for common factor measurement models in terms of parameter
and prediction accuracy, it remains unclear whether the orthogonalization approach
outperforms the two-stage-approach when composite models are used. Furthermore, the
orthogonalization approach has the disadvantage of lower statistical power. If an interaction
effect is found to be nonsignificant by the orthogonalizing approach, the reason could be that

this approach did not have enough statistical power to find it. In such a case Henseler and



Chin (2010) propose using additionally the more powerful two-stage approach to test whether
an interaction effect is significant or not. Furthermore, if the researcher is interested how the
impact of the independent variable X changes for different scores of the moderator variable M
(i.e. examining single effects), the orthogonalizing approach is not suitable.

Scaling of the Variables

The indicators used for building the interaction term must have metric scales. In the case
of a dichotomous indicator it is possible to dummy code (0 = category 1, 1 = category 2) or
contrast code (-1 = category 1, 1 = category 2) this indicator and use it as a metric variable.
As the single effect of the exogenous variable describes the effect when the moderator
variable equals zero, a dummy coded moderator variable allows a straightforward
interpretation of this single effect. Therefore, dummy coding should be used for a
dichotomous (single) indicator variable instead of contrast coding.

In case of a latent moderator variable M with multiple indicators again the single effect of
the exogenous variable X describes the slope of the regression of X on Y when M has a value
of zero. In PLS path models, the latent variable scores are calculated as linear combinations of
the corresponding indicators. Thus the linear combination of the corresponding indicators
must provide a value of zero. This is generally possible using the original scale of the
indicators if each indicator has the value of zero in its scale. Otherwise M (as linear
combination of the indicators in their original scales) could (theoretically) only have a value
of zero if there are opposite signs (i.e., negative and positive values) in some of the indicator
scales or opposite signs in the weights PLS uses to calculate the latent variable scores. This
will often not be the case, i.e., in many cases zero will not be an existing value on the scale of
M providing a single effect which is not meaningful.

More meaningful single effects can be obtained by means of centering. Adding or
subtracting a constant from the original variable to recode it makes the value of this constant

the zero point of the recoded scale (Spiller et al., 2013). A straightforward way to select the



value of the constant is to subtract the mean, i.e., center the latent variable scores (Aiken and
West 1991). Centering a latent variable can easily be accomplished by centering all its
indicators. This is strongly recommendable for the product indicator approach. When using
the two-stage approach, the original indicators can be used though in step 1 and then the
unstandardized construct scores can be centered before entering step two. When both the
exogenous and the moderator variable are centered, then the single effect of the exogenous
variable describes the slope of the regression of X and Y when M has a value of its mean. In
addition to this interpretation advantage, centering X and M may considerably lessen
multicollinearity in the structural model introduced by the interaction term (Aiken and West,
1991, p. 35).

To calculate the change in the intercept and/or the slope of the independent variable X
according to Equation (4), it is necessary to use the indicators of the moderator variable in
their original scale. The independent variable should still be centered to lower the
multicollinearity introduced to the structural model by the interaction term as a product of two
other model variables. This has no effect on the regression coefficients of the independent
variable. However, if a researcher is interested in the change of the intercept as well, than the
independent variable X must be in its original scale as well.

Whilst centering is advantageous for metric exogenous and/or moderator variables, it is
not necessary for the dependent latent variable Y. As Aiken and West (1991, p. 35) point out:
“Changing the scaling of the criterion by additive constants has no effect on regression
coefficients in equations containing interactions. By leaving the criterion in its original
(usually uncentered form), predicted scores conveniently are in the original scale of the
criterion. There is typically no reason to center the criterion Y when centering predictors”. If
only the relative impact of the predictors is of interest, researchers may use standardized
indicators for X and M. Then also the indicators of the dependent variable Y should be

standardized (Henseler and Fassott, 2010).



Example Application

In order to demonstrate the different approaches, we used a data set (n=196) from a study
on the impact of CRM (customer relationship management) tools on relationship quality and
loyalty in e-tailing (Fassott, 2004). In this study a moderating effect of online deal proneness
on the effect of relationship investment on relationship quality was tested by a multi-group
analysis in covariance-based SEM. Relationship investment mediated the impact of CRM
tools, which an online shop can apply, on the relationship quality. One dimension of
relationship quality, namely commitment to the online-shop, showed a considerable influence
of online deal proneness on the effect of relationship investment. As shown in Figure 3 we
test the moderating effect of online deal proneness (=M) on the relationship between CRM

tools (=X) and commitment (=Y).

a) Stage 1: Main Effects PLS Model to compute the construct scores X, M and Y
(weights provided for X; weights and loadings provided for M and Y)

Commit-
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b) Stage 2: Interaction PLS Model
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Figure 3: Results of basic PLS path models
We estimated the different models using ADANCO (Henseler and Dijkstra 2015). The

main effect model was estimated with all the indicators in their original scale, which was a 7-
point rating scale from one to seven. Some key data of the resulting constructs are shown in
Tables 1 and 2. For all three variables there is a minimum score of one and a maximum score
of seven. The unstandardized construct scores (as well as the standardized construct scores)
were stored for the two-stage approaches. In addition, we centered the unstandardized
construct scores of the independent and the moderator variable by subtracting their respective
means. The unstandardized construct scores of X and M were multiplied and this interaction
term was regressed on the unstandardized X- and M-scores. The resulting error term of the
regression was saved as indicator for the interaction term in the orthogonalizing approach.
Finally, the product of the centered (as well as the standardized) X- and M-scores was saved.
While on average the commitment to the online shop is quite high, the respondents show
rather low online deal proneness. On average the resulting CRM variable score is close to the

middle of the scale. For all three variables the lowest variable score is one and highest is

seven.
Mean Standard Deviation
Y 5.064 1.841
M 2.618 1.612
X 4,354 1.490

Table 1: Construct Scores




The commitment variable shows a moderate negative correlation to the moderator and a
moderate positive correlation to the independent variable. The moderator is very weakly

correlated to the independent variable (see Table 2).

Construct Y M X

Y 1.000

M -0.269  1.000

X 0.250 0.023 1.000

Table 2: Construct Correlations

Table 3 provides the results of the different models. For every model we report the PLS
results computed by ADANCO in the first row. In the second row we show the
unstandardized path coefficients in addition, which were calculated by OLS-regressions in
MS Excel using unstandardized construct scores. The significance of the estimated PLS-
parameters was assessed based on bootstrapping. The strength of the moderating effect was
assessed by comparing the proportion of variance explained (as expressed by the
determination coefficient R?) of the main effect with the R? of the full model. Thus drawing
on Cohen (1988, p. 410-414) we calculated the effect size 2 with the formula shown in
Equation (8). The f2-scores of every (independent) variable are part of the standard output of
ADANCO.

2 2
fZ — Rmodel with interaction term_Rmodel without interaction term (8)
XM —

1-R?

model with interaction term




Standardized

Unstandardized Estimates . Effect Size
. . Estimates
Estimation Method R2aq;
Po B1 B2 B3 b1 b, b; f2x 2m f2x.m
Main effects only 4523 0.314 -0316 — 0.256 —0.275 — 0.129 0.076 0.088 —
Recommendable 0 nalizing 4523 0314 0316 —0.179 0254 —0277 0240  0.184 0080 0.095 0.072
approaches
Two-stage (X and M centered) 5.073 0.308 —-0.268 —0.179 0.249 -0.235 —0.244 0.184 0.077 0.066 0.072
Two-stage (X, M and Y standardized) 0.005 0.251 -0.232 —-0.234 0.251 —0.232 —0.245 0.183 0.078 0.065 0.072
Approaches
neglecting Two-stage (X, M and Y standardized; _ _
the scaling X-M based on unstandardized X and M) 1.144 0.640 0.469 —0.100 0.640 0.469 —0.880 0.186 0.148 0.027 0.075

recommendations
Two-stage 2.389 0.778 0.513 —0.179 0.629 0.450 —0.858 0.184 0.143 0.025 0.072

Table 3: Results of the different approaches



Moderating effects f2x.m of at least 0.02 may be regarded as weak, effect sizes from 0.15
on as moderate and effect sizes of 0.35 and higher as strong (Cohen, 1988). All the path
coefficients shown in Table 3 are significant. There is a weak negative moderating effect of
the moderator variable, i.e. the effect of CRM tools on commitment gets lower when the
online deal proneness of the respondents gets higher. The interaction effect (unstandardized
coefficient and effect size f2x.v) is identical for the orthogonalizing and the two two-stage
approaches, which differ on the use of centered vs. the original unstandardized construct
scores. The latter may not always be the case. In our case the correlations between the
constructs are quite low, thus the two-stage model using the unstandardized construct scores
is not affected by multicollinearity issues. If multicollinearity is high and the original
unstandardized construct scores are used, then curious results may arise like inflated standard
deviations from bootstrapping or correlation sizes greater than one.

Concerning the (unstandardized) path coefficient B1 of the independent variable we see
that the single effect lowers considerably (0.778 vs. 0.314) if the score of the moderating
variable rises from zero to its mean (2.618). However, it should be noted, that a score of zero
is outside our measurement model. The orthogonalizing approach provides the main effects
for X and M, i.e. the unstandardized coefficients are identical to the main effects model
without the interaction term.

So far, we have tested that there is a significant weak moderating effect. The basic
principle of a moderator effect is its influence on the size of the effect the independent
variable X has on the dependent variable Y. From Table 3 we can see, how strong the effect
of X on Y is, when the moderator variable M has a score of its mean (and a M-score of zero
outside our measurement model). How does this effect size change for other values of M? The
answer is provided by a spotlight analysis (Spiller et al. 2013). This can easily be
accomplished in the two-stage approach by modifying the scores of M and (via the

multiplication with the centered score of X) the score of the interaction term as well. For M



equals one, we have to subtract one from the original unstandardized construct score. This can
be done for every value of M. In fact, the two-stage model (X and M centered) in Table 3 did
the same by subtracting the mean (here 2.618) from the original construct score. Thus, we
could add these results in Table 4 between the rows of M=2 and M=3.

The results of the spotlight analysis are shown in Table 4. For M equals zero we use the
unstandardized M-score of the main effects model. Although this score is outside of our
measurement model we need the regression coefficients in order to simply compute
regression coefficients for other values of M. While Table 4 shows the results of PLS
computations, one can easily generate the unstandardized coefficients as well as the
standardized coefficients using the equations (4) and (7) respectively, with the results for M=0

and changing the value of M.

M Intercept fo  Slope B1  Slope by Comment

0 5.774 0.778 0.629  Value of M = 0 was not measured

il 5.506 0.599 0.484

2 5.238 0.419 0.339

3 4.970 0.239 0.194

4 4.703 0.060 0.048 insignificant slope (two-sided, a=0.05)
5 4.435 -0.120 -0.097 insignificant slope (two-sided, 0=0.05)
6 4.167 -0.299 -0.242 insignificant slope (two-sided, 0=0.05)
7 3.899 -0.478 -0.387

Table 4: Spotlight analysis using two-stage PLS with centered X-scores

In our example, we see that the effect of X on Y is non-significant for M equal four, five,
or six. For M=7 the direction of the effect of CRM tools on commitment gets significantly
negative. Thus the managerial implications of these results point in two different directions.
(1) If the customers of an online shop show low online deal proneness the online shop can
raise their commitment (and considering the positive impact of commitment to loyalty finally
their loyalty) to the online shop by improving its CRM tools. (2) If the customers of an online
shop show very high online deal proneness the improvement of CRM tools would be

counterproductive to the ultimate aim of customer relationship management. Thus this



example demonstrates the value of a spotlight analysis, i.e. the analysis of moderating effects
should be more than just testing for the significance of the regression coefficient of the
interaction term and its effect size.

Considering the simplicity of computing the path coefficients based on the results for
M=0, it is still necessary to run PLS models in the spotlight analysis. First, PLS models for
different values of M need to be run to determine the significance of the intercept and the path
coefficients of X and to compute the effect size f2x. As different values of M will be used, the
positive impact of centering M on multicollinearity diminishes. Thus problems with invalid
results due to multicollinearity may be detected by comparing the PLS results with the results
using the equations in Table 4. Second, this equations are based on the PLS results for M
equal zero. It may happen, that for this M-score multicollinearity issues may lead to invalid
results. This can be detected if the unstandardized coefficient of the interaction term differs
between the two-stage approach and the orthogonalization approach. In this case it is still
possible to compute valid results for the simple effects, if we have valid results for the
centered M (again compare the path coefficients of the interaction term obtained from the

two-stage and the orthogonalizing approach).

Concluding Recommendations
Having discussed different approaches to analyze moderation effects including at least
one composite variable with PLS we recommend the following procedure. Note, that this is

also a possible procedure if all variables are common factors.

1. Run the main effects PLS model using the indicators in their original scale. Save the
unstandardized construct scores for further analysis. In addition center the construct
scores of the independent (X) and the moderator (M) variable. Compute both the product

of the original unstandardized construct scores of X an M as well as the product of their



centered versions. Finally, compute the error term needed as indicator of the interaction
term in the orthogonalizing approach by regressing the product of the original
unstandardized construct scores of X an M on the original unstandardized construct
scores of X an M.

Run the orthogonalizing approach to determine the significance of the interaction term’s
path coefficient and effect size f2x.m. If this is the only aim of the analysis, then stop
here.

In case the coefficient obtained from the orthogonalizing approach is not significant,
check with the two-stage approach whether this may be just due to the lower power of
the orthogonalizing approach. In this case or if the two-stage approach is necessary
because the single effects are of interest compute also the unstandardized coefficient B3
by running an OLS-regression using the unstandardized construct scores resulting from
the orthogonalizing model.

Prepare the data sheet for stage two of the two-stage approach. Especially, add centered
scores of the construct scores for the independent variable X and the moderator variable
M. If a spotlight analysis is planned, then additional variables subtracting constants
other than the mean of M may be calculated in addition to the original unstandardized
construct score of M. Compute interaction terms by multiplying each of these different
M variables with the centered X-variable.

Run at least two PLS models for the unstandardized construct score of M (M=0) and for
centered M-score. Use the (calculated) construct scores as single indicators for the
variables (X centered, Y as unstandardized construct score, the respective product of the
centered X with the M in use). Compute the unstandardized regression coefficients by
running OLS-regressions using the unstandardized construct scores resulting from the
PLS runs. Cross-check the unstandardized coefficient of the interaction term with the

coefficient of the orthogonalizing approach.



6. If a spotlight analysis is intended, run the model for other values of M as well. Cross-
check the PLS results with the coefficients computed based on the coefficients of the

PLS run for M=0.

Using this procedure will require several computations outside current PLS software. If a
PLS software provides results, especially the unstandardized construct scores, in the format of
tabulation programs like MS Excel this will be quite easy. However, as our procedure uses the
unstandardized regression coefficients in addition to the standardized coefficients provided by
PLS, PLS software packages could support moderation analysis by providing these

unstandardized regression coefficients as well.
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