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Testing Moderating Effects in PLS Path Models with 

Composite Variables 

Introduction 

The detection and estimation of direct effects in causal models, i.e. when an independent 

variable X causes a dependent variable Y, is a central domain of partial least squares (PLS) 

path modeling. Besides the examination of direct effects, researchers are more and more 

interested in more complex relationships between variables like e.g. mediating1 or moderating 

effects. Moderating effects are evoked by variables whose variation affects the strength of a 

relation between an independent and a dependent variable (Baron and Kenny, 1986, p. 1174). 

Such causes of moderating effects are called “moderator variables” or just “moderators”. 

To date, only a few methodologically oriented articles have been dedicated to the 

detection of moderating effects in PLS path models, among them Chin et al. (2003), Henseler 

and Chin (2010), and Henseler and Fassott (2010). In the light of the recent changes in the 

understanding of what PLS is and does (Henseler et al., 2016), our article presents a tutorial 

on the analysis of moderating effects in PLS path models. While covariance-based structural 

equation modeling is the method of choice if the hypothesized model consists of one or more 

common factors (i.e. purely reflective measurement models), variance-based SEM like PLS is 

the method of choice if the hypothesized model contains at least one or more composites 

(Henseler et al., 2016). Therefore we focus this tutorial to cases when at least one of the 

variables in a moderated relationship uses a composite measurement model. 

 
1 For mediating effects, see Nitzl et al. (forthcoming). 



PLS Path Modeling and Moderating Effects 

Moderating effects in the context of PLS path modeling describe a moderated 

relationship within the structural model. This means that one construct moderates the direct 

relationship between two other constructs. As an exemplary model we will use a basic 

structural model consisting of a dependent variable Y, an independent variable X, and a 

moderator variable M. As shown in Figure 1, the moderating effect (β3) is symbolized by an 

arrow pointing to the relationship between X and Y (i.e., β1) that is hypothesized to be 

moderated. 
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Figure 1: A basic model with a moderating effect (β3) 

However, such a structural model cannot be drawn in the available software for variance-

based SEM such as ADANCO or SmartPLS. In order to estimate moderating effect, a more 

profound look at PLS path modeling is required. PLS path models are traditionally estimated 

in two steps: (1) An iterative algorithm provides approximations for each latent variable (so-

called latent variable scores) and (2) linear regression is applied to these scores. Because of 

this procedure, most of the recommendations for analyzing moderating effects in multiple 

regression hold for PLS path modeling as well. Thus the two basic approaches as discussed in 

the literature on the estimation of moderating effects in multiple regression (see for example 

Aiken and West, 1991, Spiller et al., 2013), namely the integration of an interaction term and 

the use of group comparisons, can be applied (with adaptations) in PLS path modeling. 



The interaction term approach is a straightforward implementation of a moderating effect 

if the moderator variable influences the strength of the moderated relationship in a linear 

fashion (as shown in equation (4)). As long as the moderator variable is dichotomous, the 

interaction term approach and the group comparison approach (see Sarstedt et al., 2011, for a 

tutorial on PLS multigroup analysis) lead to quite comparable results. However, the group 

comparison approach is suboptimal for continuous moderating variables because due to the 

necessary dichotomization a part of the moderator variable’s variance is lost for analysis. 

Only if the moderator variable is categorical (for instance in experimental designs, see 

Streukens et al., forthcoming), or if the researcher wants a quick overview of a possible 

moderator effect, should the group comparison approach be considered (Henseler and Fassott, 

2010, p. 721). Therefore, this tutorial discusses issues related to the integration of an 

interaction term as an additional latent variable in the PLS path model only. 

In order to develop the moderation model, we first depart from the main effects model, 

which simply contains the linear effects of X and M on Y. This leads to Equation (1): 

 Y = β0’ + β1’ ∙ X + β2’ ∙ M + d’ (1) 

Here, β0’ is the intercept, and β1’ and β2’ are the slopes of X and M, respectively, while 

the unexplained variance is captured by the error term d’. Obviously, β1’ and β2’ are first 

partial derivatives quantifying the change in Y depending on the change in one predictor if the 

other predictor is held constant. 

In moderated multiple regression, the idea of a moderating effect is that the slope of the 

independent variable is no longer constant, but depends linearly on the level of the moderator. 

The structural equation of the model depicted in Figure 1 can thus be formulated as follows: 

 Y = β0 + (β1 + β3 ∙ M) ∙ X + β2 ∙ M + d (2) 

Equation (2) can be mathematically rearranged to have either of the following two forms: 

 Y = β0 + β1 ∙ X + β2 ∙ M + β3 ∙ (X ∙ M)+ d (3) 

  Y = (β0 + β2 ∙ M) + (β1 + β3 ∙ M) ∙ X + d (4) 



In Equation (3), the so-called interaction term (X ∙ M) is introduced, built by multiplying 

the independent and the moderator variable. This answers the question of how moderating 

effects can be integrated into a PLS path model. The interaction term can be treated as an 

additional construct leading to the graphical representation of Equation (3) as shown in 

Figure 2. Equation (4) provides another way of looking at the model: For a fixed level of M, 

(β0 + β2 ∙ M) is the intercept, and (β1 + β3 ∙ M) is the slope of the independent variable X. In 

particular, β0 and β1 represent the intercept and the slope of X when M equals zero. 
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Figure 2: Transcript of the model in Figure 1 for PLS path models 

Typically, the regression coefficients obtained from Equation 1 will differ from those of 

Equations 2 to 4. This fact is emphasized by the use of the apostrophe for the regression 

coefficients in Equation 1. As soon as the interaction term is integrated into the regression 

function, the regression parameters no longer represent main effects but single effects 

(sometimes also called “simple effects”). Single effects mean that they describe the strength 

of an effect when all the other components of the interaction term have a value of zero. Thus 

if the value of the moderator variable M is zero, then the dependent variable Y is expressed by 

the independent variable X in the form of a single regression with the intercept β0 and the 

slope β1. How the intercept and the slope of this single regression change when the moderator 

variable has a value different from zero can be seen from equation (4). It should be noted that 

“the interaction term, i.e. the product of the independent variable X and the moderator 



variable M, is as such commutative. This fact implies that mathematically it does not matter 

which variable is the independent and which one the moderator variable. Both the 

interpretations are equally legitimate” (Henseler and Fassott 2010, p. 719). 

As Henseler and Chin (2010) point out PLS does not calculate the regression parameters 

as used in equation (3). The reason for this is that PLS estimates a regression in which all 

variables, including the interaction term, are standardized. Thus the regression equation of the 

structural model as estimated by PLS takes the following form: 

 Ystd = b1 ∙ Xstd +  b2 ∙ Mstd + b3 ∙ (Xstd ∙ Mstd)std + e (5) 

Equation (5) takes into account that the product of two standardized variables is not 

necessarily a new standardized variable. Rather the product has to be standardized before 

entering the regression. As a consequence, the value of b1 for a particular score of M cannot 

be derived by simply rearranging equation (5). However, standardized regression coefficients 

can be transformed into unstandardized regression coefficients taking into account the 

standard deviations of the dependent and independent variables. Equation (6) shows this 

relationship for the independent Variable X. 

 β1 = (sY / sX) ∙ b1 (6) 

We can use this relationship to derive the size of b1 for a specific score of M by replacing 

the left side of equation (6) with the unstandardized regression coefficient (β1 + β3∙M) from 

equation (4). Replacing β1 (and β3) with the right side of equation (6) and multiplying with (sX 

/ sXY) leads to equation (7) providing b1(M) as a function of M and the regression coefficients 

b1 and b3 as calculated from equation (5), i.e. representing M equal zero. 

 b1 (M) = b1 + (sX/sXM)∙ b3∙M (7) 

While PLS computes standardized regression coefficients according to equation (5), some 

variance-based SEM software like ADANCO (Henseler and Dijkstra, 2015) provides the 

unstandardized scores of the latent variables. Thus the parameters in equation (3) can easily 



be calculated by regressing the scores of Y to the scores of X, M, and X ∙ M. In addition, the 

standard deviations needed for equation (7) can be calculated. 

Modeling Moderating Effects via Interaction Terms 

While the use of the interaction term X ∙ M as additional latent variable in the PLS path 

model covering the product of the exogenous and the moderator variable looks 

straightforward, there are several approaches available to provide indicators for this 

interaction term. The product indicator approach and the two-stage approach are often used 

when modeling moderating effects in PLS path models. Henseler and Chin (2010) elaborated 

two more approaches (the orthogonalizing and the hybrid approach) and compared them with 

the former two approaches in a Monte Carlo experiment. They concluded that the 

orthogonalizing approach is recommendable under most circumstances whereas the hybrid 

approach does not outperform the other approaches and in addition is not readily available in 

PLS software packages. Thus we will not deal with the hybrid approach in this paper. 

Product Indicator Approach 

The basic idea of the product indicator approach is to build product terms between the 

indicators of the latent independent variable and the indicators of the latent moderator variable 

(Kenny and Judd, 1984). These product terms serve as indicators of the interaction term in the 

path model. Chin et al. (1996, 2003) were the first to apply this approach to PLS path 

modeling. They suggested to calculate the products of each indicator of the latent independent 

variable with each indicator of the moderator variable. Thus all possible pairwise products 

become the indicators of the latent interaction variable (see Henseler and Chin, 2010, for a 

discussion why all possible products should be used).  

However, the product indicator approach is restricted to common factors (see Fassott and 

Henseler, 2015, for a discussion of the differences between factor and composite 

measurement models). Since the indicators of a composite are not assumed to reflect the same 



underlying factor, the resulting product indicators will not necessarily tap into the same 

underlying interaction effect (Chin et al. 2003, appendix D). Nevertheless, if the independent 

and the moderator variable are both single-indicator variables, the product term can be built, 

because in PLS path modeling latent variables with only one indicator are set equal to this 

indicator. Thus, if both the independent and the moderator variable have only one indicator, 

the product indicator approach is identical with stage 2 of the two-stage approach described in 

the next section. In any case, researchers should pay attention to the reliability of the 

interaction term. Since the error terms of the product indicators cannot be expected to be fully 

orthogonal, it is better not to let PLS estimate the reliability of the interaction term, but to 

manually define it as the product of the reliability of the independent and the reliability of the 

moderator variable. 

Two-Stage Approach 

If the independent and/or the moderator variable use composite measurement models, the 

pairwise multiplication of indicators is not advisable. Instead, one can exploit that PLS path 

modeling explicitly approximates construct scores. In this way, the interaction term does not 

need product indicators at all. Henseler and Fassott (2010) suggest the following two-stage 

approach: 

Stage 1: In the first stage, the main effects PLS path model is run in order to obtain 

construct scores of the independent and the moderator variable. These scores 

are calculated and saved for further analysis. 

Stage 2: In the second stage, the interaction term X ∙ M is built up as the element-wise 

product of the construct scores of X and M. This interaction term as well as the 

latent variable scores of X and M are used as independent variables in a 

multiple regression on the latent variable scores of Y. 

This approach is also applicable if the independent or the moderator variable is modeled 

as common factor. In this case, the correlations of the interaction term with the other 



constructs in the model need to be disattenuated by the product of the reliabilities of the 

independent and the moderator variable. 

Orthogonalizing Approach 

Both the product indicator and the two-stage approach will provide an interaction term 

which can be correlated to both the independent and the moderator variable. As a 

consequence, the typical phenomena of multicollinearity may occur, such as unexpected signs 

of coefficients or increased standard errors. Although multicollinearity caused by interaction 

terms is not a problem per se, it can hamper the interpretation (Echambadi & Hess, 2007). 

This negative consequence can be avoided by adapting the use of residual centering as 

described by Lance (1988) for moderated multiple regressions. Little et al. (2006) suggested 

an orthogonalizing approach for modeling interactions among latent variables which was 

applied to PLS path modeling by Henseler and Chin (2010). It is essentially a two-step OLS 

procedure where a product term is regressed on its factors and the residuals of the regressions 

are then used as indicators of the latent interaction variable. 

As a consequence of the orthogonality of the interaction term, the parameter estimates of 

the effects of X and M in the PLS path model are identical to the parameter estimates of the 

direct effects in a model without interaction term, i.e. they represent main effects of the 

exogenous and the moderator variable respectively according to equation (1). However, the 

standardized regression coefficients may be slightly different (see Table 3).  

While Henseler and Chin (2010) have demonstrated the superiority of the 

orthogonalization approach for common factor measurement models in terms of parameter 

and prediction accuracy, it remains unclear whether the orthogonalization approach 

outperforms the two-stage-approach when composite models are used. Furthermore, the 

orthogonalization approach has the disadvantage of lower statistical power. If an interaction 

effect is found to be nonsignificant by the orthogonalizing approach, the reason could be that 

this approach did not have enough statistical power to find it. In such a case Henseler and 



Chin (2010) propose using additionally the more powerful two-stage approach to test whether 

an interaction effect is significant or not. Furthermore, if the researcher is interested how the 

impact of the independent variable X changes for different scores of the moderator variable M 

(i.e. examining single effects), the orthogonalizing approach is not suitable. 

Scaling of the Variables 

The indicators used for building the interaction term must have metric scales. In the case 

of a dichotomous indicator it is possible to dummy code (0 = category 1, 1 = category 2) or 

contrast code (-1 = category 1, 1 = category 2) this indicator and use it as a metric variable. 

As the single effect of the exogenous variable describes the effect when the moderator 

variable equals zero, a dummy coded moderator variable allows a straightforward 

interpretation of this single effect. Therefore, dummy coding should be used for a 

dichotomous (single) indicator variable instead of contrast coding. 

In case of a latent moderator variable M with multiple indicators again the single effect of 

the exogenous variable X describes the slope of the regression of X on Y when M has a value 

of zero. In PLS path models, the latent variable scores are calculated as linear combinations of 

the corresponding indicators. Thus the linear combination of the corresponding indicators 

must provide a value of zero. This is generally possible using the original scale of the 

indicators if each indicator has the value of zero in its scale. Otherwise M (as linear 

combination of the indicators in their original scales) could (theoretically) only have a value 

of zero if there are opposite signs (i.e., negative and positive values) in some of the indicator 

scales or opposite signs in the weights PLS uses to calculate the latent variable scores. This 

will often not be the case, i.e., in many cases zero will not be an existing value on the scale of 

M providing a single effect which is not meaningful. 

More meaningful single effects can be obtained by means of centering. Adding or 

subtracting a constant from the original variable to recode it makes the value of this constant 

the zero point of the recoded scale (Spiller et al., 2013). A straightforward way to select the 



value of the constant is to subtract the mean, i.e., center the latent variable scores (Aiken and 

West 1991). Centering a latent variable can easily be accomplished by centering all its 

indicators. This is strongly recommendable for the product indicator approach. When using 

the two-stage approach, the original indicators can be used though in step 1 and then the 

unstandardized construct scores can be centered before entering step two. When both the 

exogenous and the moderator variable are centered, then the single effect of the exogenous 

variable describes the slope of the regression of X and Y when M has a value of its mean. In 

addition to this interpretation advantage, centering X and M may considerably lessen 

multicollinearity in the structural model introduced by the interaction term (Aiken and West, 

1991, p. 35). 

To calculate the change in the intercept and/or the slope of the independent variable X 

according to Equation (4), it is necessary to use the indicators of the moderator variable in 

their original scale. The independent variable should still be centered to lower the 

multicollinearity introduced to the structural model by the interaction term as a product of two 

other model variables. This has no effect on the regression coefficients of the independent 

variable. However, if a researcher is interested in the change of the intercept as well, than the 

independent variable X must be in its original scale as well. 

Whilst centering is advantageous for metric exogenous and/or moderator variables, it is 

not necessary for the dependent latent variable Y. As Aiken and West (1991, p. 35) point out: 

“Changing the scaling of the criterion by additive constants has no effect on regression 

coefficients in equations containing interactions. By leaving the criterion in its original 

(usually uncentered form), predicted scores conveniently are in the original scale of the 

criterion. There is typically no reason to center the criterion Y when centering predictors”. If 

only the relative impact of the predictors is of interest, researchers may use standardized 

indicators for X and M. Then also the indicators of the dependent variable Y should be 

standardized (Henseler and Fassott, 2010). 



Example Application 

In order to demonstrate the different approaches, we used a data set (n= 196) from a study 

on the impact of CRM (customer relationship management) tools on relationship quality and 

loyalty in e-tailing (Fassott, 2004). In this study a moderating effect of online deal proneness 

on the effect of relationship investment on relationship quality was tested by a multi-group 

analysis in covariance-based SEM. Relationship investment mediated the impact of CRM 

tools, which an online shop can apply, on the relationship quality. One dimension of 

relationship quality, namely commitment to the online-shop, showed a considerable influence 

of online deal proneness on the effect of relationship investment. As shown in Figure 3 we 

test the moderating effect of online deal proneness (=M) on the relationship between CRM 

tools (=X) and commitment (=Y). 

 
 



 
 

Figure 3: Results of basic PLS path models 

We estimated the different models using ADANCO (Henseler and Dijkstra 2015). The 

main effect model was estimated with all the indicators in their original scale, which was a 7-

point rating scale from one to seven. Some key data of the resulting constructs are shown in 

Tables 1 and 2. For all three variables there is a minimum score of one and a maximum score 

of seven. The unstandardized construct scores (as well as the standardized construct scores) 

were stored for the two-stage approaches. In addition, we centered the unstandardized 

construct scores of the independent and the moderator variable by subtracting their respective 

means. The unstandardized construct scores of X and M were multiplied and this interaction 

term was regressed on the unstandardized X- and M-scores. The resulting error term of the 

regression was saved as indicator for the interaction term in the orthogonalizing approach. 

Finally, the product of the centered (as well as the standardized) X- and M-scores was saved. 

While on average the commitment to the online shop is quite high, the respondents show 

rather low online deal proneness. On average the resulting CRM variable score is close to the 

middle of the scale. For all three variables the lowest variable score is one and highest is 

seven. 

 

  Mean Standard Deviation 

Y 5.064 1.841 

M 2.618 1.612 

X 4.354 1.490 

Table 1: Construct Scores  



 

The commitment variable shows a moderate negative correlation to the moderator and a 

moderate positive correlation to the independent variable. The moderator is very weakly 

correlated to the independent variable (see Table 2). 

 

Construct Y M X 

Y 1.000   
M -0.269 1.000  
X 0.250 0.023 1.000 

Table 2: Construct Correlations 

 

Table 3 provides the results of the different models. For every model we report the PLS 

results computed by ADANCO in the first row. In the second row we show the 

unstandardized path coefficients in addition, which were calculated by OLS-regressions in 

MS Excel using unstandardized construct scores. The significance of the estimated PLS-

parameters was assessed based on bootstrapping. The strength of the moderating effect was 

assessed by comparing the proportion of variance explained (as expressed by the 

determination coefficient R²) of the main effect with the R² of the full model. Thus drawing 

on Cohen (1988, p. 410-414) we calculated the effect size f² with the formula shown in 

Equation (8). The f²-scores of every (independent) variable are part of the standard output of 

ADANCO.  

 𝑓X∙M
2 =

𝑅model with interaction term
2 −𝑅model without interaction term

2

1−𝑅model with interaction term
2  (8) 



 

                                  

Estimation Method  
Unstandardized Estimates  Standardized 

Estimates 
 

R²adj 

 Effect Size 

  
β0 β1 β2 β3   b1 b2 b3     f²X f²M f²X·M 

Recommendable  

approaches 

Main effects only 
  

4.523 0.314 −0.316 ―   0.256 −0.275 ―   0.129   0.076 0.088 ― 

Orthogonalizing 
 

4.523 0.314 −0.316 −0.179  0.254 −0.277 −0.240  0.184  0.080 0.095 0.072 

Two-stage (X and M centered) 
  

5.073 0.308 −0.268 −0.179   0.249 −0.235 −0.244   0.184   0.077 0.066 0.072 

Approaches 

neglecting 

the scaling  

recommendations 

Two-stage (X, M and Y standardized) 
  

0.005 0.251 −0.232 −0.234   0.251 −0.232 −0.245   0.183   0.078 0.065 0.072 

Two-stage (X, M and Y standardized;  

X·M based on unstandardized X and M)  
1.144 0.640 0.469 −0.100  0.640 0.469 −0.880  0.186  0.148 0.027 0.075 

Two-stage 
  

2.389 0.778 0.513 −0.179   0.629 0.450 −0.858   0.184   0.143 0.025 0.072 

 

Table 3: Results of the different approaches 

 



Moderating effects f²X∙M of at least 0.02 may be regarded as weak, effect sizes from 0.15 

on as moderate and effect sizes of 0.35 and higher as strong (Cohen, 1988). All the path 

coefficients shown in Table 3 are significant. There is a weak negative moderating effect of 

the moderator variable, i.e. the effect of CRM tools on commitment gets lower when the 

online deal proneness of the respondents gets higher. The interaction effect (unstandardized 

coefficient and effect size f²X∙M) is identical for the orthogonalizing and the two two-stage 

approaches, which differ on the use of centered vs. the original unstandardized construct 

scores. The latter may not always be the case. In our case the correlations between the 

constructs are quite low, thus the two-stage model using the unstandardized construct scores 

is not affected by multicollinearity issues. If multicollinearity is high and the original 

unstandardized construct scores are used, then curious results may arise like inflated standard 

deviations from bootstrapping or correlation sizes greater than one. 

Concerning the (unstandardized) path coefficient β1 of the independent variable we see 

that the single effect lowers considerably (0.778 vs. 0.314) if the score of the moderating 

variable rises from zero to its mean (2.618). However, it should be noted, that a score of zero 

is outside our measurement model. The orthogonalizing approach provides the main effects 

for X and M, i.e. the unstandardized coefficients are identical to the main effects model 

without the interaction term. 

So far, we have tested that there is a significant weak moderating effect. The basic 

principle of a moderator effect is its influence on the size of the effect the independent 

variable X has on the dependent variable Y. From Table 3 we can see, how strong the effect 

of X on Y is, when the moderator variable M has a score of its mean (and a M-score of zero 

outside our measurement model). How does this effect size change for other values of M? The 

answer is provided by a spotlight analysis (Spiller et al. 2013). This can easily be 

accomplished in the two-stage approach by modifying the scores of M and (via the 

multiplication with the centered score of X) the score of the interaction term as well. For M 



equals one, we have to subtract one from the original unstandardized construct score. This can 

be done for every value of M. In fact, the two-stage model (X and M centered) in Table 3 did 

the same by subtracting the mean (here 2.618) from the original construct score. Thus, we 

could add these results in Table 4 between the rows of M=2 and M=3. 

The results of the spotlight analysis are shown in Table 4. For M equals zero we use the 

unstandardized M-score of the main effects model. Although this score is outside of our 

measurement model we need the regression coefficients in order to simply compute 

regression coefficients for other values of M. While Table 4 shows the results of PLS 

computations, one can easily generate the unstandardized coefficients as well as the 

standardized coefficients using the equations (4) and (7) respectively, with the results for M=0 

and changing the value of M. 

         

M Intercept β0 Slope β1 Slope b1 Comment 

0 5.774 0.778 0.629 Value of M = 0 was not measured 

1 5.506 0.599 0.484  
2 5.238 0.419 0.339  
3 4.970 0.239 0.194  
4 4.703 0.060 0.048 insignificant slope (two-sided, α=0.05) 

5 4.435 -0.120 -0.097 insignificant slope (two-sided, α=0.05) 

6 4.167 -0.299 -0.242 insignificant slope (two-sided, α=0.05) 

7 3.899 -0.478 -0.387   

Table 4: Spotlight analysis using two-stage PLS with centered X-scores 

 

In our example, we see that the effect of X on Y is non-significant for M equal four, five, 

or six. For M=7 the direction of the effect of CRM tools on commitment gets significantly 

negative. Thus the managerial implications of these results point in two different directions. 

(1) If the customers of an online shop show low online deal proneness the online shop can 

raise their commitment (and considering the positive impact of commitment to loyalty finally 

their loyalty) to the online shop by improving its CRM tools. (2) If the customers of an online 

shop show very high online deal proneness the improvement of CRM tools would be 

counterproductive to the ultimate aim of customer relationship management. Thus this 



example demonstrates the value of a spotlight analysis, i.e. the analysis of moderating effects 

should be more than just testing for the significance of the regression coefficient of the 

interaction term and its effect size. 

Considering the simplicity of computing the path coefficients based on the results for 

M=0, it is still necessary to run PLS models in the spotlight analysis. First, PLS models for 

different values of M need to be run to determine the significance of the intercept and the path 

coefficients of X and to compute the effect size f²X. As different values of M will be used, the 

positive impact of centering M on multicollinearity diminishes. Thus problems with invalid 

results due to multicollinearity may be detected by comparing the PLS results with the results 

using the equations in Table 4. Second, this equations are based on the PLS results for M 

equal zero. It may happen, that for this M-score multicollinearity issues may lead to invalid 

results. This can be detected if the unstandardized coefficient of the interaction term differs 

between the two-stage approach and the orthogonalization approach. In this case it is still 

possible to compute valid results for the simple effects, if we have valid results for the 

centered M (again compare the path coefficients of the interaction term obtained from the 

two-stage and the orthogonalizing approach).  

 

Concluding Recommendations 

Having discussed different approaches to analyze moderation effects including at least 

one composite variable with PLS we recommend the following procedure. Note, that this is 

also a possible procedure if all variables are common factors. 

1. Run the main effects PLS model using the indicators in their original scale. Save the 

unstandardized construct scores for further analysis. In addition center the construct 

scores of the independent (X) and the moderator (M) variable. Compute both the product 

of the original unstandardized construct scores of X an M as well as the product of their 



centered versions. Finally, compute the error term needed as indicator of the interaction 

term in the orthogonalizing approach by regressing the product of the original 

unstandardized construct scores of X an M on the original unstandardized construct 

scores of X an M. 

2. Run the orthogonalizing approach to determine the significance of the interaction term’s 

path coefficient and effect size f²X·M. If this is the only aim of the analysis, then stop 

here. 

3. In case the coefficient obtained from the orthogonalizing approach is not significant, 

check with the two-stage approach whether this may be just due to the lower power of 

the orthogonalizing approach. In this case or if the two-stage approach is necessary 

because the single effects are of interest compute also the unstandardized coefficient β3 

by running an OLS-regression using the unstandardized construct scores resulting from 

the orthogonalizing model. 

4. Prepare the data sheet for stage two of the two-stage approach. Especially, add centered 

scores of the construct scores for the independent variable X and the moderator variable 

M. If a spotlight analysis is planned, then additional variables subtracting constants 

other than the mean of M may be calculated in addition to the original unstandardized 

construct score of M. Compute interaction terms by multiplying each of these different 

M variables with the centered X-variable. 

5. Run at least two PLS models for the unstandardized construct score of M (M=0) and for 

centered M-score. Use the (calculated) construct scores as single indicators for the 

variables (X centered, Y as unstandardized construct score, the respective product of the 

centered X with the M in use). Compute the unstandardized regression coefficients by 

running OLS-regressions using the unstandardized construct scores resulting from the 

PLS runs. Cross-check the unstandardized coefficient of the interaction term with the 

coefficient of the orthogonalizing approach. 



6. If a spotlight analysis is intended, run the model for other values of M as well. Cross-

check the PLS results with the coefficients computed based on the coefficients of the 

PLS run for M=0.  

Using this procedure will require several computations outside current PLS software. If a 

PLS software provides results, especially the unstandardized construct scores, in the format of 

tabulation programs like MS Excel this will be quite easy. However, as our procedure uses the 

unstandardized regression coefficients in addition to the standardized coefficients provided by 

PLS, PLS software packages could support moderation analysis by providing these 

unstandardized regression coefficients as well. 
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