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Abstract

The construction and operation of dams, associated with the use of water resources,

aims generically at water supplying, the energy producing and, in many cases, flow regu-

lating and flood controlling.

Considering the dam dimensions and the potential risks associated with its structural

failure, due to the occupation of the downstream valley, and to the costs of the construction,

maintenance and rehabilitation, the use of probabilistic principles in its design, as it is

already performed for other type of structures, is justified considering adequate levels of

safety.

The objections shared throughout the dam engineering community, regarding the

difficulty in estimating the probability of failure for concrete dams, are expectedly overcome

by the failure mode and uncertainty modeling, allowing the application of probabilistic

principles for their safety analysis, based on conservative simplifications regarding the

structural behavior, namely: (i) the definition of the failure surface (dam-foundation

interface); (ii) the consideration of rigid body failure mechanisms; and (iii) the consideration

of the residual shear strength, given only by the frictional component, corresponding to a

limit analysis valid for ultimate limit states.

For that purpose, the failure modes are derived from the current construction and design

practice by comparing analytical and numerical models of a generic, though representative,

case study. The uncertainties involved in the safety of concrete dams are statistically

quantified, through the definition of probabilistic distributions for loads and material

properties, using, in addition to the elements found in the literature, the information

available at LNEC about those features, resulting from the monitoring of the concrete

dam behavior during the construction, first filling and operation periods.

This work explores the required tasks for the adoption of the partial safety factor
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method for the safety analysis of concrete gravity dams, at the design phase. Two rep-

resentative studies regarding the reliability-based design of concrete gravity dams and

partial safety factor calibration are presented, intending to stimulate the discussion on

the applicability of probabilistic principles for the design of concrete dams, as well as,

to influence the safety criteria to be considered in a future revision of the dam safety

regulation.

The obtained results confirm that the seismic load combination and the sliding failure

modes are the most conditioning situations. It is also observed that cross-sections profiles

flatter than currently used may be needed for high intensity seismic zones. Partial safety

factors that approximate reasonably the reliability-based results could be derived.

Keywords: Concrete gravity dams, Failure mode modeling, Uncertainty modeling, Reliability-

based design, Partial safety factor calibration

xii



Resumo

A construção e exploração de barragens, que está associada ao aproveitamento dos

recursos hídricos, visa essencialmente o abastecimento de água às populações, a produção

de energia e, em muitos casos, a regularização de caudais e o controlo de cheias.

Por serem obras de engenharia a que estão associados consideráveis riscos potenciais,

principalmente relacionados com a segurança das populações no vale de jusante, mas

também custos de construção, manutenção e reabilitação de monta, justifica-se que as

barragens sejam dimensionadas considerando níveis de segurança adequados, sendo que

tal pode ser conseguido, com vantagem, usando princípios probabilísticos, à semelhança

do que acontece correntemente com outros tipos de estruturas.

Pretendem-se ultrapassar as objeções levantadas pela comunidade da engenharia de

barragens relativamente à dificuldade de estimar a probabilidade de falha de barragens

de betão, através da definição analítica dos modos de falha e da modelação das fontes de

incerteza. Estas ferramentas permitem a análise probabilística da segurança estrutural de

barragens gravidade de betão com base em simplificações relativas ao seu comportamento

estrutural, nomeadamente: (i) a definição da superfície de falha (neste caso a interface

barragem-fundação); (ii) a consideração de mecanismos de rotura de corpo rígido; e (iii) a

consideração da resistência residual, contabilizando apenas a contribuição da componente

atrítica, correspondente a uma análise limite.

Com este propósito definem-se os modos de falha através da comparação de modelos

analíticos e numéricos de um caso de estudo genérico mas representativo. Faz-se previ-

amente a caracterização estatística das fontes de incerteza envolvidas na segurança de

barragens de betão, através da definição de distribuições de probabilidade de ações e resis-

tências, recorrendo-se, para além dos elementos disponíveis na literatura técnica e científica

afim, à informação disponível no LNEC resultante do acompanhamento e monitorização
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do comportamento deste tipo de estruturas.

O trabalho focou-se nas tarefas necessárias para a adoção do método dos coeficientes

parciais de segurança para análise da segurança estrutural de barragens gravidade de betão,

na fase de projeto. Apresentam-se dois estudos representativos do dimensionamento de

barragens gravidade de betão com base nos princípios probabilísticos e da calibração de co-

eficientes parciais de segurança para os estados limites últimos. Estas aplicações pretendem

estimular a discussão sobre a aplicabilidade destes conceitos no dimensionamento de bar-

ragens de betão, bem como influenciar os critérios de projeto com vista à sua consideração

em futuras revisões da regulamentação portuguesa de segurança de barragens.

Os resultados obtidos confirmam que a combinação sísmica e o modos de falha relativos

aos deslizamento da estrutura são as situações mais condicionantes. Conclui-se também

que perfis transversais com paramento de jusante menos inclinado, deverão ser necessários

em zonas sísmicas mais gravosas. Conseguiu-se uma calibração coerente dos coeficientes

parcias de segurança que aproximam bem os resultados obtidos por via probabilística.

Palavras-chave: Barragens de betão, Modelação dos modos de falha, Quantificação das

incertezas, Análise probabilística da segurança, Calibração de coeficientes parciais de

segurança
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Introduction

1.1 General framework

1.1.1 The role of dams in society

River regulation, since times immemorial, is linked to the formation of human settlements,

ensuring water supply and the development of first agrarian civilizations, based on earliest

irrigation systems. Flood mitigation, eliminating or reducing the damage to people/assets

in case of floods, were also intended with dam construction.

The need for hydropower, initially used for small local projects such as milling grain

and lifting water, has grown exponentially since the industrial revolution, in the 19th

century. Industrialization also inspired the mechanization of agriculture and stimulated

demand for a variety of products (Billington et al. 2005), which could only be ensured

with large-scaled irrigation systems.

As a renewable source of energy, hydropower, coming from the transformation of

potential energy into kinetic energy, due to the hydraulic gradient installed, plays a crucial

role in modern societies. The marked increase of dams, in number and size, in the last

two centuries reflects the growing energy demand and the concerns related to energy

dependence, sustainability and economy.

After the last census, the world register of dams (ICOLD 2018) includes more than

58000 large dams throughout the world, distributed as illustrated in Figure 1.1.
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Mexico (0.98%)

Others (8.03%)

China (40.86%)

USA (15.88%)

India (8.74%) EU (8.51%)

Japan (5.35%)

Brazil (2.34%)
Rep.Korea (2.29%)

Canada (2.00%)
South Africa (1.91%)
Albania (1.73%)
Turkey (1.67%)

Figure 1.1: Countries by proportion of large dams (ICOLD 2018).

1.1.2 Dams in Portugal

The construction of dams and the exploitation of the water resources for hydroelectricity

production grew, in Portugal, since the end of the 19th century.

First projects of small dimensions, from private initiative, aimed to provide energy

for the operation of local industrial facilities. Later, in order to legislate the production,

transport and distribution of energy and achieve the electrification of the country, the law

for the hydraulic exploitation (LAH 1926), based on the construction of larger hydropower

plants, was published. In the period following the second world war, some of the highest

dams in service today were built and began operating, such as, for instance, Cabril dam

(132 m) in 1954, Castelo do Bode dam (115 m) in 1951, Paradela dam (112 m) in 1956,

Picote dam (100 m) in 1958 and Venda Nova dam (97 m) in 1951.

Facing the increased energy demand that characterizes the modern lifestyle, several

dams were built since then such as, for instance, Alto Lindoso dam (110 m) and Alqueva

dam (96 m), which began operating in 1992 and 2002, respectively.

Nowadays, in Portugal, there are 258 large dams in operation, most of them built

during the second half of the last century. Following the national program for dams of
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great hydroelectric potential (PNBEPH 2007), some dams were built and began operating

in the last years, aiming to reduce the unexploited hydro potential from 54% to 33%, such

as, for instance, Baixo Sabor dam (123 m) in 2016, Foz Tua dam (108 m) in 2017 and

Ribeiradio dam (83 m) in 2014.

Some of the referred dams have multiple purposes, mainly related to water supply and

flood control. A significant number of dams, with smaller dimensions, were also built for

irrigation, mostly located in the center-south of Portugal.

1.1.3 Classical approach to dam safety

As the dam population grew throughout the world and increasingly higher dams were

being built, engineers faced new challenges in conceiving proper solutions and maintaining

adequate levels of safety, given that consequences of structural failure may be catastrophic

according to the social, environmental, political and/or economical perspectives.

In 1928, recognizing the benefits taken from experience and collaboration, a number

of countries formed the International Commission on Large Dams (ICOLD) aiming to

encourage advances in planning, design, construction, operation and maintenance of large

dams and associated civil works, by collecting and disseminating relevant information and

studying related technical questions (ICOLD 2011).

While structural and material behavior were extensively studied in the early years of

the scientific debates, during ICOLD congresses, dam safety was analyzed based exclusively

on the judgment and experience of the practitioner (Donnelly 2006), who should implicitly

account for the potential consequences of the structural failure in the choice of safety factors

and magnitude of loads. The design and construction principles, dependent on the local

experience, were progressively adapted as scientific advances were being achieved, especially

after some dam accidents that promoted discussions. The difference of interpretation found

in different regulatory instructions, such as, for instance, regarding the uplift pressures

and the associated reduction works (Andrade 1982) before the contribution of Casagrande

(1961), reflects the lack of consensus and orientation.

This orientation came formally at the late 1960s, when focus was put on subjects of

current concern such as dam safety, monitoring, aging and environmental impact. The

starting point for a common approach was the guidelines for dam safety (ICOLD 1987),

which intended to stimulate the development of national dam safety regulations by detailing

a comprehensive framework on dam design, operation, maintenance and monitoring that
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should be considered against all scenarios expected to occur during the life of a dam, given

(ICOLD 1987): (i) the several dam incidents, caused by inadequate design or construction,

with severe consequences; (ii) the growing dimensions of new dams and the aging of older

dams; and (iii) the increasing number of dams being built in countries with little or no

tradition and experience in dam engineering.

Although recognizing the merit of risk analysis in the mathematical optimization of

a problem that balances safety and economy, it is claimed that the calculation of the

overall probability of failure for a given dam, within meaningful confidence limits, would

not yet be possible (ICOLD 1987), since dam behavior highly depends on the foundation

characteristics which are only roughly known. As large dams are, among the class of

structures whose failure may lead to catastrophic consequences, those whose structural

behavior is predicted with the highest degree of uncertainty (Kreuzer 2005), analytical

models would require such assumptions that conclusions from a probabilistic assessment

would not have any practical value. Thus, the classical approach to dam safety, according

to these guidelines (ICOLD 1987), consists in a combination of deterministic criteria, based

on the concept of safety factor, and continuous monitoring. Nonetheless, this approach

has produced satisfactory results (Donnelly 2006) mainly because the uncertain nature

of the dam safety problem is masked by considering: (i) exceptional load events, such

as flood and earthquake, characterized by design values with high return period; (ii) a

dam classification system, according to the potential consequences of a failure, providing

guidance with respect to the conditions that a dam needs to resist to ensure that it does

not present an unacceptable danger to the environment or the public (Donnelly 2006);

and (iii) conservative safety factors, based on the allowable stress philosophy, intending to

absorb the unexpected uncertainties or some unforeseeable phenomena (Lombardi 1993).

1.1.4 Probabilistic approach to dam safety

Since the second half of the last century, the societal concern about welfare, safety, sustain-

ability and economy was extended to several domains of civil engineering including not only

dams but also other types of structures. At that time, there was a theoretical development

when the concepts of classical structural reliability emerged (Elingwood 1994), due to a

convergence between the theoretical reliability (Cornell 1969) and the design/standards

communities.

In the 1970s, the structural design approach changed from considering a safety factor
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applied within the strength, corresponding to the allowable stress philosophy, to the limit

state design, in which a safety factor was applied within the loads (Vrouwenvelder and

Siemes 1987). By influence of the Joint Committee on Structural Safety (JCSS), created to

improve the general knowledge on structural safety, there was a changed-over to the partial

safety factor approach in which the safety margin was distributed on both the strength and

the load sides, by means of partial safety factors defined proportionally to the uncertainty

and influence of each quantity in the desired level of safety. Although safety analysis is

still performed using deterministic safety criteria, this approach is commonly denoted as

semi-probabilistic approach, since the partial safety factors are quantified preferentially by

probabilistic calculations.

The JCSS probabilistic model code (JCSS 2001) provided the basis for the development

of the European Standards (EN1990 2002), in which, to keep the design process practicable,

a verification process based on partial safety factors (or semi-probabilistic approach) is

considered. In these standards, a structure classification system, differentiating the safety

requirements according to the possible consequences of failure, is employed. Nonetheless,

for the design of large dams, as well as other special structures with possible catastrophic

consequences, other dispositions shall be considered, indicating that, on one hand, the

inherent simplifications of these standards may not be adequate for the design of these

types of structures and, on the other hand, a more hazardous consequence class may be

suitable.

Regarding large dams, although stimulating the development of national dam safety

regulations based on the classical approach, ICOLD (1987) encouraged theoretical investi-

gations for future adoption of a probabilistic approach to dam safety and states that the

logical trend, in the design phase, goes from the predominantly deterministic concept of

global safety factors to the semi-probabilistic method of partial safety factors. For existing

dams, however, it is recognized that the standards-based approach is becoming increasingly

inadequate (ICOLD 2005). Due to the inherent conservatism of a wide range domain of

application, it may be costly ineffective (Bowles et al. 1998) for a single dam or a portfolio

of dams. In those cases, risk-based approach has gained acceptance for the safety manage-

ment of specific dams, as it allows a more focused deployment of finite resources to deal

with dam safety issues on a priority basis (Donnelly 2006).

Thenceforth, legislators, regulators, institutions and working groups have studied and,
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in some cases, implemented probabilistic approaches to dam safety. The limit state ap-

proach and the partial safety factor method for dam safety are already in: (i) the Chinese

standards for the reliability-based design of hydraulic structures (GB50199 1994); (ii) the

French guidelines for the justification of the stability of gravity dams (CFBR 2012); and

(iii) the Italian technical rules for the design and construction of dams (NTPCS 2014).

On the other hand, risk-based approach has been considered systematically for support

decision-making regarding the operation of dams, even though it is not used as a substitute

for the standards-based approach (ICOLD 2005). Nonetheless, as the dam building era is

coming to an end (Westberg 2010) and maintenance and rehabilitation have become a pri-

ority, the aging of dams has been handled from a risk perspective. In Australia (ANCOLD

2003), Canada (CDA 2007), USA (USBR 2011) and Spain (SPANCOLD 2013), guidelines

for the dam safety management, based on risk analysis techniques, are currently used.

1.2 Motivation, objectives and contribution

In Portugal, the preventive, safety control and civil protection measures for dams were

established in the first version of the dam safety regulation (RSB 1990). This document

formalizes the dam engineering practice, under the guidance of the ICOLD (1987), regard-

ing the design, construction, operation and monitoring, based on complementary codes of

practice (NPB 1993; NOIB 1993; NCB 1998). In this regulation, the classical approach

to dam safety, based on the definition of safety factors supported by monitoring and

inspection, was considered.

In the first revision of the dam safety regulation (RSB 2007), intending to incorporate

the experience gained from the application of the previous regulation, the dams were classi-

fied according to the potential damage to lives, assets and environment in the downstream

valley. However, the dam safety approach has not changed and the complementary codes

of practice were still valid.

Recently, the dam safety regulation was revised again (RSB 2018), intending to include

the scientific advances achieved with the Portuguese experience in dam engineering. The

former codes of practice were revoked and reviewed codes were included in the RSB

(2018). In this revised version, explicit formula was included to classify dams and redefine

the return period of the design flood and the design earthquake, according to its height,

reservoir capacity and permanent edifications in the downstream valley. The dam safety
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approach has changed for embankment dams, where the limit state approach and the semi-

probabilistic format for the dam safety analysis are now considered, whereas for concrete

dams the classical approach was maintained.

Meanwhile, the risk-based approach in embankment dams has been increasingly dis-

cussed in Portugal. On this subject, a program for the application of concepts associated

with the risk analysis to embankment dams was proposed (Caldeira 2005) and methodolo-

gies for the risk analysis were developed and applied to 36 Portuguese embankment dams

in operation (Pimenta 2009).

For concrete dams, as mentioned, the possibility of incorporating probabilistic principles

in the safety analysis has been recently explored worldwide, including Portugal (Ramos

1994; Farinha et al. 2014; Pereira et al. 2014; Pereira et al. 2015; Pereira et al. 2017),

having been implemented in design standards or guidelines for support the risk-informed

decision-making. However, the estimation of their probability of failure is one of the critical

aspects for the dam engineering community, which has serious objections regarding its

validity (Altarejos et al. 2015), since it was traditionally made by historic performance

methods or by a combination of expert judgment techniques with deterministic analysis

(Bowles et al. 1998), introducing relevant subjectiveness. The consideration of reliability

theory to estimate the probability of failure of concrete dams has been increasingly tested,

such as in the 11th and the 14th international benchmarks workshop on numerical analysis

of dams organized by the ICOLD, with theme C “Estimation of the probability of failure

of a gravity dam for the sliding failure mode” (Escuder et al. 2011) and theme D “Risk

analysis-assessment of reliability for concrete dams” (Westberg et al. 2017), respectively.

Furthermore, reliability theory has been successfully used to compute conditional proba-

bilities within the risk analysis tools to dam safety management (Serrano 2011), based on

the work of Altarejos (2009).

The success of the reliability methods in obtaining a realistic estimation of the probabil-

ity of failure of concrete dams depends intrinsically on the proper modeling of the sources

of uncertainties involved in the structural safety problem and the ability to model the

structural behavior in limit conditions, and the associated failure modes, through analyti-

cal or numerical models. Regarding the uncertainty modeling, which requires a judicious

combination of objective (data) and subjective (expert judgment) informations, guidance

can be found in Westberg (2010) which compiled statistical information for material prop-

erties and loads and present a reliability-based methodology for safety assessment of new
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and existing dams. This work was the basis for the development of a probabilistic model

code for concrete dams (Westberg and Johansson 2016), following the same structure as

the probabilistic model code (JCSS 2001), in an attempt to put together guidelines and

regulations and to provide background that may be used for future development towards

the application of the partial safety factor method for the dam safety analysis. Regard-

ing the structural behavior, the known works refer to concrete gravity (Altarejos 2009;

Westberg 2010) or buttress (Westberg 2010) dams, whose structural analysis can be based

on two-dimensional simplifications, with well-defined failure surfaces and corresponding

failure mechanisms. Extension to arch dams is more difficult since their structural behavior

depends on the valley shape and the dam-foundation interaction. In those cases, estima-

tions of the probability of failure could only be made by historic performance methods

(Pedro 2007).

Having been recognized as the logical evolution of the classical approach (ICOLD 1987),

this thesis aims to explore the tasks required for the adoption of the partial factors method

for the safety analysis of concrete gravity dams, at the design phase, namely the failure

mode identification and the uncertainty modeling. Simple developments regarding the

reliability-based design of concrete gravity dams and partial safety factor calibration are

also presented. It intends to stimulate the discussion on the applicability of probabilistic

principles for the design of concrete dams, as well as, to justify a future revision of the

dam safety regulation in the same direction as other regulations (GB50199 1994; CFBR

2012; NTPCS 2014). Although not intending to address the dam safety problem from a

risk perspective, it is recognized that most of these tasks can also be considered within a

risk analysis framework, particularly with regard to the failure mode identification, the

uncertainty modeling and the estimation of conditional probabilities of failure. Briefly, this

thesis aims at contributing with the following aspects:

• Identification of failure modes, corresponding to the actual practice of dam engineer-

ing, based on the physical perception of the gravity dam stability problem.

• Proposal of ultimate limit states, that explicitly set the boundary between the

occurrence of consequences in the downstream valley and its avoidance;

• Proposal of probabilistic models for the quantitative characterization of uncertainties,

related not only to loads and material properties but also to model simplifications,
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which can be used as a priori information allowing a recurrent utilization of prob-

abilistic (or risk) approach in the safety assessment and re-assessment of concrete

dams;

• Testing a reliability-based methodology for structural safety analysis of concrete

dams;

• Exploring the code calibration tasks for the quantification of partial safety factors

and design rules towards the formulation of a semi-probabilistic verification process

based on probabilistic principles;

• Promoting the discussion on this subject aiming to reformulate the Portuguese dam

safety regulation.

1.3 Thesis outline

This thesis is organized into 7 chapters, as illustrated in Figure 1.2.

In Chapter 1, the thesis is introduced. An overall review on the application of proba-

bilistic principles for structural safety analysis is made. The thesis motivation, objectives

and contribution are discussed.

In Chapter 2, the probabilistic formulation of the structural safety problem is addressed.

An historical review on the structural design is presented. Later, related subjects, namely

uncertainty modeling, approaches for the structural safety analysis, reliability methods

and procedure for reliability-based design and code calibration, are presented.

In Chapter 3, the methods for assessing the structural safety of concrete gravity dams

are presented. After a review on the historical background on concrete dam design and

construction, the constructive aspects and design principles, the loads acting on concrete

gravity dams and the philosophy of the design codes are detailed. At the end, failure modes

are modeled by comparing analytical and numerical solutions of representative, though

generic, case studies.

In Chapter 4, the sources of uncertainty associated with the safety of concrete gravity

dams are detailed. Data from monitoring and quality control tests are used to derive

probabilistic models for water loads and concrete mechanical properties, respectively. The

quantification of other sources of physical uncertainties, such as concrete density and
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Figure 1.2: Thesis organization chart.

concrete-rock interface shear strength, is based on the literature. Sources of model uncer-

tainty are also analyzed, mainly those related to the consideration of analytical seismic

load models that approximate the structural response to seismic actions.

In Chapter 5, the reliability-based design principles are applied to a theoretical case

study representing the structural class of large concrete gravity dams. After the definitions

of limit states, random variables and reliability requirements, the reliability-based design

procedure is applied to the design situations derived from all possible load combinations
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started by flood or earthquake load events.

In Chapter 6, the code calibration procedure is applied to derive partial safety factors

for the safety analysis of concrete gravity dams, at the design phase. For that, the results

of the previous chapter are used, considering the techniques presented in Chapter 2.

In Chapter 7, the main conclusions and future developments on this subject are pre-

sented.

1.4 Software used

In this thesis, the MatLab scripting language (The Mathworks Inc. 2010) was used for

data manipulation and algorithm development, regarding the failure modeling, uncertainty

modeling, reliability-based design and code calibration.

The numerical analysis of discrete element models was performed in the Universal

distinct element code (UDEC) software, version v5.0 (Itasca 2011).
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2.1 General considerations

Civil engineering structures play a central role in modern society, providing infrastructures

and facilities directly or indirectly necessary for our modern lifestyle. Furthermore, sus-

tainability and economical optimality are increasingly required, since environmental and

financial resources are limited. The benefits from the construction of structures must then

be balanced with the non-negligible risks related to their use and/or operation.

Integrated in that process, structural safety analysis is the subject that deals with the

verification whether structures can face expected load situations in safe conditions. However,

due to the unavoidable uncertainties involved, absolute safety is not achievable for the

structure itself. For that reason, structural safety shall be understood as fulfilling structural

requirements that guarantee that failure would only occur at very low probability.

Besides its uncertain nature, structural safety is also a time-dependent problem, due

to both time-variant loading conditions and deterioration of material strength properties.

Figure 2.1 illustrates the time-variant structural safety problem.

Structural engineering in general, and standards community in particular, has dealt

with the complex and uncertain nature of the structural safety problem by: (i) transforming

it to a time-invariant equivalent problem, deriving combined effects of loads, know as the

load combination problem (see, e.g., Ferry-Borges and Castanheta (1983)), which shall

realistically represent the most conditioning situations that a structure faces during its

13
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Permanent loads
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Figure 2.1: Illustration of the time-variant structural safety problem.

expected service life (tL); (ii) considering reliability theory as the appropriate tool for a

probabilistic quantification of safety; and (iii) defining target values of the probability of

failure (or reliability index) based on risk acceptance criteria.

Reliability or risk-based approaches to structural safety analysis, which considers ex-

plicitly the uncertainty in the computation of the probability of failure, highly depend

on the engineer performing them since they are conditional on the information available

(Baravalle 2017). To keep the design process practicable, however, structural codes consider

practical safety criteria, using the partial safety (or semi-probabilistic) format, calibrated

to meet the reliability requirements. The intended wide-ranging domain of application of

structural codes comes at a cost of optimality loss which shall be minimized during the

calibration process.

In this thesis, these principles are applied to concrete gravity dams. To achieve that,

some fundamental aspects are explored in the following sections, after a review of the

historical background on structural design, namely: (i) sources of uncertainty and their

modeling; (ii) approaches in structural safety analysis; (iii) methods to quantify reliability;

(iv) reliability-based design procedure; and (v) code calibration procedure.

2.2 Historical background on structural design

Engineers have dealt with uncertainty by means of conservative design or risk-aversion

strategies (Kübler 2007). Although the general acceptance of conservative design among

population due to the severe consequences of structural failure, this strategy is irrational,

from an economic perspective, when all the hazards, uncertainties and consequences are

included in the decision making (Baravalle 2017).

Until the 20th century, design solutions were frequently based on the experience ac-

cumulated from a long trial and error process. Mayer (1926) is frequently mentioned as

the first to propose a rational design by considering pertinent limit states and probability

14
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theory to quantify uncertainty. Ferry-Borges (1997) stated that these proposals were far

ahead of their time since applied methods of structural reliability were not developed yet.

Only after Freudenthal (1947), the scientific debate was initiated. Several works explored

this new perspective (see, e.g., Costa 1948; Pugsley 1951; Ferry-Borges 1954). Yet, proba-

bilistic concepts were addressed mainly in qualitative terms and sensitivity analysis was

often taken to study the effects of variability. Cornell (1969) provoked a paradigm shift

by introducing the reliability index as a quantitative measure of safety during a period of

theoretical development of structural reliability theory. Since reliability is defined as the

probability of a structure or element performing its intended function during its service

life and under predicted conditions, safety could then be quantified.

After the theoretical developments of the 1960s, the Joint Committee on Structural

Safety (JCSS), composed by five international associations in civil engineering, was created

in 1971, aiming at improving the general knowledge in structural safety and providing

sound basis for the formulation of structural design recommendations. Several meetings

and studies on structural safety lead to the publication of the JCSS probabilistic model

code (JCSS 2001), supplying the tools for probabilistic design and background for the

preparation of guidance documents concerning the design and construction of different

types of structures and materials. Also a guideline, addressed to decision makers, containing

the basic premises for the use of risk assessment in establishing rational decisions for the

benefit of and in consistency with the preferences of society and other stakeholders, was

published (JCSS 2008).

The publication of the European Standards, the Eurocodes (EN1990 2002), which

consider the reliability theory as the appropriate tool for the evaluation of structural

safety, reflects the increasing awareness of the engineering society for the importance

of risk-based decision making in design and maintenance (Vrouwenvelder 2008). These

standards establish a set of harmonized technical rules for the design of construction

works, aimed at unifying and replacing several national rules. Nowadays, according to

JRC (2015), Eurocodes (EN1990 2002) are implemented in most European countries. In

Portugal, however, a decree-law, establishing the period of coexistence with the current

national regulations for design of structures and encouraging its use to future definitive

adoption, has not been published yet. Meanwhile, the second generation of Eurocodes

(EN1990 2018) has been under development since 2015, aiming for a more oriented design

by expanding the application field, simplifying procedures and limiting alternative rules
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(European Commission 2012).

Eurocodes (EN1990 2002), as well as, most other modern standards for structural de-

sign, are based on the concepts of limit state, as a demarcation between desired and adverse

states of the structure, and partial safety factor (or semi-probabilistic) format for struc-

tural safety analysis. Although leading to deterministic measures of safety, this approach

is considered as a consistent simplification of fully probabilistic methods (Vrouwenvelder

2008) since the selection of partial safety factors, through code calibration, ensures that

the designed structures present a reliability index as close as possible to the target val-

ues. Due to its simplicity, a semi-probabilistic code reduces the engineering costs and the

dependency on the engineer interpretation.

2.3 Uncertainty modeling

2.3.1 General considerations

In the context of structural safety, following the Bayesian interpretation, probability ex-

presses a degree of belief or rational expectation, representing a state of knowledge. As

knowledge cannot be absolute, sources of uncertainty shall be properly taken into account

by probabilistic models that combine both data available (objective information) and

physical arguments, experience and judgment (subjective information).

Uncertainty is typically classified into two types:

• aleatory (or inherent or type I) uncertainty, related to the natural variation due to

unpredictable phenomena, which cannot be reduced;

• epistemic (or type II) uncertainty, due to the insufficient knowledge, which may be

reduced through more investigation and improve understanding.

The distinction between these two types of uncertainty, although not consensual over

the probability community, is often considered irrelevant in rational choices (Paté-Cornell

1996), making this more a philosophical than a practical question (Kiureghian and Ditlevsen

2009).

In practice, all fundamental variables with recognized uncertainty, whether from the

aleatoric or epistemic type, involved in the structural safety problem, such as material

properties, dimensions or loads, are considered as random or basic variables (non-stationary
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random processes and fields are also used in complex cases). The sources of uncertainty

are frequently divided into:

• physical uncertainty, related to the random nature of the random variable;

• statistical uncertainty, due to the consideration of sample statistic estimators to infer

on probabilistic models;

• modeling uncertainty, due to the consideration of simplified mathematical models to

represent real phenomena, such as the load effects on structures and the structural

response, based on random variables;

• human-related uncertainty resulting from the human involvement in the design,

construction, maintenance and use of structures. It is usually not explicitly considered

in reliability analysis (Schneider 1997), since understanding of human error is mostly

qualitative and limited (Melchers 1999).

Random variables are modeled by probabilistic distributions, characterized by a density

function fX and related parameters θ, in order to describe all relevant unknown quantities,

interpreting the probability of an event as a conditional measure of uncertainty on an

unitary scale (Bernardo 2009).

The moments, given in terms of the distribution parameters θ, are alternatives descrip-

tors. The first moment, or mean (or expected) value E [X], and the second central moment,

or variance V [X], are usually sufficient to describe a distribution. The third and forth

normalized moments, skewness and kurtosis, respectively, are complementary descriptors.

Although the number of potential distribution models is very large, in practice a rela-

tively small set have come to prominence, either because they have desirable mathematical

characteristics or because they adjust particularly well to reality (Forbes et al. 2000).

The probabilistic distributions used for the reliability-based applications presented

in this thesis are the normal, lognormal, uniform, Weibull and beta distributions, whose

properties are synthesized in Table 2.1.

In the following sections, strategies to model the different sources of uncertainty are

presented.

17



CHAPTER 2. PROBABILISTIC FORMULATION OF STRUCTURAL
SAFETY

Table 2.1: Properties of the probabilistic distributions used for the reliability-based appli-
cations presented in the thesis.

Distribution Probability density function Moments

Normal
fX
(
x|µ,σ

)
= 1√

2πσ2 · e− (x−µ)2

2σ2

parameters: µ, σ > 0
range: x ∈ ]−∞,+∞[

E (X) = µ

V (X) = σ2

Lognormal
fX
(
x|µ,σ

)
= 1

x
√

2πσ2 · e− (ln x−µ)2

2σ2

parameters: µ, σ > 0
range: x ∈ ]0,+∞[

E (X) = eµ+σ2/2

V (X) = e2µ+σ2 ·
(
eσ2 − 1

)

Uniform
fX
(
x|a,b

)
= 1

(b−a)
parameters: a, b
range: x ∈ [a,b]

E (X) = a+b
2

V (X) = (b−a)2

12

Weibull
fX
(
x|λ,k

)
= 1 − e−

(
x/λ
)k

parameters: λ > 0, k > 0
range: x ∈ ]0,+∞[

E (X) = λΓ
[

k+1
k

]
V (X) = λ2

(
Γ
[

k+2
k

]
− Γ

[
k+1

k

]2)

Beta
fX
(
x|α,β

)
= xα−1(1−x)β−1

B(α,β)
parameters: α > 0, β > 0

range: x ∈ ]0,1[

E (X) = α
(α+β)

V (X) = αβ

(α+β)2(α+β+1)

where B is the beta function and Γ is the gamma function.

2.3.2 Physical uncertainty

Generally, physical uncertainty for any random variable is not known a priori and must

be inferred from observations or be assessed subjectively (Melchers 1999). Any subjective

information can be used to define a conservative probabilistic model, such as a summary es-

timation from expert judgment, fuzzy numbers or theoretical characteristic values (Lemaire

2009). On the presence of observations, the parameters of a probabilistic model can be

estimated through statistical inference.

Considering a sample x̂ of a random variable x, its most important empiric parameters

are the sample mean m and sample variance s2, given, respectively, by,

m= 1
N

N∑
i=1

xi (2.1)

s2 = 1
N − 1

N∑
i=1

(xi −m)2 (2.2)
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The estimation of the parameters θ of a chosen distribution can be made by using:

• the moment-matching (MM) method which estimates the distribution parameters

by equating the theoretical moments of the distribution to the corresponding sample

moments;

• the maximum likelihood estimation (MLE) method which considers the best estima-

tors of the distribution parameters those that maximize the likelihood function L,

i.e.,

θ̂ = max
θ
L
(
θ|x̂

)
(2.3)

where θ̂ are the best estimators of the distribution parameters and L
(
θ|x̂

)
is given

by,

L
(
θ|x̂

)
=

N∏
i=1

fX
(
x̂i|θ

)
(2.4)

Often its logarithm is conveniently considered instead, since the logarithmic is a

strictly monotonically increasing function sharing the solution of the maximization

problem. The log-likelihood function is then given by,

logL
(
θ|x̂

)
=

N∑
i=1

log
[
fX
(
x̂i|θ

)]
(2.5)

For some distributions, an analytical solution of the maximization problem exists,

as the derivatives of the log-likelihood function in order to the distribution parame-

ters can be obtained by closed-form expressions. For other distributions, numerical

maximization must be performed.

The suitability of the selected distribution, with the parameters inferred from the

sample, can then be measured by goodness-of-fit tests, such as the Kolmogorov-Smirnov

or chi-squared tests.

2.3.3 Statistical uncertainty

In practice, very large samples are required to obtain representative estimates of the

distribution parameters. The insufficient information results in statistical uncertainties

whose relevancy in the outcome increases as the amount of data decreases.
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In probabilistic modeling, it is then possible to take statistical uncertainty into account

by considering the distribution parameters as random variables. Information about their

uncertainty can be taken from the covariance matrix determined through the Fisher

information matrix H, containing the negative second-order partial derivatives of the

likelihood (or log-likelihood) function, whose elements are given by,

Hij = −
∂2logL

(
θ̂|x̂

)
∂θi∂θj

(2.6)

Alternatively, samples of the distribution parameters can be obtained by bootstrapping

(Efron and Tibshirani 1993) and a probabilistic model can be assigned to them, considering

a method for parameter estimation.

2.3.4 Modelling uncertainty

Structural analysis makes use of simplified mathematical models, given in terms of random

variables, to represent real phenomena, such as the load effects on structures and the

structural response, based on either the mechanic formulation of the problem or empirical

relations based on experience (Thoft-Christensen and Baker 1982).

However, apart from the physical and statistical uncertainties in the quantification

of random variables, the prediction of real phenomena contains an additional model un-

certainty, due to simplifying assumptions, unknown boundary conditions and neglected

random effects which are not included in the model.

Ideally, model uncertainties, which can be modeled as random variables, should be

obtained from a set of laboratory experiments or “in situ” measurements. However, in

most cases, such information is lacking and statistical properties of model uncertainties

are based purely on engineering judgment.

The most common ways of introducing the model uncertainty into the calculation

model are,

Y = θ · f (x1, · · · ,xn) (2.7)

or,

Y = θ+ f (x1, · · · ,xn) (2.8)

where θ is the model uncertainty and f is a model function.
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However, with these formulations, the statistical properties of the model uncertainties

depend on the exact definition of the model output. A useful way to avoid this definition

dependency is to link model uncertainties directly to the random variables (JCSS 2001),

Y = f (θ1 ·x1, · · · ,θn ·xn) (2.9)

2.4 Structural safety analysis

2.4.1 General considerations

Structural safety analysis addresses the tasks to be performed for estimating the structural

response, through numerical or analytical methods, and assess whether the response is

satisfactory or not depending on the performance requirements.

When explicitly referring to the boundary between the occurrence of consequences and

its avoidance, performance requirements are properly represented by limit states, which

are defined as states beyond which structures attained undesirable conditions (Melchers

1999). The limit state philosophy, already considered in the Eurocodes, has replaced the

allowable stress, which reduces the allowable stresses to a fraction of the real structural

capacity producing uneconomical designed structures, and the ultimate load philosophies,

which, although considering the ultimate load capacity, is too severe for serviceability

requirements.

Some limit states represent immediate collapse, such as brittle fracture or loss of

equilibrium, while other cases involve slow or progressive failure, such as ductile fracture

or cracking (Calgaro 2011). Taking that into account, limit states are generally divided

into two major categories: (i) ultimate (or safety) limit states, concerning global or partial

structural collapse associated with human, economical and environmental losses, which are

expectedly achieved only after abnormal load conditions; and (ii) serviceability limit states,

concerning the functionality, durability and aesthetics of the structure and the comfort of

people, which must be considered during normal operation conditions.

Performance requirements must represent the structural response in face of foreseeable

load conditions. Given the involved uncertainties, structural safety can be analyzed con-

sidering three main approaches, listed below in descending order in terms of complexity

(Melchers 1999):
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• Risk-based (or level 4) approach: Safety is analyzed based on a full risk analysis

which considers explicitly both the probabilities and the consequences of hazardous

events. Due to its complexity, only directives for its application to each particular

case are often given;

• Reliability-based (or level 2 and 3) approach: Safety is analyzed based on reliability

requirements. Probabilities are computed through reliability theory, considering the

probabilistic modelling of uncertainties, and classes of consequences are considered

in order to distinguish structures with different levels of consequences. Classes of

structures can be analyzed, being the models and principles of the probabilistic

model code (JCSS 2001) a sound basis for this approach;

• Deterministic or standards-based approach (or level 0 and 1) approach: Safety is

analyzed based on a deterministic criteria which can be calibrated considering prob-

abilistic principles (semi-probabilistic or level 1) or expert judgment (level 0). Due

to its simplicity, standard codes are generally based on this approach.

Although covering a wide range of structures, building materials, ground conditions and

design situations, the Eurocodes (EN1990 2002) still recommends: (i) the use of risk-based

approach, when both uncertainties and consequences are outside common ranges, under

the guidance of ISO 2394 (2015); (ii) the reliability-based approach, applied when it gives

a significantly better representation of reality than the partial factor design format; and

(iii) for the common cases, the semi-probabilistic approach (via the partial safety factor

design format).

In the following sections these approaches are presented.

2.4.2 Risk-based approach

Within a risk-based approach to structural safety analysis, decisions are taken based on the

estimated risks. Risks are estimated through the combination of all triplets of probability

of a hazard event, probability of an adverse structural response and related consequences

(ICOLD 2005; Ang 2011), generically translated as,

R=
∫
P (H) ·P

(
D|H

)
·C
(
D|H

)
(2.10)
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where P (H) is the probability of occurrence of a hazard H and P
(
D|H

)
and C

(
D|H

)
are the associated probability and consequences of damage (or failure), respectively, given

in terms of injury to humans and environment or economic losses.

The process of evaluating if estimated risks are acceptable, tolerable or unacceptable,

when several ethical/economical criteria are contemplated, is denoted as risk evaluation.

For instance, the Health and Safety Executive (HSE) adopt a risk tolerability framework

(Figure 2.2), accommodating different perspectives, on which most of the decision-makers

are based (Serrano 2011).
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Figure 2.2: Tolerability for risk according to HSE (2001).

Variations on risk evaluation guidelines are expected from country to country, or

even within a country, since societal, regulatory, legal, owners and other value judgment

are introduced at this stage (ICOLD 2005). The guidelines may differ according to the

(Vrouwenvelder et al. 2001): (i) individual perspective, which generally indicates that

much higher risks are acceptable for voluntary than for involuntary activities; (ii) societal

perspective, which indicates a greater social aversion to large disasters; and (iii) economic

perspective, based on a rational cost-benefit analysis, intrinsically connected to the ALARP

(as low as reasonable practicable) principle, which states that risks are tolerable if the

costs of further risk reduction would be grossly disproportionate to the benefit gained.

Usually, regulators use risk curves or f-N charts (annualized failure probability vs

number of fatalities), as a tool for risk evaluation. Figure 2.3 shows some examples of dam

risk criteria considered by international associations.

2.4.3 Reliability-based approach

The reliability-based approach to structural safety analysis focus on ensuring that the

reliability of a structure, i.e. the probability of performing its intended function during a
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Figure 2.3: Dam risk criteria adopted by some international associations (adapted from
Hariri-Ardebili (2018)).

specific time period, meets defined reliability requirements. Consequences are indirectly

taken into account by the definition of adequate reliability levels to be achieved. Therefore,

considering a predicted load combination, a limit state defining the boundary between

desired and undesired structural performance, and the probabilistic models to quantify the

uncertainties involved, the reliability index of a structure, β, computed through reliability

analysis, must be greater than a defined target reliability index, βT , within a simplified

version of the risk acceptance criteria, i.e.,

β > βT (2.11)

The definition of the target reliability index, βT , taking into account the possible cause

(load event) of attaining a limit state and the possible consequences of failure in terms of

risk to life, injury, potential economical losses, public aversion to failure, the expense and

procedures necessary to reduce the risk of failure (Calgaro 2011), follows the reliability

differentiation principle needed in order to account properly the consequences of failure

(Schneider 1997).

The risk acceptance criteria introduced in the Eurocodes, in terms of target reliability

indexes, have been derived from long studies by combining various approaches including

human safety evaluation, optimization and calibration (Diamantidis and Holický 2010).

The second generation of the Eurocodes (EN1990 2018) extends the reliability classification,
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considered originally (EN1990 2002), to higher consequence classes. Table 2.2 presents the

classification proposed in EN1990 (2018).

Table 2.2: Qualification of consequence class and target reliability index according to
EN1990 (2018).

Consequence
class

Indicative qualification
of consequences

Target reliability
index (probability
of failure), for one

year reference period

Loss of human
life or personal

injury

Economic, social
and environmental

consequences

CC4 - Highest Extreme Huge -
CC3 - Higher High Very great 5.2 (∼ 10−7)
CC2 - Normal Medium Considerable 4.7 (∼ 10−6)
CC1 - Lower Low Small 4.2 (∼ 10−5)
CC0 - Lowest Very low Insignificant -

Although consequences classes CC0 and CC4 were added, the corresponding values

for the target reliability index are not mentioned. For CC4 class, however, EN1990 (2018)

states that additional provisions to those given can be needed.

2.4.4 Standards-based approach

2.4.4.1 General considerations

Deterministic measures of structural safety are based on the definition of explicit safety

criteria, whose violation represents the structural failure, with determined values for loads

and material properties. In this approach, reliability analysis is not performed since it is

expected that the safety criteria represent properly the performance requirements.

Distinction is made between two deterministic methods:

• Global safety factor (or level 0) method, considered in the traditional allowable

stress and ultimate load philosophies, which concentrates, in a single safety factor,

all sources of uncertainty;

• Partial safety factor (or semi-probabilistic or level 1) method, considered in the limit

state philosophy, which distributes the associated uncertainties for a set of partial

safety factors applied to the loads, load effects, material properties, simplified models,

etc, separately.
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In the following sections, these methods are described in detail.

2.4.4.2 Global safety factor method

In the global safety factor method, structural safety is guaranteed by means of a safety

factor λ given by the ratio between the structural carrying capacity R, and the load effect

S, i.e.,

λ=R/S (2.12)

Although this method is essentially deterministic, the concept of carrying capacity

and/or load effects differs according to the allowable stress and ultimate load philosophies,

since safety factors are be defined based on mean or representative (low probability) values.

For the allowable stress method, which considers only a fraction of the real structural

capacity in order to ensure an elastic behavior, the safety factor is applied to the limit

material capacity in serviceability conditions. The resulting permissible stresses shall be

greater than the applied stresses, i.e.,

σA ≤ σP
(
= σU/λ

)
(2.13)

where σA, σP and σU are the applied, the permissible and the failure stresses, respectively.

This philosophy is still punctually followed worldwide. In Portugal, for instance, the

dam safety regulation (RSB 2018) considers safety factors applied to material properties,

aiming to keep stresses below the elastic limit.

The adoption of the limit state concept, after Streletskii in 1937 (Elishakoff 2004), led

to the consideration of the ultimate structural capacity, computed in failure conditions,

moving the safety factor to the load side, into the so-called ultimate load method. In this

method, considered originally in the plastic theory of structures, the safety factor (also

know as load factor) multiplies the acting load just enough to cause the structural collapse,

while the material capacity is determined from the idealized plastic material properties,

i.e.,

WQ (λ ·Q) ≤WR (RP ) (2.14)

where WQ and WR are the external and internal work functions, described by the collapse

mode considered, and Q and RP are the applied loads and the plastic strength, respectively.
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The safety factor may be selected on the basis of experimental observations, previous

practical experience, economic and political considerations (Melchers 1999), and scaled

such that it expectedly absorbs uncertainties and guarantees adequate safety (Ponslet

1994), which generally results in a satisfactory design (Lemaire 2009). However, this

method incorporates all sources of uncertainty into a single coefficient, which penalizes

the consistency of the safety levels for the cases covered by a structural code. For that

purpose, partial safety factor method is more suitable.

2.4.4.3 Partial safety factor (semi-probabilistic) method

The partial safety factor method, also called load and resistance factor design (LRFD)

method, was proposed by Ravindra and Galambos (1978) for the design safety evaluation

of steel buildings. It emerged as the solution to incorporate reliability principles into the

safety analysis. Moreover, together with the limit state philosophy, it results in a combined

alternative to the allowable stress and ultimate load methods, since both the elastic

behavior can be considered for the serviceability limit states and the ultimate strength

can be accounted for the ultimate limit states, respectively. These are accomplished by

considering partial safety factors, applied to both the loads and the material strength, so

that reliability requirements are approximately fulfilled.

This method assigns a set of partial safety factors to the loads and material properties,

according to their uncertainty and influence to the desired safety level (Vrouwenvelder

and Siemes 1987). The structural safety is verified by means of criteria that compare

the load effects, E, and resistance, R, given in terms of design values of random vari-

ables xd = {Sd,fd,ad,θd} (loads, material properties, geometry parameters and model

uncertainties), such as,

E (xd) ≤R (xd) (2.15)

or, equivalently,

R (xd) −E (xd) ≥ 0 (2.16)

Generally, the safety criteria are simplified such that partial safety factors are ap-

plied to representative (characteristic) values of loads Sk1, · · · ,Skn and material properties

fk1, · · · ,fkm, with associated small probabilities of exceedance and non-exceedance, re-

spectively, comprising also all other sources of uncertainty (such as geometry and model
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uncertainties), given, respectively, by,

Sdi = Ski · γSi (2.17)

fdj = fkj/γfj (2.18)

where Sdi and fdj are the design values of the load Si and the material property fj ,

respectively, and γSi and γfj are the partial safety factor associated with the load Si and

the material property fj .

The formal link between partial safety factors and probabilistic methods, can be

established through the theory of code calibration (Vrouwenvelder 2008). Performing a

probabilistic-based evaluation, the partial safety factors are determined such that the

difference between the reliability for the different structures of the same consequence class

and the target reliability level is minimized (Sørensen et al. 1994).

In the case of the Eurocodes, the partial safety factors have been determined on the

basis of a combination of theory and calibration to existing practice in a large number of

European countries (Vrouwenvelder 2008).

2.5 Reliability methods

2.5.1 General considerations

In order to perform structural reliability analysis, it is convenient to describe, explicitly,

failure events in terms of functional relations between random variables, x = (x1, . . . ,xn).

These relations are called performance functions, G(x), as they represent the performance

of a structural system or element. The limit state function, G = 0, sets the boundary

between failure (G< 0) and non-failure (G> 0) states.

Reliability analysis aims at quantifying the probability of failure, pf , of a limit state

function, given the probabilistic description of the random variables x. An illustration of

the two-dimensional case is presented in Figure 2.4.

The probability of failure is obtained by the integration of the joint probability density

function, fX (x), over the failure domain (the hyperspace limited to G(x)< 0), i.e,

pf = P
{
G(x)< 0

}
=
∫

G(x)<0
fX (x)dx (2.19)
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Figure 2.4: Illustration of a two-dimensional limit state function.

Analytical solution of equation 2.19 only exists in particular cases of limited practical

interest. In most practical applications, in which limit state functions are explicitly defined,

approximate methods must be used. These are divided into:

• Gradient-based (or level 2) methods which approximate well-defined differentiable

functions, with known solution, to complex limit state functions;

• Simulation-based (or level 3) methods, instead of numerical integration which become

cumbersome for typical complex structural reliability problems as the dimension

(n) of the integration space increases, whose accuracy depend on the number of

realizations performed.

Details about the procedure of several methods are presented in reference works

(Ditlevsen and Madsen 1996; Schneider 1997; Melchers 1999; Haldar and Mahadevan

2000; Lemaire 2009; Faber 2012). In the following sections, some concepts about these

methods are highlighted.

2.5.2 Gradient-based methods

2.5.2.1 General considerations

The gist of gradient-based methods is set on second-moment fundamentals, which only

considers the first and second moments of the random variables. However, these are rarely

sufficient to obtain the real probability of failure, pf , as their range of applicability is

limited to linear limit state functions and normal random variables.
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Their extension to generic reliability problems requires, first and foremost, the Hasofer-

Lind transformation, which makes their solution invariant to the limit state formulation.

To deal with non-linearity, limit state functions can be approximated by simpler func-

tions about some point x
′ , advantageously the design point (x∗) which corresponds to the

point on the limit state surface closer to the origin, representing the worst combination

of random variables. The use of linear functions (or first-order Taylor expansion) is de-

noted as “first-order methods”. If the approximation by linear functions is not satisfactory,

parabolic, quadratic or high-order Taylor expansions can be used in a procedure denoted

as “second-order methods”.

Finally, the extension to non-normal variables, through variable transformation to

independent standard normal variables, lead to the generalization of the reliability problem

into the First-Order Reliability Methods (FORM) and Second-Order Reliability Methods

(SORM), according to the order of the approximation function.

2.5.2.2 Second-moment fundamentals

Lets consider a limit state function given by a linear combination of random variables x,

i.e.,

G(x) = aT · x (2.20)

where a is a vector of known coefficients. If the random variables x are normally distributed,

the limit state function G is then also normally distributed with the first two moments

(mean value and variance) given, respectively, by,

µG = aT · µ (2.21)

σ2
G = aT ·Σ · a (2.22)

where µ and Σ are the vector of means and the variance-covariance matrix, respectively,

of the random variables.

The probability of failure (equation 2.19) can then be rewritten as,

pf = P
{
G(x)< 0

}
= Φ

(
−µG

σG

)
= Φ (−β) (2.23)

where Φ is the standard normal distribution function, and β is the reliability index,
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conceptually introduced by Cornell (1969), which indicates the distance, in number of

standard deviations σG, between the mean value, G= µG, and the limit state, G= 0.

2.5.2.3 Hasofer-Lind transformation

The reliability index, as defined by Cornell (1969), is not invariant to the definition of

the limit state (Lind 1973), i.e., it is not constant for distinct, although mechanically

equivalent, reformulations of the same problem.

To handle it, Hasofer and Lind (1974) proposed an invariant definition of the reliability

index, considering the transformation of the limit state function into the standard normal

space (Figure 2.5) by replacing the normal variables, x, with independent standard normal

variables (normal distribution with zero mean and unit standard deviation), u, such as,

u = L−1 · (x − µ) (2.24)

where L is a lower triangular matrix obtained from Σ, by Cholesky decomposition, i.e.,

Σ = L · LT (2.25)

x1

x2
G(x) = 0

(a) Original variable space

u1

u2
g (u) = 0

(b) Standard normal space

Figure 2.5: Illustration of the limit state transformation to the standard normal space.

In the standard normal space, the reliability index β is given by the distance between

the origin and the design point u∗, i.e., the point on the limit state hyperplane closest to

the origin,

β =‖u‖ =
√

u∗T · u∗ (2.26)
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The vector that indicates the direction of the design point, called vector of direction

cosines, α, is given by,

α = ∇g (u∗)∥∥∇g (u∗)
∥∥ (2.27)

where ∇g = {∂g (u∗)/∂u1, . . . ,∂g (u∗)/∂un} is the differential operator vector of g, evalu-

ated at the design point u∗.

In the case of linear limit state functions, the vector of direction cosines is invariant.

Therefore, the reliability index can be obtained directly by solving the equation g (u∗) = 0,

in order to β, since the design point is given by,

u∗ = −α ·β (2.28)

Non-linear limit states should be approximated by a first-order Taylor expansion about

the design point u∗. Since this point is initially unknown, the reliability index β is obtained

by an iterative process, synthesized by Hasofer and Lind (1974) into the following algorithm:

1. Transformation of the random variables into independent standard normal variables,

using equation 2.24. Therefore, the limit state function is also transformed into the

standard space, G(X) → g (u);

2. Choose an initial guess for the design point, u∗
0;

3. Compute the reliability index, βi, using equation 2.26;

4. Compute the vector of direction cosines, αi, using equation 2.27;

5. Estimate a new point, u∗
i , using equation 2.28.

6. Repeat steps 3 to 5 until convergence.

With this adaptation, the reliability index, β, becomes invariant under any reformula-

tion of the limit state function.

2.5.2.4 First-order reliability method (FORM)

The first-order reliability method (FORM) is a generalization of the previous fundamentals

to non-normal random variables. The major difficulty introduced is, therefore, to transform

the original formulation, both variable and limit state function, into the standard space.
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This method was translated into the following algorithm (Rackwitz and Fiessler 1978)

for determining the design point u∗:

1. Choose an initial guess for the design point in the original space, x∗
0, which might

be assumed as µx;

2. Transform the design point x∗
i into the independent standard normal space, u∗

i ,

using:

a) normal tail transformation (Ditlevsen 1981), if the random variables are inde-

pendent;

b) Rosenblatt transformation (Rosenblatt 1952), if the random variables are corre-

lated and the joint probability distribution function, Fx (x), and its conditionals,

Fxi

(
xi|x1, · · · ,xi−1

)
, are known;

c) Nataf transformation (Nataf 1962), if the random variables are correlated and

only their marginal cumulative distribution functions Fxn (xn) and the correla-

tion matrix P are available;

d) Hermite transformation, if the random variables are correlated and only their

first two moments and the correlation matrix P are available;

3. Compute the reliability index, βi, using equation 2.26;

4. Compute the vector of direction cosines, αi, using equation 2.27. However, unlike

the normal variable case, since g (u) is not known explicitly, the components of ∇g

are alternatively given by,

∇G
(
x∗

i

)
= J i · ∇g

(
u∗

i

)
⇔ ∇g

(
u∗

i

)
= J−1

i · ∇G
(
x∗

i

)
(2.29)

where J is the Jacobian matrix with elements jnm = ∂un/∂xm.

5. Estimate a new point, u∗
i+1,

u∗
i+1 = u∗

i +λi · di (2.30)

where di is the search direction vector given by

di =
[
αi · u∗

i +G
(
u∗

i

)
·
∥∥∥∇g (u∗

i

)∥∥∥−1
]

· αi − u∗
i (2.31)
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and λi is the step size determined through a line search method such that f (1)
(
u∗

i+1

)
< f (1) (u∗

i

)
, where f (1) (u∗) is a nonnegative merit function given by,

f (1) (u∗)= ‖u∗ − α · u∗ · α‖2 + c1 ·G(u∗)2

2 (2.32)

where c1 is a positive parameter.

6. Compute the design point, on the original space, by reverting the transformation

carried out in step 2.

7. Repeat steps 2 to 6 until convergence of both β and u∗.

Figure 2.6 shows the first-order approximation of the limit state function illustrated

in Figure 2.5.

u1

u2
g (u) = 0

Figure 2.6: First-order approximation of the limit state function illustrated in Figure 2.5.

2.5.2.5 Second-order reliability methods (SORM)

The accuracy of FORM results decreases with the non-linearity of the limit state. To im-

prove the estimation of the probability of failure in these cases, the second-order reliability

methods (SORM) include information on the curvature of the limit state about the design

point which is ignored in the FORM procedure.

Between many possible approximations of the failure domain, second-order (or quadratic)

expansions of the limit state function were firstly studied by Fiessler et al. (1979) which

used the statistical theory of quadratic forms to approximate the failure surface. A closed-

form solution for the probability of failure, considering the typical parabolic approximation,
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was given by Breitung (1984), using the theory of asymptotic approximations, such as,

pf ≈ Φ (−β) ·
n−1∏
i=1

(1 +β ·κi)−1/2 (2.33)

where β is the reliability index obtained in FORM, and κi is the i-th element of the vector κ

of the curvature of the limit state function at the design point u∗, given by the eigenvalues

of the submatrix obtained by removing the last row and column of the following matrix,

A = RDRT√(
∇g (u∗)

)T · ∇g (u∗)
(2.34)

where D is the Hessian (second-derivative) matrix of the limit state surface in the standard

normal space evaluated at the design point, and R is the rotation matrix, which rotates

the coordinate system u to a new system u′ such that the last direction coincides with

the vector of direction cosines, α, given by the Gram-Schmidt orthogonalization of the

following matrix,

R0 =



1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

α1 α2 · · · αn


(2.35)

As equation 2.33 gives poorer results with increasing curvature of the limit states,

alternative, but more complex, versions are available (Hohenbichler et al. 1987; Tvedt

1990).

Figure 2.7 shows the second-order approximation of the limit state function illustrated

in Figure 2.5.

2.5.3 Simulation-based methods

2.5.3.1 General considerations

Simulation-based (or Monte Carlo) methods are numeric approaches that approximate an

integral by the mathematical expectation of generated samples belonging to the integration

domain.

In reliability analysis, these methods consist in re-writing the probability of failure
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u1

u2
g(u) = 0

Figure 2.7: Second-order approximation of the limit state function illustrated in Figure
2.5.

(equation 2.19) as,

pf =
∫

G(x)<0
fX (x)dx =

∫
Rn
I · fX (x)dx (2.36)

where I is an indicator function.

Based on an N-dimensional sample of I, the probability of failure is approximated by

its mathematical expectation, i.e.,

pf ≈ E [I] =
N∑

i=1
I/N (2.37)

The precision of the estimation can be evaluated through the sample variance of I,

given by,

S2 [I] =
E
[
I2
]

−E [I]2

N − 1 (2.38)

The sample size needed depends on the accuracy required. A typical strategy followed

is to stop the simulation procedure when a desired coefficient of variation of the estimation

is achieved.

The efficiency of this method is strictly related with the sampling technique employed.

The classic form of the Monte Carlo method, called crude Monte Carlo, is the simplest,

although cumbersome, choice. It uses a direct (or random) sampling technique over the

integration space. It generally requires a large amount of simulations and computational

effort for typical safety problems in civil engineering. Consequently, variance reduction

sampling techniques can be alternatively used. These techniques can be divided as those

that do not use any previous information on the specific problem, such as, latin hypercube
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(McKay et al. 1979) or directional (Bjerager 1988) sampling techniques and those that are

based on the design point obtained by a previous FORM analysis, such as, importance

(Melchers 1999), adaptive (Bucher 1988), conditional (Harbitz 1986) or line (Hohenbichler

and Rackwitz 1988) sampling techniques. Combinations of techniques are also possible,

such as, importance directional sampling (Ditlevsen et al. 1988), for instance.

Moreover, another variance reduction technique, named ring sampling, is proposed in

this study aiming to improve the simulation efficiency in cases of low failure probability,

when the design point cannot be previously obtained.

In the following sections the key concepts associated with these techniques are de-

scribed.

2.5.3.2 Direct sampling (crude Monte Carlo method)

In the crude Monte Carlo method, the indicator function represents a failure counter,

defined by,

I =

 1, if G(x)< 0

0, if G(x)> 0
(2.39)

Realizations of I are obtained by generating N samples x̂ and testing the limit state

function for failure (G(x̂)< 0) or non-failure (G(x̂)> 0).

For the generation of x̂, direct (or random) sampling technique is used individually for

each random variable xi. This technique consists in generating N uniformly distributed

random values ẑ = (ẑ1, · · · , ẑN ), in the interval [0,1], which are interpreted as probabilities

assigned to the cumulative distribution function of xi (ẑ = Fxi (x̂i)), and computing x̂i,

using the inverse transformation method as,

x̂i = F−1
xi

(ẑ) (2.40)

Figure 2.8 shows the outcome of the simulation procedure, using the direct sampling

technique, considering the limit state function illustrated in Figure 2.5.

2.5.3.3 Latin hypercube sampling

Latin hypercube sampling technique ensures that all areas of the sample space are covered

in the generation process. For that, the uniform sample space [0,1] is divided in N strata

of equal marginal probability 1/N , sampling uniformly since from each stratum. This
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Figure 2.8: Simulation procedure, using the direct sampling technique, considering the
limit state function illustrated in Figure 2.5.

technique is a n-dimensional extension of latin square (two-dimensional) sampling (Raj

1968).

Figure 2.9 compares samples obtained from direct and latin hypercube sampling tech-

niques.

x

Fx

(a) Direct sampling

x

Fx

(b) Latin hypercube sampling

Figure 2.9: Comparison of the direct and latin hypercube sampling generation procedure.

Other sampling techniques, based on latin hypercube, such as, for instance, orthogonal

array-based latin hypercube sampling (Tang 1993), are available.

2.5.3.4 Directional sampling

Directional sampling takes advantage of the rotational symmetry of the multinormal

probability density. In the n-dimensional standard normal space, the probability content

outside a hyper-spherical region with radius r is given by,

P [R≥ r] = 1 −χ2
n

(
r2
)

(2.41)
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where χ2
n is the chi-square distribution with n degrees of freedom.

Instead of sampling x̂, directions α̂, from the origin of the standard normal space,

are sampled and the conditioned probability of failure is quantified, given each sampled

direction, using equation 2.41.

For that, the n-dimensional vector u, which intersects the limit state function in the

standard normal space (g (u) = 0), is expressed as,

u = r · a (2.42)

where a is the directional unit vector, and r is the radius or the radial distance from the

origin to the limit state function, which can be obtained using a line-search method.

Unlike the qualitative failure or non-failure outcome of the crude Monte Carlo method,

the indicator function I is quantified as the conditional probability of failure given the

direction defined by the unit vector a (Bjerager 1988), i.e.,

I = 1 −χ2
n

(
r2
)

(2.43)

where r is the distance from the origin to the limit state function in the direction defined

by the unit vector a .

Figure 2.10 shows the outcome of the simulation procedure, using the directional

sampling technique, considering the limit state function illustrated in Figure 2.5.
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Figure 2.10: Simulation procedure, using the directional sampling technique, considering
the limit state function illustrated in Figure 2.5.

This sampling technique is specially effective for small probabilities of failure, provided

that n is not too large.
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2.5.3.5 Importance sampling

The importance sampling technique consists in sampling, more frequently, the “important”

(i.e. near-failure) regions. To deal with the biased estimation obtained from forcing the

sampling points to fall into the “important” regions, each simulation is weighted by the

likelihood ratio, i.e., the relation between the original probability density function, fX ,

and the “importance sampling” probability density function, hX . Therefore, the indicator

function, in this technique, is given by,

I = fX (x)
hX (x) ·

 1, if G(x)< 0

0, if G(x)> 0
(2.44)

The efficiency of the importance sampling estimate depends on the choice of hX .

Melchers (1999) suggests the use of the multinormal density function centred at the design

point x∗ with a diagonal variance-covariance matrix, σ (hX = Φn
(
x|µ = x∗,Σ

)
), instead

of just shift the original probability density function fX to the design point.

2.5.3.6 Adaptive sampling

The adaptive sampling technique is an iterative Monte-Carlo simulation procedure, sug-

gested by Bucher (1988), that uses the information from previous simulations to adapt

the “importance sampling” probability density function hX , which considerably reduces

the variance of the estimation of the probability of failure.

The first and second moments of the “importance sampling” probability density func-

tion hX are approximated by the sample mean and covariance of the samples, x̂, that have

resulted in failure (G(x̂)< 0). Then, the conditional mean vector and covariance matrix

are, respectively, given by,

x̄h = E
[
x̂|G(x̂)< 0

]
(2.45a)

σ̄h = E
[
(x̂ − x̄h) · (x̂ − x̄h)T |G(x̂)< 0

]
(2.45b)

The initial run may be performed as standard importance sampling, if the design point

x̄h = x∗ from FORM analysis is known. If not, a starting procedure based on crude Monte

Carlo method should be carried out in order to find an adequate starting point.
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2.5.3.7 Conditional sampling

Considering the standard normal space, this technique, proposed by Harbitz (1986) and

extensively detailed in Bernard and Fogli (1986), consists in excluding the β-sphere, i.e.,

the n-dimensional sphere with radius equal to β obtained in FORM analysis, from the

sampling domain. Thus, the sampling domain is restricted to values outside the β-sphere,

which has an “importance sampling” probability given by equation 2.41.

For sampling values outside the β-sphere, unit random directions â, uniformly dis-

tributed on the hypersphere, and chi-distributed random radius r̂, conditioned to r > β,

are generated. Since the product between an uniform and a chi distribution is a normal

standard distribution, standard normal values outside the β-sphere are obtained using

equation 2.42.

For generating chi-distributed random radius r̂, conditioned to r > β, inverse transfor-

mation method can be used, considering that,

χ2
n

(
r2|r > β

)
=
χ2

n

(
r2
)

−χ2
n

(
β2
)

1 −χ2
n

(
β2) (2.46)

With this technique, the indicator function I is given by,

I =
(

1 −χ2
n

(
β2
))

·

 1, if G(x)< 0

0, if G(x)> 0
(2.47)

2.5.3.8 Line sampling

Line, or axis-orthogonal, sampling technique was proposed by Hohenbichler and Rackwitz

(1988) to improve SORM estimates of the probability of failure, especially when asymptotic

conditions are not verified, by sampling parallel to the direction defined by the vector of

direction cosines.

Such as the SORM procedure to estimate the probability of failure (section 2.5.2.5),

this technique is held in the standard normal space u′, transformed from u such that the

last direction coincides with the vector of direction cosines α, using the rotation matrix

R obtained by the Gram-Schmidt orthogonalization of the matrix R0 given by equation

2.35, i.e.,

u′ = R · u =
{

u′
n−1,β

}
(2.48)
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where u′
n−1 contains the (n− 1)-dimensional subspace and β is the coordinate parallel to

the vector of direction cosines.

This technique consists in generating samples û′
n−1, belonging to the Φn−1 multinor-

mal domain and find, by a line-search method, the distance β̂ to the failure plane, i.e. the

solution of g (u) = 0 where u is given by reverting the transformation 2.48.

With this technique, the indicator function I is given by,

I = Φ (−β) · (2.49)

The efficiency of this sampling technique, such as in the case of the directional sampling

technique, is strictly related to the line-search method employed, since, for each simulation,

the limit state function must be solved several times.

2.5.3.9 Ring sampling

A type of stratified directional technique, denoted ring sampling, is proposed in this study

aiming at improving the simulation efficiency in cases of low failure probability, when the

design point cannot be previously obtained, by spreading the sample points in the radial

direction.

In this technique, the standard normal space shall be simplified in a space S defined by

a hypersphere with radius equal to a large and finite rmax (usually the largest significant

value according to the software used), and divided into m (m must be a factor of N)

subsets or rings Ri, such that S =
⋃m

i=1Ri, defined internally by a hypersphere with radius

rin = (i− 1) · rmax/m and externally by a hypersphere with radius rout = i · rmax/m.

Such as conditional sampling technique, for the ring Ri, unit random directions â,

uniformly distributed on the hypersphere, and chi-distributed random radius r̂, conditioned

to r > rin and r < rout, are generated.

For generating random radius r̂, inverse transformation method can be used, considering

that,

χn

(
r2|r > rin, r < rout

)
=

χn

(
r2
)

−χn

(
r2

in

)
χn

(
r2

out

)
−χn

(
r2

in

) (2.50)

With this technique, for N realizations of the limit state function (N/m samples within
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the i-th ring), the indicator function I is given by,

I =
(
χn

(
r2

out

)
−χn

(
r2

in

))
·m ·

 1, if G(x)< 0

0, if G(x)> 0
(2.51)

The specific case m= 1 is equivalent to the direct sampling technique. The choice of m

is dependent on the probability of failure and the non-linearity of the limit state function.

The smaller the probability of failure to be computed and the stronger the non-linearity

of the limit state function, the greater should m be.

Figure 2.11 shows the outcome of the simulation procedure, using the ring sampling

technique, considering the limit state function illustrated in Figure 2.5.
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Figure 2.11: Simulation procedure, using the ring sampling technique, considering the limit
state function illustrated in Figure 2.5.

2.6 Procedure for reliability-based design

2.6.1 General considerations

Structural design taking explicitly into account the sources of uncertainty is translated

into an optimization problem, in which an objective function, often given by the total

volume of structural materials or the cost of construction or manufacture (Melchers 1999),

expressed in terms of design variables θ = {θ1, · · · ,θn}, is minimized, providing that safety

requirements are satisfied.

If the safety requirements are expressed by a target reliability index, the optimization

problem is called reliability-based design optimization (RBDO), which, as opposite to

deterministic design optimization (DDO), takes explicitly into account the uncertainties,
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even though costs of failure are not included in the analysis such as in risk optimization

(RO) (Melchers 1999).

In the RBDO, the solution of the minimization problem,

θ∗ = min
θ
f (θ) (2.52)

is subjected to the following reliability constraint,

β (θ) ≥ βT (2.53)

where θ∗ is a vector with the optimum values of the design variables, f (θ) is an objective

function, which can be a complex combination of several factors, given in terms of design

variables θ, such as the cost of construction or manufacture (Melchers 1999), β (θ) is the

reliability index and βT is the target reliability index.

Since numerical solution of the minimization problem is often computationally expen-

sive, Kiureghian et al. (1994) developed an extended version of the first-order Rackwitz-

Fiessler algorithm (Rackwitz and Fiessler 1978), belonging to the class of inverse reliability

problems, to determine one unknown design variable θ∗, usually a geometry parameter,

for a given limit state function G, i.e.,

G
(
u∗,θ∗)= 0 (2.54)

such that the prescribed target reliability index βt is attained,

β
(
θ∗)= βT (2.55)

This algorithm is based on a line-search method that iteratively approaches the optimal

solution. Despite its accuracy, second-order algorithms are rarely used in inverse reliability

analysis due to the cumbersome numerical computation of the Hessian matrix, although

some faster approximate alternatives are available (Lim et al. 2014).

The algorithm, presented in the following section, can be used as an alternative to

root-finding methods that would require repeated reliability analyses.
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2.6.2 Solution algorithm

The algorithm proposed by Kiureghian et al. (1994) is developed in a similar way to the

Rackwitz-Fiessler algorithm (Rackwitz and Fiessler 1978) presented in section 2.5.2.4.

After the selection of initial values of the design point u∗
0 and the design variable θ∗

0,

both are iteratively updated, until convergence, by,

(
u∗

i+1
θ∗

i+1

)
=
(

u∗
i

θ∗
i

)
+λi · di (2.56)

where the search direction vector di is given by,

di =


βT · αi − u∗

i

∇g
(
u∗

i ,θ∗
i

)
·u∗

i −G
(
u∗

i ,θ∗
i

)
+βT ·

∥∥∥∇g
(
u∗

i ,θ∗
i

)∥∥∥
∂G
(
u∗

i ,θ∗
i

)
/∂θ

 (2.57)

and the merit function, used to computed the step size λi, is given by,

f
(
u∗,θ∗)= f (1) (u∗,θ∗)+ f (2) (u∗,θ∗) (2.58)

where f (1) (u∗,θ) is similar to the equation 2.32, and f (2) (u∗,θ) is given by,

f (2) (u∗,θ∗)= c2 ·
(
‖u∗‖ −βT

)2
2 (2.59)

where c2 is a positive parameter.

2.7 Procedure for code calibration

2.7.1 General considerations

Standards community, has mentioned, often seeks for simple safety checking criteria, not

requiring the performance of reliability analysis which, apart from its complexity, would

depend on the engineer interpretation, based on specific conditions and a standardized code.

Consequently, modern design codes are based on what is referred as the semi-probabilistic

format of the structure safety evaluation which is considered as a consistent simplification

of fully probabilistic methods (Vrouwenvelder 2008).

Moreover, aiming for simplicity and wide-coverage, making the design process easier
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and invariant, codes usually classify structures and/or failure modes, according to the

consequences of a potential failure, using the same reliability elements (partial safety

factors, load reduction factors and modification factors). Although leading to less optimal

structures, practical codes should have the smallest number of reliability elements that is

consistent with reasonably uniform standards of reliability (Thoft-Christensen and Baker

1982).

Nonetheless, safety checking criteria will always have some degree of arbitrariness, due

to limitations of semi-probabilistic design to account for the inherently probabilistic nature

of structural safety problems, giving rise to fluctuations in the reliability index (Vrouwen-

velder 1997). Code calibration shall then balance simplicity and optimality, ensuring a

lower bound of reliability within the structure class.

Code calibration strategies usually adopt a combination of the following perspectives

(Baravalle 2017):

1. Judgment, commonly considered when the reliability theory was not yet developed,

which consists in modifying codes based on past experience;

2. Fitting which consists in calibrating the new code in order to achieve the same

reliability levels as the old code;

3. Optimization which consists in calibrating the reliability elements to meet an optimal

design concerning a certain code objective related to the risk acceptance criteria.

In the following section, the code optimization problem is detailed.

2.7.2 Optimization problem

2.7.2.1 General considerations

The procedure for the formulation of the code optimization problem is commonly translated

into the following seven steps (Thoft-Christensen and Baker 1982; Ditlevsen and Madsen

1996; Gayton et al. 2004):

1. Definition of the structure class that the code will address, specifying types of

structures, geographical domain of validity, failure modes, materials and geometric

properties;
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2. Definition of the code objective through the definition of an appropriate target value

for the reliability index or the probability of failure. This decision is made either

by a process of probabilistic calibration to an existing code or to a risk acceptance

criteria;

3. Definition of the code format, which generally consists in the definition of the m

random variables affected by partial safety factors γi (i= 1, · · · ,m);

4. Selection of the N design situations, encompassing the typical failure modes and the

differentiation between probabilistic descriptors of the random variables, which shall

cover all domain of validity of the code, and the corresponding relative importance

ωj (
∑N

j=1wj = 1) quantifying the importance of satisfying the code objective as well

as possible;

5. Selection of a penalty function M
(
ω,ζ (γ) − ζT

)
, punishing the deviation of the code

from the objective (ζ (γ) − ζT ), where ζ is any degree-of-fit parameter such as the

probability of failure or the reliability index. The simplest option is a quadratic

penalty function, i.e.,

M
(
ω,ζ (γ) − ζT

)
= ω ·

(
ζ (γ) − ζT

)2 (2.60)

Since this function is symmetrical around ζT , equally penalizing under and over-

designed structures, Lind (1977), based on economical measures of the deviations

between the code and its objective, suggests the consideration of an asymmetrical

penalty function given by,

M
(
ω,ζ (γ) − ζT

)
= ω ·

[
k ·
(
ζ (γ) − ζT

)
+ e−k·

(
ζ(γ)−ζT

)
− 1
]

(2.61)

where k is a positive curvature parameter (Ditlevsen and Madsen (1996) suggests

k ≈ 4.35). Figure 2.12 compares the shape of these penalty functions. Nonetheless,

the final result is usually not very sensitive to the choice of penalty function (Thoft-

Christensen and Baker 1982; Ditlevsen and Madsen 1996);

6. Determination of the best set of partial safety factors using an code optimization

routine. In general, the code objective cannot be exactly achieved for all design

situations. Thus, the search for the best set of partial safety factors is made by
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ζ (γ) − ζT

Quadratic function
Lind: k=2
Lind: k=5
Lind: k=10

Figure 2.12: Shape of penalty functions.

minimizing the total expected losses ∆, i.e.,

min
γ

∆(γ) =
N∑

j=1
M
(
ωj , ζj (γ) − ζT

)
(2.62)

For the code optimization routine, two different approaches, detailed in the following

sections, may be considered, namely:

• Global optimization method, which, although being time consuming as they

require a large number of reliability analyses, solve directly the optimization

procedure resulting in the best set of partial safety factors;

• Design-value (or approximate) methods, which are less time consuming leading

to a set partial safety factors with a satisfactory precision.

7. Checking the code adequacy, by designing a set of test structures, using the set of

partial safety factors obtained, and comparing the obtained ζ to the target value ζT ,

which may indicate the quality of the procedure.

2.7.2.2 Global optimization method

In the global optimization method, at the i-th iteration of the numerical minimization

routine, the reliability analysis of structures designed for each of the N design situations,

considering the partial safety factors γ, must be performed. Figure 2.13 illustrates the

corresponding optimization routine.

This method, which leads to the optimal set of partial safety factors, requires a large

number of reliability analysis (as large as the number of design situations covered by
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Minimization routine

Definition of the
structure class

Definition of the
code format

Selection of N
design situations

and corresponding
relative importance ωj

Definition of the
code objective (βT )

Selection of an
initial set of partial

safety factors γ0

For each design situation j:

• Obtain design variable θj ,
using new code γi;

• Determine βj

(
θj

)
,

through reliability in-
dex.

Uncertainty
modelling

Calculate ∆

∆ minimum?
Modify partial

safety factors γi+1

Check solution

No

Yes

Figure 2.13: Flow chart of the code optimization routine considering the global optimization
method.

the code), at each iteration, which can be very computer time consuming. Design-value

methods (Ditlevsen and Madsen 1996) were developed to simplify this routine.

2.7.2.3 Design-value methods

The design-value methods to the optimization routine consist in avoiding the performance

of reliability analyses at each iteration, by dividing the step 6 of the optimization problem

into two substeps (Gayton et al. 2004): the design point search and the partial safety

factor computation. Thus, the determination of the design variable, and the corresponding

reliability index, for each design situation, can be move outside the optimization procedure,

(Figure 2.14).

The design point search consists in obtaining the design point u∗
j , and the corresponding
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set of partial safety factors γj (j = 1, · · · ,N), of each design situation considering structures

designed according to the code objective through inverse reliability procedure.

The partial safety factor computation consists in obtaining a single set of partial safety

factors γ, which shall be representative for all design situations considered in the structure

class. A simple approach is the consideration of the most conservative set of partial safety

factors given by the maximum value of each partial safety factor γij, i.e.,

γi = max
j
γij (2.63)

which, although leading to safety conditions for all structure class, is uneconomical. Other

simple approach is the consideration of the weighted mean value of each partial safety

factor,

γi =
N∑

j=1
ωj · γij (2.64)

which may not be the optimal solution since the resulting deviations from the code were

not assessed.

An improved method, based on a new and faster optimization problem, were suggested

by Ditlevsen and Madsen (1996). The authors admit that there is a replacement vector δ,

on the standard normal space, such that,

βj ≈ βT · αj · δ (2.65)

where αj is obtained from the design points u∗
j .

Theoretically, the replacement vector δ indicates the direction of a design point δ ·βT

common to all design situations. Since this point is unlikely to exist, all limit state functions

are adjusted to contain that point, leading to variations of the reliability index, which

shall be minimized, over the structure class.

The new optimization problem is re-written as,

min
δ

∆ =
N∑

j=1
M
(
ωj ,βT · αj · δ −βT

)
(2.66)

which is a numerical minimization problem that does not need the performance of reliability

analyses. Figure 2.14 illustrates the optimization routine suggested by Ditlevsen and
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Madsen (1996).

Minimization routine

Definition of the
structure class

Definition of the
code format

Selection of N
design situations

and corresponding
relative importance ωj

Definition of the
code objective (βT )

For each design situation j:
Obtain αj , from the

design point u∗
j , through

inverse reliability analysis
Uncertainty
modelling

Selection of an
initial guess for the

replacement vector δ0

Calculate ∆

∆ minimum?
Modify replace-

ment vector δi+1

Check solution
Yes

No

Figure 2.14: Flow chart of the code optimization routine considering the design-value
method suggested by Ditlevsen and Madsen (1996).

However, Friis-Hansen and Sørensen (2002) highlighted that the minimization of ∆

considering the assumption given by the equation 2.65, may lead to a δ far outside the

cluster of α. Moreover, even if the minimization is well-succeeded, the computation of the

partial safety factors requires the transformation of δ to the original variable space which

may result in many sets of partial safety factors, since there are as many transformations

as selected design situations (Gayton et al. 2004).

In this thesis, an alternative approach is used, based on the consideration of the

design variable as degree-of-fit parameter (ζ = θ). Given that the optimum value of the

design variable θ∗ was computed through previous inverse reliability procedure, regarding a

specific code objective (target reliability index), the deviations using the code may indicate

its adequacy.

The minimization routine, which does not need the performance of reliability analyses,
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is then expressed by,

min
γ

∆(γ) =
N∑

j=1
M
(
ωj ,θj (γ) − θ∗

j

)
(2.67)

where the design variable θj , corresponding to the design situation j, is obtained by a

line-search method. The set of partial safety factors given in equation 2.64 can be used as

an initial guess and the set given in equation 2.63 can be used as an upper bound for the

minimization routine.

However, gross errors may be introduced with this approach due to the expected non-

linear relation between the reliability index β and the design variable θ. A small variation

of the design variable θ may result into disproportional variation of the corresponding

reliability index. In order to take that into account, it is proposed that the weights, ωj ,

besides the relative importance of the design situation over the structure class, includes

also some information regarding the effect of the variation of the design variable on the

reliability index. Thus, in this approach, the weights are given by,

ωj =
ω

(1)
j ·ω(2)

j∑
ω

(1)
j ·ω(2)

j

(2.68)

where ω(1)
j is the relative importance of the design situation j, as described in step 6 of

the optimization problem, and ω
(2)
j is given by,

ω
(2)
j = ∂βj (θ∗)

∂θ
≈ βj (θ∗ +∆θ) −βT

∆θ
(2.69)

which can be approximate by the finite-difference formula. Therefore, more importance

is given to the adequacy of the code to the design situations whose reliability index has

shown more sensitiveness to variations in the design variable θ.

The computation of βj (θ∗ +∆θ) can be performed just after the inverse reliability

procedure and before the minimization routine. This procedure is illustrated in Figure

2.15.
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Figure 2.15: Flow chart of the code optimization routine considering the alternative design-
value approach proposed.
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Safety of concrete gravity dams

3.1 General considerations on dams

Given their importance, dimensions, the problems that should be solved during design and

construction, the influence on the environment and mainly the potential risks involving

their operation, dams are one of the most significant engineering structures in general

(Tanchev 2014).

Water-retention dams are single- or multiple-purpose structures, integrated in river

water management projects, which intend to create storage reservoirs, raise the water level

upstream or control the water level downstream (ICOLD 1990). The purposes for dam

construction (water supply, irrigation, hydropower generation, navigation, flood control

and recreation) determine the required volume of the reservoir and the structure height

(APA 2001), defined as the overall distance between the lowest point of the foundation

surface to the top of the dam (ICOLD 1998).

In the planning stage, the possible dam implantation sites, throughout the course of the

river, are analyzed based on engineering, economical, political, social and environmental

aspects. The decision should result in the selection of a site that provides the best conditions

to ensure an optimal and safe exploitation of the water resources, according to the dam

purposes, balancing costs of construction and maintenance.

Local hydrology dictates the reservoir water management policy, according to the dam

purposes, given the water inflow into the hydrographic basin and the outlet works, designed
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to discharge, in safe conditions, the water inflow from a possible but unlikely design flood,

determined depending on the significance and size of the dam (Rissler 2001).

In general, three characteristic levels of water in the impounding reservoir are distin-

guished, namely: (i) the minimum operating level (MOL); (ii) the normal (or retention)

water level (NWL), which provides the optimum operation conditions; and (iii) the flood

(or maximum) water level (FWL), which is related to the design flood, often one meter

below the crest. This discretization divides the reservoir into three parts (Tanchev 2014):

• Dead storage, below MOL, which is expected to become filled with silt and deposits

during the service life and creates an area for fish during low levels;

• Live storage, between MOL and NWL, to be used during normal operation for water

utilization purposes;

• Retention storage, between NWL and FWL, serving for retention of flood water,

which shall be discharged, at a controlled or predicted rate, for safety reasons.

The structural solution, regarding the material and structural type, is not only condi-

tioned on the topography but also on the hydraulic and mechanical characteristics of the

foundation (Ramos 2004). While, generically, embankment dams are suitable for soft rock

or soil foundations (APA 2001) or when the availability of proper construction materials,

within a reasonable haul area, makes this solution economically more favorable, concrete

dams require a rock mass foundation capable of withstanding reasonable stresses (Thomas

1976). The valley shape, defined by the ratio of the width at the crest level, W , to its

depth below the crest level, H, may influence the choice of the structural type, generically

divided into:

• Gravity dams (Figure 3.1a), which make use of their own weight to resist the external

loads, are suitable solutions for wide valleys (W/H > 6), providing that the rock

mass foundation is capable of facing stresses in the range of 3 to 4 MPa (Thomas

1976). Hollow gravity dams have some specific advantages. Arch-gravity dams also

transmits part of the external loads to the abutments due to a curvature in plan;

• Arch dams (Figure 3.1b), which make use of an arch effect to transmit the external

loads to the foundation through abutment banks, are suitable solutions for gorges

(W/H < 3) and maybe narrow valleys (3<W/H < 6), having been built in valleys
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whose W/H ratio is up to 5 or more (Pedro 1999), providing the existence of rock

abutments with capacity of facing stresses in the range of 7 to 10 MPa (Thomas

1976). Arch dams can be divided, according to their curvature, into single-curvature,

curved only in plan, and double-curvature, curved in plan and in elevation;

• Buttress dams (Figure 3.1c), consisting in a water-tight flat or curved upstream wall

supported by a series of triangular evenly-spaced buttresses, are suitable solutions

for wide valleys in which gravity dams, due to their excessive volume, would become

uneconomical solutions or when rock mass quality is heterogeneous throughout the

implantation site (Ramos 2004), providing that buttresses rock mass foundation is

capable of facing stresses in the range of 5 to 7 MPa (Thomas 1976). Multiple-arch,

bulb head dams, among others, are some of the solutions considered as buttress dams

(Thomas 1976).

(a) Gravity dam. (b) Arch dam. (c) Buttress dam.

Figure 3.1: Types of concrete dams.

The practice regarding the dam safety analysis and control, at the design and oper-

ation stages, respectively, has been improved based on experience and guidance of the

International Committee on Large Dams (ICOLD), which defines large dams, whose safety

control is of major importance given their potential risks, as those which are (ICOLD

2011):

• at least 15 meters of height;

• between 5 to 15 meters of height, impounding more than 3 million cubic meters of

water.

The Portuguese dam safety regulation (RSB 2018) classifies large dams according to

the hazard associated to the dam operation and the potential risks, for which different
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safety requirements and control measures are established. The hazard associated with the

dam operation is characterized by a factor X, given by,

X =H2 ·
√
V (3.1)

where H is the dam height, in meters, and V is the reservoir volume, in cubic meters.

The potential risks are quantified according to the number of the permanent edifications

(Y) and the existence of infrastructures, facilities and other important environmental assets

in the downstream valley.

Table 3.1 presents the dam classification according to the Portuguese dam safety

regulation (RSB 2018).

Table 3.1: Dam classification (RSB 2018)

Class Dam operation hazard and potential risks

I X ≥ 1000 and Y ≥ 10

II
X < 1000 and Y ≥ 10; or 0< Y < 10; or

existence of infrastructures, facilities and other
important assets

III Remaining cases

For the safety control of large dams, during the dam service life, monitoring equipment

and outlet works, such as spillways and bottom outlet, must be used. Devices to measure

strains, displacements, temperatures, uplift pressures, and the reservoir water level are

commonly installed. Spillways, aiming to discharge the extra flood inflow, are divided

in controlled and uncontrolled, whether outlet gates are installed or not, respectively. In

some cases, related structures, such as the spillway channel and stilling basin may be

necessary to discharge safely the overflow water into the river channel (Tanchev 2014).

Bottom outlet, whose level of entrance is most often dictated by the dead storage, serves

to lower the reservoir water level in extraordinary situations, such as for repair works or

when the structural safety is threatened.

At the design stage, the goal is to define the structural characteristics of the dam

(dimensions, materials and additional safety measures) that guarantee the structural safety,

during the desired service life, under the expected most conditioning load combinations.

Both load combinations and safety criteria are established in national or international

regulations.
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In the following sections, the structural safety of concrete gravity dams is analyzed.

After a historical review on gravity dam design and construction, the constructive aspects

and design principles, the acting loads and the framework of safety regulations and design

codes of concrete gravity dams are presented. Lastly, the failure modes for typical gravity

profiles are modeled by comparing analytical and numerical solutions of a representative,

though generic, case study.

3.2 Historical background on dam design and construction

3.2.1 Developments until the 19th century

Although it is not clear when and where first water supply reservoirs were built, they are

undoubtedly among the earliest structures devised by mankind, being closely linked to the

rise and decline of civilizations (Jansen 1983).

The early dam builders created invariably simple embankment structures, easily erased

by floods (Jansen 1988), such as the Sadd el-Kafara dam (Egypt), built somewhere between

2600 B.C. to 2900 B.C. and generally accepted as the oldest known dam of real significance,

which breached after a short service period (Novak et al. 2007).

The Roman era brought understanding on engineering fundamentals and improved

craftsmanship. The Romans built many dams of very durable mortared masonry (Jansen

1988), some of them, such as the Proserpina and Cornalba dams (Spain), from the 2nd

century, are still in service. The Romans also adopted the arch principle in dam construction

and the use of buttresses, such as in the Olisipo dam (Portugal), also from the 2nd century,

which is believed to be the highest Roman dam with buttresses (Almeida 1969).

The masonry dams, which relied upon their weight for stability against sliding or

overturning, being the predecessors of modern concrete gravity dams, were initially built

based on rudimentary principles with both upstream and downstream faces sloped and

the base thickness many times greater than the height (Thomas 1976).

3.2.2 Rational profile selection

Until the first half of the 19th century, dam design had been based on empirical methods

and accumulated experience, which, although following the Roman legacy, resulted in a

gradual but non-continuous decreasing of the quantities of masonry (Thomas 1976), leading

to a more triangular section than trapezoidal. During that century, the masonry dam
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construction made important advances after French dam engineers began to incorporate

rational approaches into structural analysis, linking structural engineering to mathematical

theory.

Sazilly (1853) advocated that, in order to ensure proper safety of dams: (i) the stresses

sustained must not exceed a certain limit; and (ii) there must be no possibility of sliding

in the dam-foundation interface or within the dam body. Given the difficulty on devising

a designed formula containing both conditions, Sazilly (1853) stated that the dam shall

be designed solely with reference to the stress criteria, since no masonry dam had failed

by sliding, considering the two extreme load cases: (i) full reservoir, causing the maximum

compressive stresses at the downstream face; and (ii) empty reservoir, causing the maximum

compressive stresses at the upstream face in any horizontal section. Having established a

limit value for the vertical stresses, Sazilly (1853) suggested an idealized profile, designated

“profile of equal resistance”, in which, due to economic requirements, the maximum vertical

stress at both faces reach the limit for the two extreme load cases. After finding impossible

to integrate the differential equations that determine analytically the form of the theoretical

profile, Sazilly (1853) suggested a practical profile (Figure 3.2a) with horizontal layers and

stepped slopes.

Delocre (1866), intending to obtain the best profile for masonry dams, demonstrated

that a stepped profile involves considerable waste of materials while not resulting in a

significant increase of safety. The proposed profile (Figure 3.2b), whose analytical formula

was given, formed the basis for the design of the Furens dam (France), built in 1860-1866,

and influenced the dams built subsequently.

Rankine (1872), although corroborating the former principles, argued that, since the

downstream face are more sloped than the upstream face, the limit of the vertical stress

for the first should be lower than for the latter, recommending, based on the analysis of

existing masonry dams, a stress limit of 0.96 MPa and 0.75 MPa for the upstream and

downstream faces, respectively. Rankine (1872) also pointed out that no tension must be

allowed in the masonry, considering the possibility of water seepage since the dam is not an

impermeable body, which is ensured since the line of pressures lies within the center-third

of the profile. From these principles, Rankine (1872) suggested a profile (Figure 3.2c) with

logarithmic curves for both faces, neglecting, by simplicity, the vertical component of the

hydrostatic pressure on the upstream face.
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(a) Sazilly (1853) (b) Delocre (1866) (c) Rankine (1872)

Figure 3.2: Gravity profiles suggested in early studies (adapted from Wegmann (1908)).

3.2.3 The role of uplift pressures

While the center-third principle was generally accepted as ensuring for stability of moder-

ately loaded gravity dams, engineers began to recognize the importance of uplift pressures

(Jansen 1983), especially after some dam failures.

Uplift pressures were firstly considered in the design of Vyrnwy dam (Powys, Wales,

UK), in 1882-1891. A drainage system consisting of a set of rock drains connected to a

horizontal gallery with an outlet in the downstream face were built in order to reduce water-

seeping pressures. Although this practice continued for the following 30 years (Thomas

1976), this subject remained overlooked, not being explicitly considered in stability calcu-

lations, until the Bouzey dam (France) failure, in 1895, due to cracking caused by tensile

stresses of 0.2 MPa in the dam (Smith 1994).

Following this event, Lévy (1895) pointed out that the no-tension principle, in the

upstream face, was not sufficient to prevent the water seepage through cracks that may

occur by other processes, such as thermal loads, and the corresponding uplift pressures that

may lead to the dam instabilization. Lévy (1895) stated that the compressive stress on each

point of the upstream face must be equal or higher than the water pressure at that point

and proved that this condition is equivalent to adopt a linear uplift distribution, varying

from the reservoir water head at the upstream face to the tailwater head at the downstream

face, for any horizontal joint of the dam, including the dam-foundation interface.

Since uplift pressures were recognized, a time of discussion on their intensity and acting

area began. The evolution of masonry dams into cyclopean and mass concrete dams, due

to technical and machinery innovations which led to a widespread and economical use

of concrete (Chen 2015), also played an important role. Greater concern was placed on

the water seepage through the dam-foundation interface, instead of dam body, where
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waterproofing could not be ensured (Andrade 1982).

While becoming commonly accepted that the uplift pressures act over nearly the whole

dam base, such as demonstrated in relevant studies (Terzaghi and Rendulic 1934; Leliavsky

1945) and confirmed by the analysis of first piezometric data (EPRI 1990), the intensity

of the uplift pressures would depend on both the geological conditions of the foundation,

specifically the strength, permeability and state of fracturing, and the seepage and uplift

control measures undertaken, such as cutoff barriers, initially, and grout curtains and

drains, later (EPRI 1990).

Casagrande (1961), after the failure of Malpasset dam (France) in 1959 which led

to new studies on the hydromechanical behavior of the rock mass foundations (Londe

1987), confronted the settled practice of putting more effort into the construction of grout

curtains, questioning their capacity on reducing the uplift pressures. Using the observed

pressures in the foundation of Hiawassee dam (USA), Casagrande (1961) demonstrated

that the uplift reduction is mainly caused by the drains whereas the grout curtain is

ineffective for that purpose.

3.2.4 Modern challenges

Since the 1950s, the increase, in number and height, of dams accelerated around the world

due to the demand of water supply and clean hydropower for exponentially growing cities

(Chen 2015).

This period coincides with both the introduction of monitoring devices and techniques

to monitor different control variables (Rocha et al. 1958) and the development of numerical

methods, replacing the physical scaled models extensively used to study the dam behavior

mainly under rupture conditions (Rocha 1965), and its application to structural analysis of

concrete dams (Zienkiewicz 1947). Both monitoring and numerical methods for structural

analysis allowed better understanding on structural behavior, the long-term behavior of

materials, the hydromechanical behavior of the rock mass foundations and the dynamic

response of dams, since the concern about the effects of earthquakes in the structural

safety also increased as higher dams were built.

Nowadays, the development of roller-compacted concrete (RCC) dams reflects the

concern of dam engineering community in searching for economical solutions (Bretas 2012).

Economic reasons also motivate both the concern in maintenance and rehabilitation, as
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operational dams become older, and the introduction of probabilistic principles into the

decision-making process.

3.3 Constructive aspects and design principles of concrete gravity

dams

3.3.1 General considerations

Until the beginning of the 20th century, masonry dams had been an economical solution

to provide water supply, at a time when cement was scarce (Sims 1994). The evolution

to concrete dams, due to the widespread manufacturing and use of Portland cement, as

well as the technical and scientific developments in material and structural engineering,

allowed the construction of higher dams.

The construction practice and the design solutions of modern concrete dams are influ-

enced not only by economical reasons but also by the concrete behavior, as a structural

material, and the durability and safety requirements. On one hand, the consequences of

the use of concrete in such large structures, such as concrete gravity dams, and their effect

on rock mass foundations, whose hydraulic and mechanical behavior is highly dependent

on the existing discontinuities, have been reduced by adopting innovative construction

techniques and additional waterproofing and strengthening measures, respectively. On the

other hand, the mechanized concrete placement and formwork techniques have justified

the adoption of the modern slender and straight cross-section profile (Novak et al. 2007),

in which almost all recently built concrete gravity dams are configured (Chen 2015).

In the following sections, the main concerns, as well as the solutions usually adopted,

for construction and design are detailed.

3.3.2 Constructive aspects

3.3.2.1 General considerations

Although the concrete dam construction follows a scheduling defined to optimize resources,

some constructive solutions are employed to prevent the development of adverse effects that

may compromise the structural safety. Therefore, both the construction of the concrete

super-structure and the treatment carried out in the rock mass foundation intend to

improve the performance of the reservoir-dam-foundation system during the service life.
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Regarding the concrete super-structure, these solutions aim to minimize the conse-

quences of restrained volume changes, namely the degradation of the stiffness, strength

and durability of concrete dams, due to: i) external seasonal temperature variations, ii) in-

ternal temperature variations during the construction, and iii) expansive reactions.

Regarding the rock mass foundation, treatment measures, usually required to satisfy

the requirements of stability, deformation and low permeability (Farinha 2010), aim to

(ICOLD 1993):

• Improve its stiffness, ensuring homogeneity and integrity;

• Improve its strength, preventing sliding and uneven settlement;

• Improve its hydraulic behavior, reducing uplift and preventing piping;

• Extend its service life, preventing erosion and deterioration.

In the following sections, these issues are detailed.

3.3.2.2 Concrete super-structure

Due to their large dimensions, concrete dams are considered mass concrete structures,

as measures to minimize cracking due to heat generation, from cement hydration, and

attendant volume change (ACI 1996) are required.

Modern concrete dams are divided into independent monoliths, intersected by vertical

transverse contraction joints, usually spaced about 15 meters apart, avoiding the cracking

caused by high tension stresses during cooler seasons. However, since it is advantageous

to derive extra strength from the three-dimensional shape of dams, which is even more

relevant in narrow valleys (Herzog 1989), lateral teeth are built and grout is injected, after

the dam has been naturally or artificially cooled, in the contraction joints, allowing the

transmission of forces between adjacent monoliths. Thus, a concrete gravity dam acts as a

horizontal beam and the joints as plastic hinges since they would open and redistribute

the load (Thomas 1976). Waterstops are commonly used to prevent water leaks through

contraction joints (Batista and Farinha 2011).

Each monolith is composed by concrete blocks, placed in batches of, at most, 2 meters

of height (around 30 centimeters for roller-compacted concrete) or until 3 meters, if

cooling coils, for an artificial cooling of blocks, are used (Batista and Farinha 2011). The

corresponding lift joints are discontinuities which, if not carefully treated, may compromise
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Figure 3.3: Elevation view of concrete gravity dams.

the stability of the blocks above and be a preferential path for water transfers with serious

consequences regarding structural integrity.

This construction strategy aims at reducing the cracking risk due to heat dissipation

during hardening of concrete, specially important at younger ages when temperature

variations influence the development of mechanical properties. Otherwise, the resulting

high temperature gradients could lead to stresses that could exceed the strength capacity

(Serra 2017). This phenomena is enhanced by the addition of fly ash, which delays the

development of the concrete strength.

Mass concrete applied to dams, which is used in the dam core, is produced with larger

size aggregates, when compared with ordinary concrete, to reduce costs. Theoretically,

larger maximum size of aggregate (MSA) lead to a reduction in cement required to achieve

the desired quality and the rule should be use the larger MSA that is practical (ACI 2005).

However, it was demonstrated (Higginson et al. 1963) that there is an optimal combination

of the cement content and MSA to obtain the desired concrete strength (Figure 3.4).
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Figure 3.4: Effect of MSA on cement content (Higginson et al. 1963).
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For modern dams, the cement content rarely exceeds 250 kg/m3 (ICOLD 2008). To

fulfill the workability requirement, the MSA commonly used is between 120 and 150 mm,

for the dam core (ICOLD 2008). In reinforced zones (dam surfaces and galleries), smaller

MSA has been used to both reduce the concrete permeability and accommodate reinforced

bars.

Furthermore, some type of aggregates develops alkali-aggregate reactions (AAR), when

in contact with cement, which can lead to an expansion effect in concrete. Since, due to

their large dimensions, significant stresses and, consequently, cracking may result from the

restrained volume change, cement is blended with pozzolans and/or fly ashes, reducing the

AAR potential (ACI 2005) and the heat from hydration, without proportional strength

decreasing (Coutinho and Gonçalves 1994).

3.3.2.3 Rock mass foundation

Concrete dams are generally founded on rock masses, which are fractured, heterogeneous

and anisotropic media, due to the existence of non-planar discontinuities that govern its

mechanical and hydraulic behavior (Muralha 1995).

Loads from the dam construction, reservoir filling and operation cause variations in the

stress state of rock masses in a coupled hydromechanical process (Rutqvist and Stephansson

2003; Farinha 2010), since water flows, under pressure, through discontinuities causing

deformations in fractured rock masses which lead, in turn, to changes in permeability and,

consequently, in water flow.

The treatment usually required depends on both the type and dimensions of the

structure and the foundation hydromechanical characteristics. Generally, these treatments

are divided into:

• Consolidation grouting, which increases the shear strength and the stiffness of the

uppermost strata of the rock mass foundation and seals some discontinuities close

to the dam-foundation interface;

• Construction of a waterproof grout curtain, which creates a solid barrier reducing

the seepage, composed by rarely more than one row of vertical or sub-vertical grout

holes drilled from the drainage gallery close to the dam upstream face or from an

upstream plinth, located at the dam heel;
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• Construction of a drainage curtain, to reduce the uplift pressures, composed by, at

least, one line of boreholes drilled downstream from the grout curtain.

Figure 3.5 illustrates the waterproofing and drainage systems, connected to the gallery.

H

Gallery

Waterproofing

≈ 0.7 · H
≈ 0.5 · H

Drains

L
Ld

Figure 3.5: Waterproofing and drainage systems of the rock mass foundation.

The dam-foundation interface shall be treated in order to enhance the concrete-rock

bond and improve its shear strength. In current day practice, foundation contacts are

smoothed, by removing any rock outcrops, to minimize any geometrically induced stress

concentrations and the exposed rock is cleaned with high-pressure water before concrete

placements. Shaping of the foundation surface with teeth is also concerned, when the

foundation consists of firm and sound rock, as a structural solution aimed at improving

the joint with the foundation, as well as improving the resistance against sliding (Tanchev

2014).

3.3.3 Design principles

3.3.3.1 General considerations

Given the existence of transverse contraction joints, the safety analysis of concrete gravity

dams is advantageously conducted based on two-dimensional simplifications, neglecting

conservatively any three-dimensional effect, by considering the most conditioning monolith

typically located on the riverbed.

The design of concrete gravity dams is based on the stability analysis of the cross-

section profile, considering any rigid body mechanism. Although stresses shall not exceed
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some admissible limits (Thomas 1976), the safety of concrete gravity dams is independent

on the mechanical strength of the concrete, since sliding and overturning failures occur

before a conditioning stress field is achieved (Chopra and Zhang 1991).

For that, any potential failure surface (Figure 3.6) shall be considered, namely: i) lift

joints, ii) concrete-rock (dam-foundation) interface, and iii) rock mass discontinuities.

Although they could attain some relevancy for large concrete dams, lift joints are not

usually conditioning on the stability evaluation, since good construction strategy shall

ensure adequate resistance properties.

Lift joints

Dam-foundation interface

Rock mass
discontinuities

Figure 3.6: Potential failure surfaces of concrete gravity dams.

The design procedure starts with an initial definition of the cross-section geometry,

which is progressively updated until the fulfillment of safety criteria. In addition, the stress

analysis, especially in the dam-foundation interface, is of major importance since installed

tensile strengths result in cracking from the dam heel and, consequently, in an increasing

of the uplift pressures and reduction of the contact area.

In the following sections, the typical cross-section profile, the methods for stability

analysis and the shear strength modeling are presented.

3.3.3.2 Cross-section profile

The cross-section profile of modern concrete gravity dams is approximately triangular,

as suggested by Wegmann (1908) who proposed a thinner profile than those obtained in

earlier studies (Figure 3.2), due to: i) the increased compressive stress limit considered;

ii) the renunciation of the “equal resistance” rule, leading to a vertical upstream face;

iii) the increased unit weight assumed.
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In practice, the triangular cross-section is curved at the top to serve as spillway of an

overflow section whose crest matches the NWL. The non-overflow section, which should be

built when it is necessary to create a permanent access between the two margins and/or

to support the outlet gates, requires a minimum width lc at the top. Figure 3.7 shows the

typical cross-section profile of modern concrete gravity dams.

sd

1H

hc

hw

L

lc

Figure 3.7: Practical cross-section profile of modern concrete gravity dams.

For economy, the upstream face is usually vertical. However, it may be flared or inclined,

even if it leads to increased uplift pressures, to improve stability requirements (Chen 2015).

The downstream face slope is often considered as the design variable. To meet stability

requirements, the slope is usually in the order of 0.7 ≤ sd ≤ 0.8, depending upon uplift

assumptions (Corns et al. 1988). However, for higher dams with low density concrete or

under seismic loading, sd = 0.8 may not be necessarily appropriate (ICOLD 2000), and

flatter slopes (sd > 0.8) are needed.

The dam is usually keyed into the foundation, at a depth corresponding to 10% of the

dam height (Pedro 2018), hw = 0.1H, mobilizing a downstream passive resistance, which

increases the safety of the profile.

Furthermore, in specific cases, in order to improve stability and make the structural

solution viable, post-tensioned anchors have been used both in construction and rehabili-

tation (Brown 2015), although this solution is mostly adopted for rehabilitation purposes.
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3.3.3.3 Stability analysis

Gravity dam stability analysis consists in verifying if the stabilizing loads can counterpoise

the external loads.

A progressive methodology is normally adopted considering the limit equilibrium

method (LEM) and beam theory, to compute stresses, before considering linear or nonlinear

numerical analysis (Leclerc et al. 2003). The LEM is an analytical method that, considering

any translational or rotational movement of rigid bodies, verifies the equilibrium of the

structure. It is based on the computation of the total net force and its application point

along any failure surface. Although considering the beam theory to compute stresses, this

method does not take into account the relative deformability between the dam and the

foundation, which may be an unsafe simplification (Bretas 2012).

In the LEM, the stability is represented by a safety (or stability) factor, having two

interpretations (Chen 2015): i) the ultimate load to bring the structure to the limit

of equilibrium, denoted as “over-load factor”, suitable for overturning failure modes, and

ii) the ratio between the ultimate strength and the mobilized strength, denoted as “strength

reduction factor”, suitable for sliding failure modes.

3.3.3.4 Shear strength modeling

The potential sliding surfaces are formed by two rough walls partially in contact (rock

discontinuities) and partially bonded (concrete lift joints and concrete-rock interface)

subjected to normal and shear stresses.

Their shear behavior usually experiences two stages: i) the pre-peak phase, when an

increasing of the shear stress is followed by small shear deformation, and ii) the post-peak

phase, characterized by a sharp softening toward a residual strength, after the asperities

have been climbed (Figure 3.8a), due to a dilatancy phenomenon, or crushed (Figure 3.8b).

(a) Dilatancy mechanism (b) Crushing mechanism

Figure 3.8: Peak shear strength mobilization.

In reality, there is a coupled behavior, since the two mechanisms are not separated.
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The dilatancy mechanism results in a decrease of the contact area and, consequently, in an

increase of the stress in the contacts which eventually leads to punctual crushing. Therefore,

the prominence of each mechanism depends on the normal load and local geometry (Plesha

1987). Figure 3.9 shows the non-linear transition between the two mechanisms.

δ σ

τ

residual envelope

φr

peak (unbonded)
envelope

φr

φr +ψ

peak (fully bonded)
envelope

Figure 3.9: Typical shear behavior and failure envelope for interfaces.

In the range of low normal stresses beneath concrete dams (Westberg 2010), the failure

envelope is remarkably non-linear. However, due to its simplicity, Mohr-Coulomb criterion

is usually considered in stability analysis (Nicholson 1983) to model the shear strength.

This criterion is formulated, for the peak strength, with increased friction angle (dilatancy)

or the inclusion of a cohesive-like parameter (crushing), given, respectively, by,

τ = σ · tan(φb +ψ) (3.2)

τ = ca +σ · tan(φb) (3.3)

where τ is the shear strength, σ is the normal stress, φr is the residual friction angle, ψ is

the dilatancy angle (Patton 1966) and ca is the apparent cohesion.

Furthermore, for concrete-rock interfaces and lift joints, the shear strength is also

increased by the bond strength due to the binding properties of the concrete, resulting

in extra tensile and cohesive strength. Since tests showed that these interfaces are par-

tially bonded (Lo et al. 1991), the shear behavior is somewhere between the two extreme

situations (fully bonded or unbonded), depending on the bonded area (Krounis et al. 2016).

For the residual strength, the Mohr-Coulomb criterion is given exclusively by the
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friction component,

τ = σ · tan(φb) (3.4)

3.4 Loads

3.4.1 General considerations

Loads acting on concrete dams can be distinguished between: i) static or dynamic loads,

depending on whether the inertial effects are negligible or not, ii) direct or indirect loads,

depending on whether resulting in surface and mass forces or in imposed displacements;

iii) permanent, variable or accidental loads, depending on its probability of occurrence

and variability; or iv) construction, reservoir filling or operation loads, depending on when

they are applied.

For stability analysis, as the installed stress field is not conditioning, the loads con-

sidered in the design are: i) dead loads, ii) water loads, iii) ice loads, iv) silt loads and

v) seismic loads. Thermal loads, as described below, do not influence the stability of gravity

dams.

Figure 3.10 illustrates those loads.

Dead
weight

Hydrostatic
pressure

Silt
pressure

Ice load

ü(t)

Seismic
excitation

Uplift pressure

Figure 3.10: Loads for stability analysis of concrete gravity dams.

In the following sections the loads acting on concrete dams are detailed.
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3.4.2 Dead loads

During dam construction, concrete placement introduces vertical mass forces in the struc-

ture, which can be approximately considered as a quasi-static loading. The resulted dead

weight W , applied at the center of mass, is given by,

W = ρc · g ·V = γc ·V (3.5)

where ρc is the concrete density, g is the gravity acceleration, γc is the concrete unit (or

specific) weight and V is the volume erected.

3.4.3 Water loads

3.4.3.1 General considerations

Water action on porous media originates both boundary forces and forces corresponding

to the hydraulic gradient installed, from upstream to downstream, due to water seepage,

inducing, in immersed zones of the dam and the rock mass foundation: i) hydrostatic pres-

sures on the surfaces; and ii) water-seeping (or uplift) pressures in porous and discontinuous

media.

Since the dam-foundation system may be assumed as impermeable with the exception

of low permeability discontinuities through which water flows, the water loads usually

considered in stability analysis are the hydrostatic pressures acting on dam faces and the

uplift pressures acting in lift joints or opened cracks of the dam body, in the concrete-rock

interface and in rock mass fractures.

3.4.3.2 Hydrostatic pressure

Water at rest exerts perpendicular hydrostatic pressure on the upstream and downstream

dam faces, varying linearly with depth, as,

pw (z) = γw · z (3.6)

where pw is the hydrostatic pressure, γw is the water unit (or specific) weight and z is the

depth from the free-surface.

73



CHAPTER 3. SAFETY OF CONCRETE GRAVITY DAMS

The total hydrostatic force exerted in a horizontal layer, located at z = y, is given by

its integration over y, i.e.,

Iw (y) =
∫ y

0
pw (z) dz = 1

2 · γw · y2 (3.7)

applied at,

yIw (y) = 1
Iw (y) ·

∫ y

0
z · pw (z) dz = 2

3 · y (3.8)

where Iw (y) is the total hydrostatic force exerted on a horizontal layer located at z = y

and yIw (y) is the corresponding application point.

3.4.3.3 Uplift pressure

After the dam construction, the reservoir filling install a hydraulic gradient, from upstream

to downstream, causing the water seepage, under pressure, through the dam body and the

rock mass foundation.

Water flows, preferentially, through discontinuities such as lift joints or cracks on the

dam body, the dam-foundation interface and the rock mass foundation fractures. Therefore,

the hydromechanical behavior of the dam-foundation set is only properly simulated by

discontinuous models. Although the availability of numerical approaches, with increasing

degree of complexity (Ruggeri 2004b), their use is limited as it is difficult to have a detailed

knowledge of such discontinuities, specially those located at the rock mass foundation since

in situ measurements can only be carried out at a limited number of points (Grenoble

et al. 1995), and of their behavior under different loading conditions (Ruggeri 2004b).

Alternatively, equivalent continuum models, considering the dam body and foundation

as porous media, are commonly used and can be particularly accurate for densely and

evenly-spaced fractured rock mass foundation. Analytical solutions (Weaver 1932) for

determining pressures in porous media were deduced by solving the Laplace’s equation

obtained from the Darcy’s law (Darcy 1856) which admits a laminar flow, such as can be

adequately considered for the foundation of concrete dams (Wittke 1990). The obtained

pressure distribution, at the dam base, is approximately linear (Figure 3.11a) such as

proposed by Lévy (1895), based on stability principles.

The effects of the construction of a perfect waterproofing curtain (Figure 3.11b), reach-

ing different depths, were also studied (Weaver 1932), at a time when this practice was
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believed to be sufficient to reduce or even eliminate uplift pressures.

(a) Without waterproofing curtain

D

L

L/D = 1

(b) With a perfect waterproofing curtain

Figure 3.11: Hydraulic potential at the base of an impermeable dam founded on a porous
foundation (Weaver 1932).

However, Casagrande (1961), after the analysis of the observed pressures in the foun-

dation of the Hiawassee dam (USA), questioned the efficiency of the waterproof curtain,

composed by a single row of grout holes, in reducing the uplift pressures. Based on reliable

piezometric observations made at both sides of a single line of grout holes, Casagrande

(1961) concluded that its efficiency was rarely greater than 30%, following the expression

proposed by Dachler (1936) for the theoretical efficiency of imperfect cut-offs. Such effi-

ciency could be attained, instead, with the construction of a line of drains located at one

third of the distance between the dam heel and the dam toe, according to Brahtz (1936)

who studied the theoretical uplift pressure reduction by a line of drains.

Furthermore, starting from a idealized model of a two-dimensional flow considering

an impermeable dam founded on a finite, homogeneous, porous and isotropic media, with

two vertical cracks at the dam heel and the dam toe, Casagrande (1961) approximate

the solution of the piezometric surface, considering a horizontal laminar flow, given the

existence of a vertical drainage system that reaches the impermeable zone.

Considering this theoretical model and the mentioned assumptions regarding the foun-

dation properties, full reduction of the uplift pressures would be achieved by constructing

a continuous trench. In practice, the drainage system, composed by a set of evenly-spaced

boreholes, can only reduce partially the uplift pressures, originating the definition of an

efficiency-related factor.

According to the Casagrande’s solution, the efficiency of the drainage system is given
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by the ratio between the average hydraulic head at the drainage line and the hydraulic

gradient (Hr −Ht or Hr −Hg if the gallery is above the tailwater level) installed. Still

used nowadays to design the drainage system (Mascarenhas 2005), this solution relates

the drainage efficiency to the geometric characteristics of the drainage system (location,

radius and spacing).

Depending on the regulatory specifications which define the required pressure reduction,

the drains (Wyllie 1999) usually: i) have 0.076 mm of diameter; ii) are 1.5 to 5 m apart;

iii) are preferably located at 10% of the dam base; and iv) reach a depth of 50%, at most,

of the reservoir water head.

In the design phase, when no site information on the uplift pressure is available, a

bi-linear pressure distribution (Figure 3.12a) is usually considered, to account for the

pressure reduction by a drainage system drilled from the gallery, i.e.,

pu (x) = γw ·

 Hr − (Hr −Hd) · x
Ld

, if x≤ Ld

Hd −
(
Hd − max

{
Ht,Hg

})
· x−Ld

L−Ld
, if x > Ld

(3.9)

where Hr is the reservoir head, Ht is the tailwater head, Hg is the gallery level, Ld is the

drainage system location, from the dam heel, and L is the dam base length. The average

hydraulic head at the drainage line Hd is given by,

Hd = ku · L−Ld

L
·
(
Hr − max

{
Ht,Hg

})
(3.10)

where ku is an uplift factor, inversely proportional to the drainage effectiveness.

If there is no drainage system installed, or it become inoperative, linear pressure

distribution (Figure 3.12b) with no uplift reduction is considered, i.e.,

pu (x) = γw ·
[
Hr − (Hr −Ht) · x

L

]
(3.11)

The propagation of a crack from the upstream face may compromise the efficiency of

the drainage system. The total reservoir pressure is considered along a crack, which can

still be reduced if the crack length Lc is smaller than the drainage system location Ld,

otherwise no drainage reduction is considered. For Lc < Ld, the uplift pressures (Figure
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3.12c) are then given by,

pu (x) = γw ·


Hr , if x≤ Lc

Hr − (Hr −Hd) · x−Lc
Ld−Lc

, if Lc ≤ x≤ Ld

Hd −
(
Hd − max

{
Ht,Hg

})
· x−Ld

L−Ld
, if x > Ld

(3.12)

For Lc ≥ Ld, the uplift pressures (Figure 3.12d) are then given by,

pu (x) = γw ·

 Hr , if x≤ Lc

Hr − (Hr −Ht) · x−Lc
L−Lc

, if x > Lc

(3.13)

Hr

γwHr

γwHr γwHd

(a) With drainage system

Hr

γwHr

γwHr

(b) Without drainage system

Hr

γwHr

γwHr γwHd

(c) With a crack propagated not
beyond the drainage system

Hr

γwHr

γwHr

(d) With a crack propagated
beyond the drainage system

Figure 3.12: Uplift pressure distribution considering in stability analysis.

The total uplift force exerted at the dam base, for instance, is given by its integration

77



CHAPTER 3. SAFETY OF CONCRETE GRAVITY DAMS

over x, i.e.,

U =
∫ L

0
pu (x) dx (3.14)

applied at,

xU = 1
U

·
∫ L

0
x · pu (x) dx (3.15)

3.4.4 Thermal loads

Concrete dams are under variable temperature conditions, resulting in expansion or shrink-

age strains, which, due to restrained volume changes, causes both stresses and displace-

ments. At a specific time, the thermal field of concrete dams are dependent on the fluctu-

ations of the external temperature, structural and material properties and, as mentioned,

the constructive techniques employed (Batista 1998).

As a spatial-time-dependent load, temperature development within concrete dams

experiences three stages, as illustrated in Figure 3.13:

1. The exothermic stage, during concrete hardening when the highly exothermic chem-

ical reaction between cement and water occurs, which induces an initial stress field

into concrete dams whose consequences shall be minimized by adopting oriented

constructive solutions and construction scheduling;

2. The transient stage, from the end of exothermic stage, when the concrete temperature

is maximum, until reaching a steady-state thermal field, due to heat transfers with

the environment;

3. The permanent stage, during normal operation conditions when the dam surfaces are

exposed to seasonal temperature oscillations, which can be represented by overlapping

harmonic functions with annual and daily periods (Teles 1985).

Thermal loads are usually not critical to the global safety of concrete gravity dams,

since stability of rigid bodies are not influenced on the stress field installed because the

resulting forces are self-balanced.

3.4.5 Ice loads

In cold regions, an ice layer formed near the reservoir free-surface exerts pressure on the

upstream face of the dam, varying linearly over the ice thickness, due to (USBR 1976):
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Figure 3.13: Temperature development process within concrete dams (adapted from Chen
(2015)).

i) thermal expansion (static effect) of the ice layer, depending on the temperature rise,

and its thickness, coefficient of expansion, elastic modulus and strength; and ii) wind drag

(dynamic effect), depending on the size and shape of the exposed area, the roughness of

the surface, and the direction and velocity of the wind.

Furthermore, freeze/thaw cycles of seepage water, due to restrained volume changes,

play a significant role in degradation of concrete dams located in cold regions (Léger et al.

1995), which shall be considered in the prediction of their long-term behavior.

3.4.6 Silt loads

The water inflow drags fine materials which are deposited at the reservoir bed exerting

perpendicular pressure against the dam upstream face.

The total silt force can be derived from the earth pressure at rest, such as,

Is = 1
2 ·K0 · γ′

s ·h2
s (3.16)

where Is is the total silt force, γ′
s is the silt (submerged) unit weight, hs is the deposit

height and K0 is the coefficient of earth pressure at rest which, for a horizontal ground

and cohesionless material, can be given by (Jaky 1948),

K0 = 1 − sinφs (3.17)

where φs is the internal friction angle of the silt deposit.
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3.4.7 Seismic loads

3.4.7.1 General considerations

For complex structures, the earthquake effects on concrete dams can be accurately accessed

using numerical models capable of simulating both the structure dynamic behavior and

the seismic excitation, which implies the performance of nonlinear time-history analysis

to achieve a realistic response of the reservoir-dam-foundation system (Bretas et al. 2014).

However, simpler methods, based on analytical seismic load models (Figure 3.14), are

commonly used, mainly at the design phase, to evaluate the stability conditions of gravity

profiles during seismic events, represented by response spectra.

The pseudo-static load model (Figure 3.14a) considers inertia forces, applied at the rigid

body’s centroid, as the product between mass and acceleration. This procedure disregards

the amplification effect due to the high stiffness of the dam, as well as the dynamic nature

of the load.

The pseudo-dynamic load model (Figure 3.14b) recognizes the dynamic amplification

of the inertia forces along the dam height, using information from the earthquake design

spectrum, even though the dynamic nature of the load is not considered since equivalent

static loads are continuously applied.

(a) Pseudo-static (b) Pseudo-dynamic

Figure 3.14: Analytical seismic load models.

In the following sections, the seismic action, as defined in the Eurocode 8 (EN1998 2004),

and the corresponding specifications for Portugal are presented. Also, the pseudo-static

and pseudo-dynamic seismic load models are detailed.
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3.4.7.2 Seismic action defined according to the EN1998 (2004)

Regarding the structural design and safety evaluation, Eurocodes (EN1998 2004) uses

response spectra for the representation of seismic actions. These are idealized curves that

establish the minimum desired capacity (resistance) of structures according to the local

seismology. Response spectra give the peak response (acceleration, velocity, displacement,

etc) that a single degree-of-freedom oscillator must be designed to resist to, given its

natural frequency or period.

Eurocode 8 (EN1998 2004) characterizes the (acceleration) elastic response spectrum

Se (Figure 3.15), according to,

Se (T ) = ag ·S ·



1 +T/TB · (η · 2.5 − 1) 0s≤ T ≤ TB

η · 2.5 TB ≤ T ≤ TC

η · 2.5 ·TC/T TC ≤ T ≤ TD

η · 2.5 ·
(
TC ·TD/T

2
)

TD ≤ T ≤ 4s

(3.18)

where T is the vibration period of a single degree-of-freedom linear system, S is the soil

factor (S = 1 for type A or rock foundation), η is the damping correction coefficient (η = 1

for 5% viscous damping, usually considered for concrete structures), TB, TC and TD are

the limits of the period domain, characterizing the frequency content of the seismic action,

defined by the national authorities.

T

Se/ag

2.5Sη

TB TC TD 4s

Figure 3.15: Elastic response spectrum according to the EN1998 (2004).

The design ground acceleration ag, quantifying the intensity of the seismic action, are

defined according to the local hazard, considering the subdivision of national territories

into seismic zones, and the design return period, depending on the reliability requirements.

It can be obtained, based on the reference peak ground acceleration agr, associated with
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a return period of 475 years (corresponding to a probability of exceedance of 10% in

50 years, the service life considered for building structures), according to the following

transformation function (EN1998 2004),

ag (Tr) = agr · γI (Td) (3.19)

where γI is the importance factor given by,

γI =
(
Tr/Td

)−1/k (3.20)

where Tr = 475 years is the reference return period and k is a seismicity-dependent

parameter. The design return period Td is related to the probability of exceedance p of a

seismic action, during the service life tL, by,

Td = − tL
ln(1 − p) (3.21)

3.4.7.3 Seismic specifications for Portugal

The seismic specifications for the Portuguese territory can be found in the National

appendix of the European Standards adopted (NP EN1998-1 2010).

Following the recommendation of the Eurocode 8 (EN1998 2004), for the Portuguese

seismic characterization, two types of seismic action are distinguished: i) the seismic action

type 1, modeling earthquakes with their epicenters located offshore; and ii) the seismic

action type 2, referring to events with their epicenters located inland.

The parameters defining the elastic response spectra for each seismic action type are

given in Table 3.2. The seismic zones for the mainland Portuguese territory are represented

in Figure 3.16.

Table 3.2: Parameters that define the elastic response spectrum for rock foundations (NP
EN1998-1 2010).

Type 1 Type 2

TB 0.10 0.10
TC 0.60 0.25
TD 2.00 2.00
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c) NA–3.2.1(2) 

Em Portugal os valores da aceleração máxima de referência agR para as várias zonas sísmicas e para os dois 
tipos de acção sísmica a considerar são os indicados no Quadro NA.I. 

Quadro NA.I – Aceleração máxima de referência agR (m/s2) nas várias zonas sísmicas 

Acção sísmica Tipo 1 Acção sísmica Tipo 2 

Zona Sísmica agR (m/s2) Zona Sísmica agR (m/s2) 

1.1 2,5 2.1 2,5 

1.2 2,0 2.2 2,0 

1.3 1,5 2.3 1,7 

1.4 1,0 2.4 1,1 

1.5 0,6 2.5 0,8 

1.6 0,35 − − 
 

O zonamento sísmico para Portugal Continental, para o Arquipélago da Madeira e para o Arquipélago dos 
Açores é estabelecido, por Concelho, de acordo com a informação constante do Anexo NA.I, e ilustrado nas 
Figuras NA.I, NA.II e NA.III. 
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Figura NA.I – Zonamento sísmico em Portugal Continental  
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(b) Seismic type 2.

Figure 3.16: Seismic zones in mainland Portugal (NP EN1998-1 2010).

Table 3.3 shows the reference accelerations agr, established for the seismic zonation of

the Portuguese territory. The design ground accelerations for other return periods can be

obtained using the equation 3.19, considering k = 1.5 and k = 2.5 (NP EN1998-1 2010) for

seismic actions type 1 and 2, respectively.

Table 3.3: Reference accelerations agr (m/s2) for each seismic zone (NP EN1998-1 2010).

Zone 1 2 3 4 5 6

Type 1 2.50 2.00 1.50 1.00 0.60 0.35
Type 2 2.50 2.00 1.70 1.10 0.80 -

3.4.7.4 Pseudo-static load model

Equivalent static forces

The pseudo-static load model is a simplified load model that considers inertia forces as the

product between mass and acceleration. Disregarding the amplification effect due to the

flexibility of the dam, as well as the dynamic nature of the load, this approach assumes
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a dam acceleration equals to the ground peak acceleration or, equivalently, a rigid body

response.

This load model is particularly suitable for concrete gravity dams since, due to their

high stiffness (then rigid-body formulation may not differ considerably from the real

structural behavior), seismic actions generate mass-proportional inertia forces which play

an important role in stability problems. Assuming that the structural response is due

mainly to the fundamental vibration mode, in this procedure seismic equivalent static

forces, Fs, are applied in the dam centroid according to the concept of seismic coefficient,

Fs = α · ag ·V · ρc (3.22)

where α is the seismic coefficient, ag is the seismic acceleration, V is the dam volume, ρc

is the concrete density.

These inertia forces have a predominant horizontal component but also a vertical

component which reduces the normal stress on sliding interfaces, when it is considered

in the upper direction. Considering the combined effect of the horizontal and vertical

components, the seismic coefficient α is very often taken as equal to 0.67 for the horizontal

one and 0.20 for the vertical one (CFBR 2012) for the computation of the equivalent static

forces.

Hydrodynamic pressure

The water-dam interaction has also significant influence on dam behavior during the

earthquake. As opposite to the pseudo-dynamic load model which directly includes the

effects of impounded water, the pseudo-static load model only deals with inertia forces, i.e.

structural response to a seismic action. Therefore, in this approach, water-dam interaction

must be considered through additional water pressure acting on the upstream dam face.

For that purpose, the theory of water pressure during earthquakes were presented by

Westergaard (1933), and later corroborated using physical scaled models (Zangar 1952),

considering the following assumptions: i) water incompressibility; ii) free water surface is

at rest; iii) the reservoir is infinitely long; iv) the motion is horizontal; v) vertical upstream

dam face; and vi) rigid dam.

The solution of this problem is expressed, for an arbitrary acceleration, ag, in the form
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of infinite Fourier series, i.e.,

pws (y) = ag · 8 ·Hr ·
∞∑

i=1

(−1)i+1[
(2 · i− 1) ·π

]2 · cos
[

(2 · i− 1) · y
4 ·Hr

]
(3.23)

where pws is the water pressure and y is the vertical position (y = 0 defines the bottom of

the reservoir, y =Hr defines the water free surface).

The total force due to hydrodynamic pressure is given by the integration of this pressure

over the height of the reservoir, i.e.,

Iws =
∫ Hr

0
pws (y) dy (3.24)

applied at,

yIws = 1
Iws

·
∫ Hr

0
pws (y) · y dy (3.25)

3.4.7.5 Pseudo-dynamic load model

Chopra (1978) proposed a procedure for the elastic analysis for design and safety evaluation

of concrete gravity dams, called pseudo-dynamic load model. This simplified analysis

considers the contribution of the fundamental vibration mode, directly from the earthquake

design spectrum, based on the response history analysis of finite-element idealizations of

the dam monolith. Later, Fenves and Chopra (1986) extended this procedure to account

for the effects of water-dam-foundation interactions and contributions of higher vibration

modes through the “static correction” concept.

Contrary to the pseudo-static model, the pseudo-dynamic model recognizes the dynamic

amplification of the inertia forces along the height of the dam, since the dam is no longer

considered a rigid body, using information from the response spectrum. The dynamic

amplification is considered only in the horizontal direction. For the vertical direction,

equivalent static forces must still be considered. However, the non consideration of the

oscillatory nature of the inertia forces is its main drawback, since the horizontal and

vertical loads are continuously applied. Other disadvantage comes from the fact that this

is an elastic response based model, and therefore it may not be suitable for seismic analysis

in failure (non-elastic) conditions.

A detailed description of the pseudo-dynamic load model is presented in appendix A.

Considering only the fundamental vibration mode of the dam, the maximum effects of
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the horizontal earthquake ground motion, including the effects of the impounded water,

can be represented by equivalent lateral forces, f1, acting on the dam, given by (Fenves

and Chopra 1986),

f1 (y) = L̃1
M̃1

·
Sa

(
T̃1, ξ̃1

)
g

·
[
w (y) ·φ(y) + g · p

(
y, T̃r

)]
(3.26)

where M̃1 and L̃1 are the generalized mass and earthquake force coefficients given in

equations A.7 and A.8, respectively, Sa

(
T̃1, ξ̃1

)
is the pseudo-acceleration ordinate of the

design spectrum evaluated at the vibration period T̃1, which includes the influence of

impounded water, and damping ratio ξ̃1, given in equations A.4 and A.5, respectively,

w (y) is the weight of the dam per unit height, φ(y) is the horizontal component of the

displacement in the fundamental vibration mode, obtained in Table A.4, and p
(
y, T̃r

)
is a

function, obtained in Table A.5, representing the hydrodynamic pressure on the upstream

face due to a harmonic acceleration of period T̃r which is the fundamental vibration period

of the dam including the influence of the impounded water, given in equation A.2.

For higher vibration modes, with even smaller vibration periods, dam responds essen-

tially as a rigid body with little dynamic amplification, leading to the “static correction”

concept. The equivalent lateral earthquake forces, fsc, associated with the higher vibration

modes of dams, including the effects of the impounded water, are given by (Fenves and

Chopra 1986),

fsc (y) = ag

g
·

w (y) ·
[
1 − L1

M1
·φ(y)

]
+
[
g · p0 (y) − B1

M1
·w (y) ·φ(y)

] (3.27)

where p0 (y) is a real-valued frequency-independent function, obtained in Table A.6, describ-

ing the hydrodynamic pressure on a rigid dam undergoing unit acceleration, with water

compressibility neglected, both assumptions being consistent with the “static correction”

concept, and B1 provides a measure of the portion of p0 (y) that acts in the fundamental

vibration mode, given equation A.20.

Since the maximum effects of earthquake ground motion for the fundamental and higher

vibration modes do not occur at the same time, Fenves and Chopra (1986) suggest their

combination according to the square-root-of-the-sum-of-squares (SRSS) modal combination

86



3.5. DESIGN CODES

rule. Therefore, the total force of the seismic pseudo-dynamic loads is obtained by,

Fs =
∫ H

0

√
f2

1 (y) + f2
sc (y) dy (3.28)

applied at,

yFs = 1
Fs

·
∫ H

0
y ·
√
f2

1 (y) + f2
sc (y) dy (3.29)

3.5 Design codes

3.5.1 General considerations

In spite of the general guidance provided by ICOLD, the design strategy, strongly influenced

by local technical/scientific experience, vary considerably from country to country.

According to ICOLD orientations, to attain a satisfactory design, the structural solution

should, together with the foundation and environment (ICOLD 1988):

• perform satisfactorily its function, without appreciable deterioration (limited perma-

nent displacements and surface cracking and small changes in seepage), during the

conditions expected normally to occur in the service life;

• not fail catastrophically during the most unlikely but possible conditions which may

be imposed.

The major difficulty in formulating the design strategy lies in the definition of the con-

ditions “expected normally to occur” and “unlikely but possible”. While the interpretation

of these terms is made by national authorities, based on the selection of load combinations

according to their probability of simultaneous occurrence, ICOLD suggests the formulation

of related design scenarios (ICOLD 1988), namely:

• Utilization scenarios, encompassing the credible combination of load conditions or

events for which the selected design criteria will ensure the continuous satisfactory

performance of the dam;

• Hazard scenarios, encompassing events resulting from combinations of load conditions

or events which represent the limit of credibility and for which the selected design

criteria will eliminate the risk of catastrophic damage.
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In this formulation, an intrinsic distinction from the limit state philosophy is made,

since, due to uncertainties, the fulfillment of performance requirements cannot be qualita-

tively measured and risks cannot be completely eliminated, such as mentioned in Chapter

2.

Although recognizing that the objective of specifying safety criteria based on partial

safety factors could be accomplished, ICOLD (1988) refrained from following that design

philosophy since: (i) much further study and discussion is needed to establish generally

accepted values; and (ii) many parameters (such as those describing the constitutive prop-

erties of materials for instance) are not generally agreed upon and alternative specifications

can often be used.

Therefore, in the Portuguese dam safety regulation (RSB 2018), as well as most other

international guidelines (Ruggeri 2004a; ICOLD 2017), structural safety of concrete dams

is still analyzed based on global safety factors, since it is supposed that the quantification

of structural safety, in terms of probability, is difficult or even impossible.

However, in the last two decades, there has been a trend toward the adoption of

the limit state philosophy and the probabilistic-based (China, France and Italy) or even

risk-based (Spain) approaches to design of concrete dams. In China, standards for the

reliability-based design of hydraulic structures (GB50199 1994) are used. In France, in

order to harmonize the diversified practice regarding stability analysis of concrete gravity

dams (Peyras et al. 2008), the guidelines for the justification of the stability of gravity

dams (CFBR 2012) were published, considering a semi-probabilistic approach.

In these standards, the Eurocodes (EN1990 2002) formulation is followed: (i) design

situations are classified according to its duration; (ii) combination of loads are grouped

such that the sets of partial safety factors can be applied throughout the structure class;

(iii) characteristic (strength properties and permanent loads) and representative (variable

loads) values are related to the design situations; and (iv) limit state conditions and explicit

safety criteria, based on the semi-probabilistic approach, are defined.

In the following sections, these subjects are addressed, comparing, when possible, the

distinct interpretation of different national authorities.

3.5.2 Design situations

Design situations are sets of physical conditions representing the real phenomena occurring

during a certain time interval. Design codes differentiate design situations according to its
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frequency of occurrence. The design situations usually found in concrete dam design codes

that follow the Eurocode terminology (GB50199 1994; CFBR 2012) are, generally:

• Permanent situations, corresponding to long duration conditions, usually same as

the design service life;

• Temporary (or transient) situations, corresponding to construction or other tempo-

rary operating conditions that do not last long although are very likely to occur;

• Rare situations, corresponding to fairly likely conditions although not as likely as

permanent situations;

• Exceptional situations, corresponding to fairly unlikely conditions;

• Accidental or extreme situations, corresponding to extreme and very unlikely condi-

tions with serious consequences.

In other regulations, following the orientation of ICOLD, design scenarios are referred.

As mentioned, these are divided into: (i) utilization, and (ii) hazard scenarios.

3.5.3 Load combinations

3.5.3.1 General considerations

Load combinations are derived in accordance with the differentiation of design situations.

The Chinese standards (GB50199 1994) distinguish the load combinations related to

collapse limit states (basic or accident) from those related to serviceability limit states

(short-term and long-term). The French guidelines (CFBR 2012) group load combinations

in three categories: i) quasi-permanent, ii) rare, and iii) extreme combinations.

In most other regulations (Ruggeri 2004a), including the American standards (USBR

1976; USACE 1995; FERC 2002), distinction is made between three levels of load combina-

tions, safeguarding that other cases may be considered if justified: i) usual, ii) non-usual,

and iii) extreme combinations.

In Portugal (RSB 2018), reference is made to usual and extreme load combinations,

derived, respectively, from:

1. Utilization scenarios, such as:

89



CHAPTER 3. SAFETY OF CONCRETE GRAVITY DAMS

• during the construction, due to the construction process and the exothermic

stage of temperature development;

• during the first filling, due to the static and thermal loads induced during the

reservoir filling process;

• during the operation period, due the static (water, ice and silt), thermal and

dynamic loads (operational basis earthquake - OBE).

2. Hazard scenarios, such as:

• during the design flood with high return period;

• during the maximum design earthquake (MDE).

In the following sections, the hazard scenarios are detailed, considering the terminology

used in the French guidelines (CFBR 2012): i) extreme hydrostatic combination, and

ii) accidental earthquake combination, respectively.

3.5.3.2 Extreme hydrostatic combination

The definition of the design flood is based on the inflow hydrograph, obtained through

probabilistic methods considering the hydrologic properties of the region and the reservoir

water volume-height curves, depending on the construction purpose and the outlet works.

The return periods for the computation of the design flood are defined according to

the structure class (Table 3.1), such as shown in Table 3.4.

Table 3.4: Minimum return periods for the design flood (RSB 2018).

Height (m) Return period (years)

H ≥ 100 5000
100>H ≥ 50 2000
50>H ≥ 15 1000
H < 15 500

A dry freeboard (vertical distance between the FWL and the dam crest) of, at least,

one meter is usually adopted.

3.5.3.3 Accidental earthquake combination

The definition of the maximum design earthquake (MDE), linked to the maximum credible

earthquake (MCE), is based on engineer judgment since, in the current state of knowledge,
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it is not possible to affirm decisively if deterministic or probabilistic approach should be

used (ICOLD 1989).

In the deterministic definition of the MCE, its return period is meaningless since its

occurrence depends on the geological environmental considered (ICOLD 1989). However,

this is only possible through extended seismologic studies of the region, often complex and

uncertain. In the design standards, ground motions associated with specific return periods

are commonly adopted, although, for important structures, a deterministic quantification

of the MCE may be considered.

The Eurocodes (EN1998 2004) define the design earthquake as the one that has a

probability of exceedance of 10% during the structure service life. If considered for dam

design, according to equation 3.21, this would result in a return period of 1000 years, since

service life is often set at 100 years.

However, the Portuguese dam safety regulation (RSB 2018), recommends the quantifi-

cation of the return period for the MDE as a function of a global seismic risk index iR,

given by,

iR = i1 + i2 + i3 (3.30)

where i1, i2 and i3 are partial indexes related to the reservoir capacity, the dam height

and the potential risks, respectively. Their values are given in Table 3.5.

Table 3.5: Partial indexes for the computation of the global seismic risk index (RSB 2018).

Reservoir capacity Dam height Potential risks

V (hm3) i1 H (m) i2 Y i3

V ≥ 120 6 H ≥ 50 6 Y ≥ 400 (class I) 32
120> V ≥ 1 4 50>H ≥ 30 4 400> Y ≥ 10 (class I) 28
1> V ≥ 0.1 2 30>H ≥ 15 2 10> Y ≥ 1 (class II) 16

V < 0.1 0 H < 15 0
Y = 0 (class II) 12
Y = 0 (class III) 4

The return periods for the MDE are shown in Table 3.6.

3.5.4 Limit states

Limit states are states beyond which structures attained undesirable conditions. The

distinction between ultimate and serviceability limit states are generally sufficient to attain

the reliability requirements regarding the structural safety and functioning, respectively.
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Table 3.6: Return periods for the quantification of the maximum design earthquake (RSB
2018).

iR Return period (years)

4 - 10 1000
12 - 20 2500
22 - 30 5000
32 - 44 10000/MCE

The French guidelines (CFBR 2012) and the Chinese standards (GB50199 1994) define:

i) ultimate (or collapse) limit states, as those associated with loss of equilibrium or excessive

stress, and ii) service limit states, as those related to the maintenance of regular operation

conditions, such as the structural integrity (no-cracking requirement), drainage efficiency,

discharge capacity, surveillance functionality, etc.

Similarly, the Portuguese dam safety regulation (RSB 2018), recommend that the

structure shall: i) for hazard scenarios, not fail (loss of equilibrium or overstressing),

considering residual material strengths; and ii) for utilization scenarios, have an elastic

response, considering the drainage efficiency and peak material strengths.

3.5.5 Safety criteria

3.5.5.1 Chinese standards (GB50199 1994)

The Chinese standards (GB50199 1994) adopt safety criteria similar to the Eurocodes,

given by,

γ0 ·ψ ·S
(
γG ·Gk,γQ ·Qk,ak

)
≤ 1
γd

·R
(
fk

γm
,ak

)
(3.31)

where S is the load effect function, R is the resistance function, γ0 is the structure

importance factor (1.1, 1.0, 0.9 for class I, II and III, respectively), ψ is the design situation

factor (1.0, 0.95, 0.85 for permanent, temporary and accidental situations, respectively),

γG and Gk are the partial safety factor and characteristic value, respectively, for permanent

loads, γQ and Qk are the partial safety factor and characteristic value, respectively, for

variable loads, ak is the characteristic value of geometric parameters, γm is the partial

safety factor for material properties, and γd is the structural coefficient for collapse limit

states.

Tables 3.7 and 3.8 shows the partial safety factors and structural coefficients for collapse
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limit states, respectively.

Table 3.7: Partial safety factors (γG, γQ and γm) for collapse limit states (GB50199 1994).

Loads

Self weight 1.0

Water loads
Hydrostatic pressure 1.0
Uplift pressure 1.0

Silt pressure 1.2
Wave pressure 1.2

Material property

Shear strength

Friction coefficient:
concrete-rock
lift joints
rock joints

1.3
1.3
1.4

Cohesion:
concrete-rock
lift joints
rock joints

3.0
3.0
3.2

Concrete strength 1.5

Table 3.8: Structural coefficient (γd) for collapse limit states (GB50199 1994).

Failure mode Combination Structural coefficient

Sliding
Basic 1.2
Accidental 1.2

Overstressing
Basic 1.8
Accidental 1.8

3.5.5.2 French guidelines (CFBR 2012)

The French Guidelines (CFBR 2012) adopt a similar safety criteria. However, the partial

safety factors are only applied to the material properties, such as,

γd ·S (Gk,Qk,ak) ≤R

(
fk

γm
,ak

)
(3.32)

where γd is the model coefficient depending on the load combination considered.
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Tables 3.9 and 3.10 shows the partial safety factors and model coefficients for ultimate

limit states, respectively.

Table 3.9: Partial safety factors (γm) for ultimate limit states (CFBR 2012).

Quasi-
permanent

combination

Rare
combination

Extreme
combination

Friction coefficient:
concrete-rock
lift joints
rock joints

1.5
1.5
1.5

1.2
1.2
1.2

1.0
1.0
1.0

Cohesion:
concrete-rock
lift joints
rock joints

3.0
3.0
3.0

2.0
2.0
2.0

1.0
1.0
1.0

Concrete tensile
strength:
dam body
dam-foundation

3.0
3.0

3.0
3.0

1.0
1.0

Concrete compressive
strength:
dam body
dam-foundation

3.0
3.0

2.0
2.0

1.0
1.0

Table 3.10: Model coefficient (γd) for ultimate limit states (CFBR 2012).

Combination Model coefficient

Quasi-permanent 1.0
Rare 1.0
Extreme 1.0

3.5.5.3 Portuguese dam safety regulation (RSB 2018)

The Portuguese dam safety regulation (RSB 2018) considers safety criteria derived from

the allowable stress design philosophy, using strength reduction factors.

Regarding the loss of equilibrium, since the overturning mechanism does not depend

on material strength properties, the strength reduction factors recommended refer to the

sliding mechanism. The consideration of the Mohr-Coulomb failure criteria and peak shear
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strengths (with cohesion), for utilization scenarios, and residual shear strengths (with no

cohesion), for hazard scenarios, is recommended.

These recommendations can be translated into the following criteria,

τ ≤ c

λc
+ σ · tan(φ)

λtan(φ)
(3.33)

where λc and λtan(φ) are the strength reduction factors for the cohesion and friction

coefficient, respectively.

Table 3.11 shows the strength reduction factors recommended.

Table 3.11: Strength reduction factors (λc and λtan(φ)) for the sliding mechanism (RSB
2018).

Utilization
scenarios

Hazard
scenarios

Cohesion λc 3.0 - 5.0 -
Friction coefficient λtan(φ) 1.5 - 2.0 1.2 - 1.5

3.5.5.4 Other regulatory institutions

Although the regulatory framework have been changing in most countries since then

(ICOLD 2017), Ruggeri (2004a) compile the regulatory rules, guidelines and common

practice adopted in different countries for the safety assessment against sliding.

Such as in the Portuguese dam safety regulation (RSB 2018), strength reduction factors,

applied separately to friction coefficient and cohesion, are considered in some cases (Table

3.12).

Table 3.12: Strength reduction factors λ in other countries (Ruggeri 2004a).

Friction coefficient λtan(φ) Cohesion λc

Spain 1.5 5
Switzerland 1.5 5
India 1.5 3.6 - 4.5

In other cases, reference is made to single global safety factors, given by the ratio

between the total shear strength and sliding forces, i.e.,

λ= c+σ · tan(φ)
τ

(3.34)
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where λ is the global safety factor.

Table 3.13 present the global safety factors, recommended in several countries/insti-

tutions, for the sliding stability along the dam-foundation interface (in some countries,

different safety factors are recommended for other surfaces).

Table 3.13: Global safety factors λ in other countries (partially from Ruggeri (2004a)).

Usual load
combinations

Unusual load
combinations

Extreme load
combinations

Germany 1.2 - 1.5 1.2 - 1.3 1.2
Austria 1.5 1.2 - 1.35 1.1

Norway
1.5a 1.1a 1.1a

3b 2b 2b

2c 1.5c 1.5c

Canada 1.5a 1.3a 1.0a

3.0b 2.0b 1.3b

United Kingdom 3.0 2.0 1.0
USBR (1976) 3.0 2.0 1.0

FERC (2002)
2.0d 1.25d 1.0d

3.0e 2.0e 1.3e

USACE (1995) 2.0 1.7 1.3
a Residual strength (no cohesion).
b Peak strength (with no tests).
c Peak strength (with tests).
d Dams with low hazard potential.
e Dams with significant or high hazard potential.

3.6 Failure mode modeling

3.6.1 General considerations

In this work, intending to study the structural safety of concrete gravity dams regarding

their global stability, the failure modes relating to pre-collapse equilibrium shall be identi-

fied. Since the performance of numerous reliability analyses will be required, the simpler

rigid body formulation is followed.

The stress analysis at the dam base is not performed since the cohesion component

of shear strength, only mobilized at the compressive zone, is not considering in failure

situations (RSB 2018), corresponding to a limit analysis (Underwood and Dixon 1976).
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Also the effects on the uplift distribution of an opened crack, in the dam base, are not

considered.

Thus, the limit stability conditions for the typical unkeyed cross-sectional profile (Figure

3.17), for sliding and overturning, are, respectively, given by,

(ΣN) · tan(φc) = ΣS (3.35)

ΣMsta = ΣMins (3.36)

where ΣN and ΣS are the normal and shear net forces, respectively, and ΣMsta and ΣMins

are the stabilizing and instabilizing moments, respectively.

(a) Sliding
(b) Overturning

Figure 3.17: Failure modes for the traditional unkeyed profile.

However, as mentioned, concrete gravity dams are usually keyed into the foundation,

mobilizing a passive wedge resistance, which may contribute crucially to the stability of

the cross-section profile.

A downstream rock wedge, detached from the remain rock mass foundation, is consid-

ered to simulate this effect. Figure 3.18 shows the keyed profile.

Two stages of equilibrium are found: before and after complete interface plastification,

when the profile tends to move.

Load incrementation after the plastification of the dam-foundation interface is com-

pensated by a passive wedge resistance from the downstream rock wedge. The complete

interface plastification is attained when the full shear strength is also mobilized in the

rock wedge-foundation interface. The equilibrium conditions (Figure 3.19), corresponding
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α

Figure 3.18: Simplified representation of a keyed profile.

to the small displacement approach, can be expressed by,

∑
Ft,w = 0 (3.37)

where Ft,w is total tangential force on the rock wedge-foundation interface.

Fv

Fh

Fv · tan(φc)
Fh − Fv · tan(φc)

Ft,w

Fn,w

Rt (φc)

Figure 3.19: Free-body diagram in equilibrium conditions corresponding to the complete
interface plastification.

After the complete interface plastification, unbalanced forces would cause the dam

movement which is avoided because other stability configurations are achieved (large

displacement approach), such as reported in experimental studies of physical models under

static (Pina et al. 1994; Gomes et al. 1997) and dynamic loadings (Gomes 2005). Intuitively,

four configurations or mechanisms (Figure 3.20), representing the pre-failure equilibrium,

arise: failure mode 1) the gravity profile slides along the dam-foundation interface, pushing

the downstream rock wedge; failure mode 2) the gravity profile and the downstream rock

wedge slide together along the downstream rock slope; failure mode 3) the gravity profile

rotates around its toe pushing the downstream rock wedge; and failure mode 4) the gravity
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profile rotates over the downstream rock wedge. The occurrence of each failure mode would

depend on the application point of the net force acting on the failure surfaces.

Dam slides along the dam-
foundation interface, pushing
the downstream rock wedge

A B

A

B

(a) Failure mode 1.

Dam and the rock wedge slide together
along the downstream rock slope

A B

A

B

(b) Failure mode 2.

Dam rotates around its toe push-
ing the downstream rock wedge

(c) Failure mode 3.

Dam rotates over the
downstream rock wedge

(d) Failure mode 4.

Figure 3.20: Ultimate failure modes of a keyed profile.

In the following sections, the validation of these failure mechanisms, using discrete-

element models, is intended. For that, the analytical and numerical solutions for several

load combinations, given in terms of the critical friction angle below which stability is

not verified, are compared to justify the suitability of the analytical solution to model the

pre-failure mechanisms.

The deduction of the failure mode equations are presented in the appendix B.
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3.6.2 Analytical solution

3.6.2.1 Failure mode 1

Failure mode 1 is associated with the gravity profile sliding along the dam-foundation

interface, pushing the downstream rock wedge. Figure 3.21 shows the free-body diagram

of forces for the failure mode 1. This mechanism causes the rotation of the gravity profile

around the instant center of rotation (icr) located at the intersection point between lines

perpendicular to the movement of points A and B. This failure mode can occur if the

direction of the net force intersects the dam-foundation (joint AB) interface.

A B

C

RAφc
RB

x

φc + α

Fv

x0Fh

y0 Ft,w

Fn,w

Rt (φc)

L

Figure 3.21: Free-body diagram of forces for the failure mode 1.

The critical friction coefficient tanφc is given, in terms of the horizontal (Fh) and

vertical (Fv) component, and the corresponding application point y0 and x0, respectively,

of the net force acting on the dam body and the normal (Fn,w) and tangential (Ft,w) net

forces acting on the downstream rock wedge, i.e.,

tanφc = S1
(
Fv;x0;Fh;y0;Fn,w;Ft,w

)
(3.38)

where S1 is deduced in section B.1.

3.6.2.2 Failure mode 2

Failure mode 2 is associated with the gravity profile and the downstream rock wedge sliding

together along the downstream rock slope. Figure 3.22 shows the free-body diagram of

forces for the failure mode 2. This failure mode can occur if the direction of the net force

intersects the dam-rock wedge (joint BC) interface, which is totally under compression.
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A B

CF Ft,w

Fn,w

Rt (φc)

Figure 3.22: Free-body diagram of forces for the failure mode 2.

The critical friction coefficient tanφc is given, in terms of the horizontal (Fh) and

vertical (Fv) components of the net force acting on the dam body, F , and the normal

(Fn,w) and tangential (Ft,w) net forces acting on the downstream rock wedge, i.e.,

tanφc = S2
(
Fv;Fh;Fn,w;Ft,w

)
(3.39)

where S2 is deduced in section B.2.

3.6.2.3 Failure mode 3

Failure mode 3 is associated with the gravity profile rotating around its toe pushing the

downstream rock wedge. Figure 3.23 shows the free-body diagram of forces for the failure

mode 3. This failure mode can occur if the direction of the net force intersects the dam-rock

wedge (joint BC) interface, which is not totally under compression.

A B

C
Fv

x0Fh

y0
hw

Ft,w

Fn,w

RC

φc

RC

φc

Rt (φc)

L

Figure 3.23: Free-body diagram of forces for the failure mode 3.

The critical friction coefficient tanφc is given, in terms of the clockwise moment around

the point B (Mb), due to the horizontal (Fh) and vertical (Fv) component, and the

corresponding application point y0 and x0, respectively, of the net force acting on the dam
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body, and the normal (Fn,w) and tangential (Ft,w) net forces acting on the downstream

rock wedge, i.e.,

tanφc = S3
(
Fv;x0;Fh;y0;Fn,w;Ft,w

)
(3.40)

where S3 is deduced in section B.3.

3.6.2.4 Failure mode 4

Failure mode 4 is associated with the dam rotating over the downstream rock wedge. This

failure mode is independent on the friction angle and occurs if the net moment around C

is positive.

A B
C

MC

Figure 3.24: Free-body diagram of forces for the failure mode 4.

The limit equilibrium conditions are expressed by a null moment around the point

C (MC = 0), separating the stability conditions (MC < 0) from non-stability conditions

(MC > 0).

3.6.3 Numerical solution

3.6.3.1 Case study

The case study used is a 100-meter high gravity profile, with downstream face slope of

0.75 and downstream rock wedge inclined at α= 5.5◦, considering several load cases, given

by: i) three levels of the water in the reservoir (Hr = 75 m, Hr = 85 m and Hr = 100 m);

ii) three values for the uplift factor (ku = 0, ku = 0.4 and ku = 0.8); and iii) seismic ground

accelerations from ag = 0 m/s2 to ag = 10 m/s2, with a step of 1 m/s2.
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3.6.3.2 DEM model

The rigid discrete-element model of the case study, considering the discrete-element method

presented in the appendix C, of the case study is shown in Figure 3.25. The hydrostatic

pressure is simulated through external forces applied on the nodes of the upstream face.

For a specific seismic ground acceleration, the pseudo-static loads (see section 3.4.7.4) were

considered. These loads are simulated by changing the gravity direction, since external

loads cannot be applied directly on the rigid body centroid. Regarding the hydrodynamic

pressure, the load caused by the reservoir-dam interaction during seismic motions was

also simulating through external forces, quantified according to the Westergaard’s theory

(Westergaard 1933), and applied on the nodes of the upstream face. Finally, the uplift

pressure was simulated through external forces applied on the nodes of the dam base.

α = 5.5◦10 m

80 m

10 m

0.75
1

γc = 24kN/m3

γr = 30kN/m3

0.67 · ag

9.81 − 0.2 · ag

Figure 3.25: Schematic representation of the numeric model.

Strength reduction technique was used to obtain the critical friction angle. This tech-

nique consists in continually reduce the friction angle assigned to the joints since a safe

value until failure, when the model does not converge to a static solution. In the following

section, analytical and numeric solutions of the models tested are compared.

3.6.3.3 Relevant results

Figure 3.26 shows the results of the load cases tested. A comparison with the analytical

solution is also made by plotting the solution of the equilibrium system of each failure

modes described above against the numerical solution.
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Failure mode 1 Failure mode 2 Failure mode 3
Failure mode 4 Numerical solution Unkeyed profile
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Figure 3.26: Analytical and numerical solutions of the load cases tested.

The critical friction angle φc obtained for the rigid discrete-element model (black dots),

using the strength reduction method, matches perfectly the analytical solution, given by

the main failure mode. One can see that when the total moment at B becomes positive

(from first vertical dashed line), failure mode 2 becomes the main failure mode while if the

total moment at B is negative, failure mode 1 is the most relevant one. For this profile
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geometry, failure mode 3 is not relevant for any load combination tested. For the failure

mode 4, since it is not dependent on the friction angle, failure is verified for a seismic

acceleration which leads to a positive total moment around C, represented by the second

vertical dashed line.
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Uncertainty modeling

4.1 General considerations

Useful conclusions from reliability analysis cannot be obtained without proper modeling

of the relevant sources of uncertainty. Regarding the structural safety analysis of concrete

gravity dams, for ultimate limit states and stability failure modes, sources of uncertainty

related to the loading conditions, material properties and model uncertainties, due to

simplified mathematical formulations, shall be considered.

On one hand, the objective information available, either from the scientific literature

or gathered data, shall be treated from a technical perspective in order to attain the most

suitable models. On other hand, when such information is lacking, engineering judgment

is the main tool to define conservative probabilistic models.

In this chapter, data from monitoring and quality control tests are used to derive

probabilistic models for the water loads and the concrete mechanical properties, respec-

tively. The quantification of other sources of physical uncertainties, such as the concrete

density and concrete-rock interface shear strength, is based on the literature. The model

uncertainty regarding the seismic load models is quantified by comparing the dynamic

response and the analytical stability analysis of equivalent structures. While engineering

judgment regulates all decisions, it becomes particularly relevant to define probabilistic

models regarding other model uncertainties, such as the Mohr-Coulomb shear strength

model and the rigid body stability formulation, that could not be alternatively quantified.
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These tasks are detailed in the following sections.

4.2 Water loads

4.2.1 General considerations

Static water loads on dams are divided into: (i) hydrostatic pressures on the dam surfaces;

and (ii) uplift pressures in emerged discontinuities. Apart from the water density, taken

as deterministic, the total hydrostatic force (equation 3.7) is dependent on the reservoir

water level, whereas the total uplift force (equation 3.14) is also dependent on the drainage

effectiveness, quantified through the uplift factor ku.

The derivation of probabilistic models for these random variables, from monitoring

data, is detailed in the following sections.

4.2.2 Reservoir water level during normal operation conditions

4.2.2.1 General considerations

The reservoir water level varies over the year according to the water inflow and outflow, as a

function of not only the environmental events but also of the dam exploitation management

policy.

As mentioned, the dam construction purposes dictate that policy which intend to min-

imize both the current demand deficit and the costs of future water shortage, considering

inter-year and intra-year models as a planning tool for long-term operation (You and Cai

2008b). Therefore, bearing in mind that dams are preferably multi-purpose structures,

hedging rules (You and Cai 2008b) are established, given, for instance, that:

• in dams for flood control, during the rainy season, the water level shall be kept consid-

erably below the NWL, such that the water inflow from a flood is partially or totally

stored in the reservoir and later discharged, at a controlled rate, to downstream;

• in dams for water supply and irrigation, the reservoir water level shall be kept as

close as possible to the NWL in order to ensure water supply in dry seasons;

• in dams for hydropower generation, the water shall be kept as close as possible to the

NWL, to optimize energy production, embracing even pumping-storage equipment

to pump discharged water up to the reservoir, especially during low demand periods.
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Stochastic models for reservoir operation analysis (Labadie 2004), used to support

rational operational decisions, could be considered for the uncertainty quantification re-

garding the reservoir water level. However, it is believed that the generalization of these

models, combining inflow probability distribution, utility functions and delivery ratio (You

and Cai 2008a), to general cases may be complex for the level of detail intended.

A low-cost alternative can be derived from data monitored in existent dams, which

is used to derive statistical models (Pereira et al. 2016b; Pereira et al. 2018) suitable for:

(i) the initial design and feasibility stages, and (ii) simplified routine safety assessment of

existing structures.

For that, the annual history of the reservoir water level in existing large dams is

considered as an observation of the effects of the environmental events and the dam

exploitation policy on the reservoir water level. Afterwards, the sample of observations is

used to infer about the properties of a representative probabilistic model.

In the following sections, after the analysis of the monitored data, regression models

for the reservoir water level variation over the year are tested and, lastly, probability

distributions, based on the geometrical properties of the dam and the reservoir, are derived

from the results of the regression analysis.

4.2.2.2 Monitoring data analysis

Following the dam observation and inspection guidelines integrated in the Portuguese dam

safety regulation (RSB 2018), the dam behavior monitoring provides useful information

that can be used to identify unexpected events. Amongst other variables, the reservoir

water level is periodically recorded. The measurements may be performed daily, weekly or

monthly, using a limnimetric scale located at the reservoir, or continuously by automated

monitoring systems. Accuracies of 0.1 m are usually obtained in both situations (Mata

2013).

The continuous monitoring of the reservoir water level in large dams shows a predictable

distinction (APA 2001) between: (i) run-of-river, classified as “pure” if no reservoir storage

capacity (less than two hours) is provided or “poundage” if little reservoir storage capacity

(less than a week) is provided, and (ii) storage exploitation systems. While, for the first,

the reservoir water level does not vary considerably (Figure 4.1a), for the latter, seasonal

variations are evident (Figure 4.1b).

Therefore, meeting the recommendation of JCSS (2001) that larger populations shall
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Figure 4.1: Reservoir water level history of two dams.

be divided into sub-populations, when clear behavior differences are noticed, in order to

better study and distinguish variability within a population, data was divided into two data

sets, corresponding to dams built for storage purposes and dams integrated in run-of-river

projects.

Table 4.1 shows the relevant characteristics of the dams considered for the reservoir

water level uncertainty modeling.

4.2.2.3 Regression model

The uncertainty model addressed in this section is intended to be considered throughout

the wide range of large dams, which, as mentioned in Chapter 3, covers the dams higher

than 15 meters, or between 5 to 15 m impounding more than 3 million cubic m of water

(ICOLD 2011). Therefore, as data comes from different dams, the reservoir water level
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Table 4.1: Main characteristics of the dams considered for the reservoir water level uncer-
tainty modeling.

Dam H (m) Hnwl (m) Year Project type

Alqueva 96.00 94.00 2003 Storage
Alto Lindoso 110.00 109.00 1991 Storage
Alto Rabagão 94.10 94.00 1964 Storage
Belver 30.00 28.65 1952 Run-of-river
Bouçoais-Sonim 43.00 36.00 2004 Run-of-river
Cabril 132.00 129.00 1954 Storage
Caldeirão 39.00 33.90 1993 Storage
Carrapatelo 57.00 48.50 1972 Run-of-river
Castelo do Bode 115.00 111.70 1951 Storage
Catapereiro 37.50 34.90 1999 Storage
Crestuma-Lever 65.00 52.50 1985 Run-of-river
Ferradosa 33.40 31.00 2005 Storage
Fratel 48.00 35.00 1973 Run-of-river
Fronhas 62.00 56.10 1985 Storage
Olgas 34.50 30.25 2007 Storage
Pedrógão 43.00 33.70 2006 Storage
Penha Garcia 25.00 22.00 1979 Storage
Pocinho 49.00 35.50 1982 Run-of-river
Pretarouca 28.50 24.60 2007 Storage
Raiva 36.00 33.00 1981 Run-of-river
Ranhados 41.40 40.00 1986 Storage
Rebordelo 35.50 28.00 2005 Run-of-river
Régua 41.00 33.50 1973 Run-of-river
Touvedo 42.50 37.50 1993 Run-of-river
Valeira 48.00 40.00 1975 Run-of-river
Varosa 76.00 75.00 1976 Storage
Venda Nova 97.00 96.00 1951 Storage
Vilarinho das Furnas 94.00 93.50 1972 Storage

must be normalized to an unitary scale, given by the relation between the reservoir water

level Hr and the dam height H, i.e.,

kr = Hr

H
(4.1)

where kr is the relative reservoir water level.
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Considering that the environmental events that influences the water inflow may show

a seasonal pattern, two models for the relative reservoir water level variation over the year

are tested, namely:

• Model R1 which considers no explicit variation, i.e.,

kr (t) = a0 (4.2)

where t is the time of the year (t= 0 is the beginning of the year);

• Model R2 which considers a sinusoidal variation, i.e.,

kr (t) = a0 + a1 · cos(t) + a2 · sin(t) = a0 +Sa · sin(t−φ) (4.3)

where a0, a1 and a2 are the unknown regression parameters and Sa =
√
a2

1 + a2
2 and

φ= arctan
(
a1/a2

)
are the corresponding semi-amplitude and phase, respectively.

These models shall be adjusted to each annual history of the relative reservoir water

level of existing dams, by regression analysis, which estimates the conditional expectation

of the dependent variable kr, as a function of the independent variable t, and also the

sample variance, characterizing the model residuals.

However, the traditional regression analysis based on the least-square method (LSM)

cannot be used, since this model, representing a proportion, may violate its assumptions

(Paolino 2001), specifically the multivariate normality and homoscedasticity. In those

situations, generalized linear models (GLM), which allows for non-normal distributed

residuals, must be considered (McCullagh and Nelder 1989).

A specific GLM, denoted as beta regression, has been proposed (Paolino 2001; Ferrari

and Cribari-Neto 2004) for situations in which the dependent variable is measured con-

tinuously on the standard unit interval ]0,1[. For that, a re-parametrization of the beta

density function (see Table 2.1), in terms of the mean value µ= α/(α+β) and a precision

parameter ϕ= α+β, is recommended (Ferrari and Cribari-Neto 2004), such as,

fY
(
y|µ,ϕ

)
= Γ (ϕ)

Γ (µϕ) · Γ
(
(1 −µ)ϕ

) · yµϕ−1 · (1 − y)(1−µ)ϕ−1 (4.4)

Thus, the expected value and variance of the dependent variable kr, given in terms of

the independent variable t, the unknown parameters a and the precision parameter ϕ, are,
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respectively, given by,

E
(
kr|t,a,ϕ

)
= α

α+β
= µ= g−1

(
aT · T

)
(4.5)

V
(
kr|t,a,ϕ

)
= αβ

(α+β)2 (α+β+ 1)
= µ · (1 −µ)

1 +ϕ
(4.6)

where g is a strictly monotonic and twice differentiable link function that maps ]0,1[

into the real line, a is the vector of unknown parameters (a = {a0} for the model R1

or a = {a0,a1,a2} for the model R2) and T is the vector of the independent variables

(T = {1} for the model R1 or T =
{
1,cos(t) ,sin(t)

}
for the model R2).

Given the sample ŷ =
{(
t̂1, k̂r1

)
, · · · ,

(
t̂N , k̂rN

)}
of the relative reservoir water level

over a year, the unknown regression parameters a and the precision parameter ϕ, are

estimated by maximizing the log-likelihood function, given by,

logL
(
a,ϕ|ŷ

)
=

N∑
i=1

ln
[
fY

(
k̂ri|µ

(
a, t̂i

)
,ϕ

)]
(4.7)

Figure 4.2 shows an example of the beta regression outcome, considering the link

function given by the logit transformation,

g (x) = ln
(

x

1 −x

)
(4.8)

whose inverse is given by,

g−1 (x) = ex

1 + ex
(4.9)
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Figure 4.2: Example of the beta regression outcome, considering the reservoir water level
monitored during 2011 in the Venda Nova dam.
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4.2.2.4 Uncertainty model

The regression models presented above were adjusted to the annual history of the relative

reservoir water level, considering each operation year of 28 large concrete dams (Table

4.1), providing 670 observations of the regression model parameters a and the precision ϕ,

where 374 comes from storage dams and 296 from run-of-river dams.

Since the NWL, whose relation to the dam height (knwl=Hnwl/H) is different for each

dam, defines the optimum operation conditions, the regression models must be transformed

to other values of knwl in order to serve as predictive models in a generic case. Thus, for

a generic knwl, the mean and variance of kr, in terms of the independent variable t and

of each observation j of the regression parameters âj and the precision parameter ϕ̂j , are,

respectively, given by,

E
(
kr (knwl) |t, âj , ϕ̂j

)
= g−1

âT
j · T · g (knwl)

g
(
knwl,j

)
 (4.10)

V
(
kr (knwl) |t, âj , ϕ̂j

)
=
E
(
kr (knwl) |t, âj , ϕ̂j

)
·
(

1 −E
(
kr (knwl) |t, âj , ϕ̂j

))
1 + ϕ̂j

(4.11)

The deduction of absolute (unconditional) values of the expected value and variance of

the relative reservoir water level kr, as functions of knwl, is performed in two steps, using,

respectively, the law of total expectation (Blitzstein and Hwang 2004),

E (Y1) = E
(
E
(
Y1|Y2

))
(4.12)

and the law of total variance (Blitzstein and Hwang 2004),

V (Y1) = V
(
E
(
Y1|Y2

))
+E

(
V
(
Y1|Y2

))
(4.13)

where Y1 and Y2 are two random variables of the same probability space. The components

V
(
E
(
Y1|Y2

))
and E

(
V
(
Y1|Y2

))
are commonly denoted as “explained” and “unexplained”

components, respectively, of the variance.

In the first step, for each observation j of the regression parameters âj and the precision

parameter ϕ̂j , the total annual mean of kr, considering advantageously time t varying
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between 0 and 2π, is given by,

E
(
kr (knwl) |âj , ϕ̂j

)
= E

[
E
(
kr (knwl) |t, âj , ϕ̂j

)]
= 1

2π

∫ 2π

t=0
E
(
kr (knwl) |t, âj , ϕ̂j

)
∂t

(4.14)

and the total annual variance is given by,

V
(
kr (knwl) |âj , ϕ̂j

)
= V

[
E
(
kr (knwl) |t, âj , ϕ̂j

)]
+E

[
V
(
kr (knwl) |t, âj , ϕ̂j

)]
= E

[
E
(
kr (knwl) |t, âj , ϕ̂j

)2
]

−E
(
kr (knwl) |âj , ϕ̂j

)2
+

E

[
V
(
kr (knwl) |t, âj , ϕ̂j

)]
= 1

2π

∫ 2π

t=0
E
(
kr (knwl) |t, âj , ϕ̂j

)2
∂t−(

1
2π

∫ 2π

t=0
E
(
kr (knwl) |t, âj , ϕ̂j

)
∂t

)2

+

1
2π

∫ 2π

t=0
V
(
kr (knwl) |t, âj , ϕ̂j

)
∂t

(4.15)

In the second step, the absolute expected value of kr, is inferred from the finite sample

of N observations (N=374 for storage dams and N=296 for run-of-river dams) of the

regression parameters âj and the precision parameter ϕ̂j , such as,

E
(
kr (knwl)

)
= E

[
E
(
kr (knwl) |âj , ϕ̂j

)]
= 1
N

N∑
j=1

E
(
kr (knwl) |âj , ϕ̂j

)
(4.16)

The absolute variance, computed similarly, is given by,

V
(
kr (knwl)

)
= V

[
E
(
kr (knwl) |âj , ϕ̂j

)]
+E

[
V
(
kr (knwl) |âj , ϕ̂j

)]
= E

[
E
(
kr (knwl) |âj , ϕ̂j

)2
]

−E
(
kr (knwl)

)2 +

E

[
V
(
kr (knwl) |âj , ϕ̂j

)]

= 1
N

N∑
j=1

E
(
kr (knwl) |âj , ϕ̂j

)2
−

 1
N

N∑
j=1

E
(
kr (knwl) |âj , ϕ̂j

)2

+

1
N

N∑
j=1

V
(
kr (knwl) |âj , ϕ̂j

)

(4.17)

Figure 4.3 shows the moments (expected value and variance) of the relative reservoir
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water level kr, as functions of knwl, comparing the model R1 and R2.
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Figure 4.3: Distribution moments of kr, as functions of knwl.

As insignificant seasonal variation is verified for run-of-river dams (blue line), similar

accuracy (variance) were obtained from models R1 (dashed line) and R2 (solid line). On

the other hand, model R2 is more accurate than model R1 for storage dams (red line),

since a significant portion of the reservoir water level variation over the year is explained

by the seasonal pattern.

Table 4.2 lists the beta distribution moments of the relative reservoir water level kr,

considering a seasonal pattern described by the model R2, since this model results in lower

variance, for different values of knwl.

4.2.3 Uplift pressure

4.2.3.1 General considerations

The hydromechanical behavior of rock mass foundations depends on the spatial variation of

their properties, which, due to the complex discontinuous structure, is difficult to describe

in detail even after extensive field investigations. The simplification of their behavior by

means of equivalent continuum idealizations may result in erroneous predictions of the

uplift pressure distribution under concrete dams, specially relevant for the stability analysis

of the most conditioning dam monoliths.

The uplift pressure in rock mass foundations, possibly exhibiting high spatial variations
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Table 4.2: Beta distribution moments for the relative reservoir water level kr, considering
the model R2.

knwl
Storage Run-of-river

E V E V

0.79 0.66 0.0084 0.74 0.0033
0.81 0.67 0.0091 0.76 0.0037
0.83 0.69 0.0098 0.78 0.0040
0.85 0.70 0.0106 0.79 0.0043
0.87 0.72 0.0114 0.81 0.0045
0.89 0.73 0.0123 0.83 0.0047
0.91 0.75 0.0131 0.85 0.0048
0.93 0.77 0.0139 0.88 0.0048
0.95 0.79 0.0145 0.90 0.0045
0.97 0.82 0.0149 0.93 0.0039
0.99 0.87 0.0140 0.96 0.0024

(Ruggeri 2004b), are not only influenced by the geologic features, such as the geologic struc-

ture, the rock type and the joint pattern (EPRI 1990), but also by the joint permeability,

mainly characterized by the filling, roughness and specially the joint aperture (EPRI 1992).

According to the Darcy’s law (Darcy 1856), the uplift linear distribution is observed in

joints with constant aperture. For a tapered joint, the rate of pressure reduction increases,

whereas, for widening joints, the rate of pressure reduction decreases so that it becomes

parabolic rather than linear. Figure 4.4 illustrates the influence of the joint aperture on

the uplift pressure distribution.

Flow

Pressure
distribution

P

P

(a) Tapered joint

Flow

Pressure
distribution

P

P

(b) Widening joint

Figure 4.4: Influence of joint aperture on uplift distribution (EPRI 1992).

Changes in the stress field of the rock mass foundations, due to loads on dams, cause
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variations in the uplift pressure distribution in joints, where most of the deformation occurs.

These phenomena are due to:

• the reservoir water level variations, which cause the dam rotation and the opening/-

closing of joints, resulting in a non-linear relation with the uplift pressure (Grenoble

et al. 1995; Ruggeri 2004b);

• cyclic thermal variations, which cause volumetric variations and changes on the hy-

draulic conductivity and on the kinematic viscosity of water (Guiducini and Andrade

1988; Kalkani 1992).

In the few cases in which the pressures were recorded during a seismic action (FERC

2002), small or no changes in the uplift pressures were observed. This is commonly justified

by the short duration of the seismic action.

The effectiveness of the drainage system, designed according to the equivalent contin-

uum approach, may vary under a dam monolith since it is not expected that the drains can

intersect all relevant joints. In fact, a distinction between regular and unfavorable geologic

conditions of the rock mass foundation is already made in the French guidelines (CFBR

2012) which recommend the uplift lowering coefficient (equivalent to ku) presented in Table

4.3. Also a time-dependent variation is possible due to drain clogging. This justifies the

wide variation of piezometric recordings in several Portuguese large concrete dams.

Table 4.3: Recommended uplift reduction coefficient in the French guidelines (CFBR 2012).

Foundation ku

Regular geology 0.33 - 0.50
Unfavorable geology >0.50

No drainage 1.00

For the uncertainty quantification of the uplift pressures, considering the uplift factor

ku as a random variable, gathered data corresponding to monitored pressures are used.

Altarejos (2009) also proceeded this way, whereas Westberg (2009a) and Westberg (2009b)

followed a geostatistical approach testing different statistical descriptors of the spatial

variation and correlation of the foundation permeability.

In the following sections, after the analysis of the monitored data, the uncertainty

quantification of the uplift factor, based on the parametric inference of beta mixtures, is

presented, followed by the derivation of probability distributions from the previous results
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and the introduction of the bi-linear model uncertainty, such as presented in Pereira et al.

(2016a).

4.2.3.2 Monitoring data analysis

The uplift pressures are measured using piezometers, usually installed in sealed boreholes,

drilled downstream from both grout and drainage systems. Generally, one piezometer

is installed per dam monolith. For this reason, the piezometric recordings provide only

localized information.

Multi-chamber piezometers, crossing different major discontinuities, allow the measure-

ment of the water pressures in specific sections. However, in Portugal, the majority of the

piezometers installed in the concrete dam foundations has a single chamber, providing

therefore only the average pressure from the water inflow and outflow over their length.

Rarely, more than one piezometer, forming an upstream-downstream network, is in-

stalled within a specific cross-section. Often, piezometers are not aligned with drains, being

installed in an intermediate zone.

For the uncertainty quantification of the uplift pressures, data monitored in 148 piezome-

ters, from 15 Portuguese large concrete dams of the gravity and thick arch types, is used.

Only the piezometers installed in higher dam monoliths are considered, since negligible

uplift pressures, exceeding the reservoir water level, may be observed near the abutments

(EPRI 1992). Table 4.4 shows the relevant characteristics of the dams considered for the up-

lift factor uncertainty modeling, namely the maximum height (H), the year of completion

and the number of piezometers (Npz) considered.

Since the piezometric line is located downstream from the line of drains (Figure 4.5),

recorded pressures shall be extrapolated to the drainage line allowing their utilization for

uplift factor uncertainty modeling. The extrapolation is given by,

Hd =
(
Hp −Hd

)
· L−Ld

L−Lp
+Ht (4.18)

where Hd and Hp are the hydraulic heads at the drainage and piezometric lines and Ld

and Lp are the respectively distance, from the dam heel.

As an example, Figure 4.6 shows the pressure head history of Alto Lindoso dam,

extrapolated to the drainage line from the recordings of the piezometer “P10/11”, and the

corresponding history of the uplift factor ku, computed using the equation 3.10.
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Table 4.4: Main characteristics of the dams considered for the uplift factor uncertainty
modeling.

Dam H(m) Year Npz

Alqueva 96.00 2003 19
Alto Lindoso 110.00 1991 15
Alto Rabagão 94.10 1964 7
Bouçoais-Sonim 43.00 2004 3
Cabril 132.00 1954 9
Castelo do Bode 115.00 1951 7
Ferradosa 33.40 2005 2
Fronhas 62.00 1985 10
Pedrógão 43.00 2006 12
Penha Garcia 25.00 1979 10
Pretarouca 28.50 2007 1
Raiva 36.00 1981 13
Rebordelo 35.50 2005 1
Varosa 76.00 1976 26
Vilarinho das Furnas 94.00 1972 13

Total 148

Hr

γwHr

γwHr

γwHp
γwHd

Figure 4.5: Extrapolation of the piezometric readings to the drainage line.

In this case, the uplift factor ku presents a non-linear relation with the reservoir water

level and a time evolution probably due to loss of drainage effectiveness.
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Figure 4.6: Pressure head history of Alto Lindoso dam, extrapolated to the drainage line
from the recordings of the piezometer “P10/11”.

4.2.3.3 Parametric inference of beta mixtures

Each history of the uplift factor ku is interpreted as punctual and independent information

regarding the drainage system effectiveness over the dam operation period, since uplift

pressure distribution beneath dams are site-specific and may even vary considerably across

a given site (EPRI 1990) since they depend on the water flow paths within the rock mass

(Farinha 2010).

Before the utilization of automated monitoring systems which collect data continuously,

the manual measurements of the uplift pressure were performed weekly or biweekly. In

order to achieve a fair representation of the uplift pressures, since the frequency of data

collection varies from dam to dam, only the average uplift pressure recorded in each

piezometer, during a specific time-interval, is considered.

Thus, the data recorded from different piezometers were organized in time intervals two

weeks long, resulting in a collection of samples, each one associated with a time interval, that

can be analyzed separately. A shorter time-interval could reduce significantly the sample

dimension and a much larger time-period could ignore some relevant time-variations.
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For each sample of the average biweekly uplift pressures, a mixture of two beta distri-

butions were adjusted. On one hand, the uplift factor ku must be modeled by a continuous

probability distribution defined on the unit interval, and, on the other hand, information

about the foundation properties, which could be used to distinguish between data recorded

in zones with regular or unfavorable geologic conditions (CFBR 2012), is not available.

The adjustment of a mixture of two beta distributions was made by the MLE method,

given that the likelihood function of a sample x̂ composed by n independent occurrences

of a mixture of two beta variables is given by (Casaca and Pereira 2017),

L
(
Θ,Ω|x̂

)
=

n∏
l=1

2∑
j=1

ωj · fX

(
x̂l|αj ,βj

)
(4.19)

where Θ = {α1,β1,α2,β2} and Ω = {ω1,ω2} are the unknown beta distribution parameters

and weights, respectively, of the variables in the mixture. Figure 4.7 shows, as an example,

the outcome of the beta mixture adjustment to the sample from the 3th time-interval.
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Figure 4.7: Adjustment of a mixture of two beta distributions to the sample from the 3th

interval.

4.2.3.4 Uncertainty model

The procedure for the parametric inference of the mixture of two beta distributions pre-

sented in the last section was repeated for the samples corresponding to the majority of the

time intervals considered, namely those whose sample size is greater than 30 observations

in order to avoid relevant statistical uncertainty. Figure 4.8 synthesizes the results.

From the results of the parametric inference, considering the distribution parameters

of each beta distribution as observations associated with foundations with regular and

unfavorable geologic conditions, the absolute expected value of the uplift factor ku is given
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Figure 4.8: Results of parametric inference of beta mixtures to the time intervals considered.

by,

E (ku) = E
(
E
(
ku|αi,βi

))
= 1
N

N∑
i=1

E
(
ku|αi,βi

)
(4.20)

where N is the number of time intervals. The absolute variance is then given by,

V (ku) = V
(
E
(
ku|αi,βi

))
+E

(
V
(
ku|αi,βi

))
= 1
N

N∑
i=1

(
E
(
ku|αi,βi

)
−E (ku)

)2
+ 1
N

N∑
i=1

V
(
ku|αi,βi

) (4.21)

Table 4.5 presents the beta distributions moments of the uplift factor ku, considering

the first beta distribution as related to foundations with regular geology and the second

beta distribution as related to foundations with unfavorable geology.

4.2.3.5 Model uncertainty

As mentioned above, when analyzing the rock mass hydrodynamic behavior from a dis-

continuum approach, non-linear uplift pressure distribution can be observed in joints. The
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Table 4.5: Beta distribution moments for the uplift factor ku.

Foundation Expected value Variance

Regular geology 0.25 0.012
Unfavorable geology 0.48 0.042

overall effect of the spatial variation of the foundation permeability on the stability of a

dam monolith was studied in Westberg (2009a) and Westberg (2009b), considering a geo-

statistical approach, which concluded that even for effective drainage, high uplift pressures

can be obtained if the hydraulic conductivity field is unfavorable.

The probabilistic model-code for concrete dams (Westberg and Johansson 2016), based

on the conclusions of these studies, recommends uncertainty models for: i) the cases in

which the drainage effectiveness can be assured; and ii) the remain cases in which uplift

reduction shall not be considered. The latter, representing the deviations from the linear

uplift distribution, is here considered as an uncertainty model, affecting the uplift net

force U (equation 3.14), which follows a normal distribution with mean value of 1.00 and

standard deviation of 0.05.

4.3 Material properties

4.3.1 Concrete density

The uncertainty on the magnitude of dead loads, whose probability of occurrence is

approximately one and their variation with time is negligible (permanent loads), is generally

small in comparison with other types of loads (JCSS 2001).

However, for some problems, such as the static equilibrium, the variability of the weight

within a structural element, due to uncertain material density and its dimensions, may be

important.

For ordinary concrete without reinforcement and with stable moisture content, the

JCSS (2001) recommends that its density ρc follows a normal distribution with mean value

of 2400 kg/m3 and coefficient of variation of 0.04 which shall be affected by a reduction

factor of 0.85 to account for the decreased variability in large structures.

Regarding the structural dimensions, although indicating deviations of few centimeters,

JCSS (2001) indicates that the variability of the geometrical parameters can be neglected

in comparison with the variability of loads and material properties.
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4.3.2 Concrete mechanical properties

4.3.2.1 General considerations

Due to its performance requirements, mass concrete used in concrete dams usually has a

lower cement content, which has even been blended with pozzolans and/or fly ashes up

to 50% (Serra et al. 2016), and larger coarse aggregates, leading to different mechanical

properties that develop slower than the ordinary concrete.

Considering that the concrete mechanical properties shall be quantified taking its

variation into account (ICOLD 2008), information from former structures becomes relevant.

Furthermore, the concrete prescription procedure usually requires extensive laboratory

studies within a detailed quality control program. Given the difficulty in testing concrete

composed by such large coarse aggregates, concrete quality control and characterization are

mostly based on results from tests on wet-screened concrete, obtained from the full-mixed

mass concrete by removing aggregates larger than 38 mm. Since the composition of this

concrete significantly differs from the original mix, correlations must still be determined

(USBR 1981; ICOLD 2008; Serra et al. 2016), by comparison to larger specimens, with

the minimum dimension of, at least, three times the MSA, of full-mixed concrete tested

in large capacity rigid presses.

Besides the difference in composition between wet-screened and full-mixed concrete,

the prediction of dam concrete mechanical properties from tests on small-sized specimens

at the reference age, denoted as potential properties (Gonçalves 1999), cannot be made

without considering other differences between “in situ” and laboratory conditions, namely

the failure mechanism according to the specimen geometry (Mier and Nooru-Mohamed

1990) and scale effects (Kim et al. 1999).

Furthermore, since concrete dams are separated into independent monoliths composed

by concrete blocks, dam faces have frequently showed, at the beginning of the dam opera-

tion, some degree of spatial heterogeneity characterized by imperfect links between batches

through which small permanent water transfers occur. The lack of homogeneity, associated

not only with inappropriate transport, placing, vibration and/or hardening conditions, but

also to careless treatment of joints, should also be accounted in the estimation of the real

structural properties from the potential properties.

In the following sections, models for the estimation of potential properties (Pereira et al.

2016c), as a function of the prescribed characteristic compressive strength, and structural
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properties (Pereira et al. 2016d) are proposed, based on the analysis of the results of several

laboratory tests, carried out in specimens from the concrete of Baixo Sabor, Pedrógão and

Ribeiradio dams.

4.3.2.2 Potential properties

General considerations

Potential properties of dam concrete are obtained from small-sized specimens tested, in

normalized conditions, at the reference age. Since, due to construction scheduling, the

results of tests at the strength characteristic age (90 or 180 days) are not available before

concrete placing, the desired characteristic strength is usually targeted at 28 days (ICOLD

2008), although earlier tests are carried out for quality control.

Mostly, tests are performed in wet-screened concrete specimens of standard geometry

and size (NP EN206-1 2007), typically cubes and cylinders of 150 mm, even though few full-

mixed concrete cylindric specimens, with larger dimensions, are also tested for validation

purposes.

Apart from the compressive strength, the Young’s modulus and tensile strength are also

estimated in laboratory tests. Naturally, these properties are related to the compressive

strength, usually by exponential laws (EN1992 2004; ACI 2005; FIB 2010). While Young’s

modulus are estimated from the early specimen response in strength tests, tensile strength

is commonly obtained by (ICOLD 2008): i) direct (pure) tensile test; ii) splitting tensile

(Brazilian) test; or iii) flexural tensile (modulus of rupture) test.

The test that simulates the real loading conditions in dams depends on the anticipated

mode of failure. While the flexural strength can be directly used in numerical analysis of

dams (Raphael 1984), splitting tests are the easiest to handle and more reliable estimation

of the tensile strength can be accomplished by performing large number of tests (ICOLD

2008). However, on a localized level, typical cracking due to static loading follows the

laboratory condition of direct tensile strength.

Being indirect measures of the potential mechanical properties, the results of laboratory

tests shall be transformed, due to the geometry and scale effects, taking into account the

corresponding transformation errors. At the end, the predictive models for Young’s modulus

and tensile strength, as a function of the compressive strength, are obtained by weighted

linear regression, ensuring that the results which have lower propagated error have more

126



4.3. MATERIAL PROPERTIES

preponderance, which is commonly given by,

(
X ′W X

)−1
X ′W Y = β̂ (4.22)

where X and Y are the vectors of the independent and dependent variables, respectively,

W is the corresponding diagonal matrix containing the weights, defined as the reciprocal

of the variance (error) of an observation (ωi = 1/σ2
i ), and β̂ is the vector of the estimators

of the unknown regression parameters.

For instance, the compressive strength shall be consecutively transformed:

1. Firstly, into the equivalent strength of cylindric specimens of standard dimensions

(cylinders with h=300 mm and Φ=150 mm, fc,y150, for the wet-screened concrete or

with h=900 mm and Φ=450 mm, fc,y450, for the full-mixed concrete). The expected

value and variance of the model that transforms the strength obtained in cubic

specimens of wet-screened concrete fc,c150 (Figure 4.9), can be, respectively, given

by,

E
(
fc,y150|fc,c150

)
= 0.80 · fc,c150 (4.23)

V
(
fc,y150|fc,c150

)
= 3.382 (4.24)
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Figure 4.9: Transformation model from standard cubes to standard cylinders.

2. Secondly, into the potential strength fc by removing the scale effects. Kim et al.

(1999) proposes an expression for the estimation of the strength, in terms of the

dimensions of cylindric specimens, concluding that the potential strength tends to

80% of the laboratory reference strength, fc0 = fc,y150. Moreover, Kim et al. (1999)
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states that, since the strength of the concrete is mostly dependent on the cement

content, the effect of the MSA is negligible within the practical range of size. Thus,

the expected value of the transformation model proposed (Figure 4.10a), can be

given, independently of the MSA, by,

E
(
fc (h,Φ) |fc (hi,Φi)

)
= 0.8 ·

(
1 −X (h,Φ)

)
+X (h,Φ)

0.8 ·
(
1 −X (hi,Φi)

)
+X (hi,Φi)

· fc (hi,Φi) (4.25)

where h and Φ are the specimen height and diameter (h/Φ = ∞ to potential struc-

tural properties), in millimeters, hi and Φi are the height and diameter of the

specimen i and X is given by,

X (h,Φ) = 2√
1 + (h−Φ)/50

(4.26)

The variation can be estimated by comparing the compressive strength measured in

full-mixed concrete specimens fc,y450, to the calculated from wet-screened concrete

specimens fc0 = fc,y150, shown in Figure 4.10b. The variation can then be given by,

V
(
fc (h,Φ) |fc (hi,Φi)

)
= 5.222 (4.27)
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(a) Size effects (Kim et al. 1999)
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Figure 4.10: Transformation model from cylindric compressive strength to the potential
compressive strength.

The transformation models, obtained preferentially from the available results, shall

allow the estimation of the mechanical properties, from the results on laboratory tests,
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and the associated model uncertainty.

Young’s modulus

The Young’s modulus, being estimated from the early specimen response in strength tests,

does not depend on the failure mechanism and, consequently, on the specimen geometry

and loading conditions. Although the concrete deformability is mostly dependent on the

aggregates, the modeling of the effect of wet-screening (Serra et al. 2016) is complex for

the detail required. By simplicity, it is considered that the concrete Young’s modulus does

not depend on neither the specimen dimensions nor its composition and can be estimated

directly from the strength obtained in flexural tensile, splitting tensile or compression

tests.

On the other hand, when predicting the Young’s modulus based on the concrete

compressive strength, the compressive strength must be transformed, according to the

models presented. Figure 4.11 illustrates the procedure to obtain prediction models for

the Young’s modulus.

Although exponential laws are usually considered for the relation between compressive

strength and other mechanical properties, in the range of values available, linear relations

are not inappropriate. Thus, from the weighted least square regression, the expected value

and variance of the Young’s modulus Ec are, respectively, given by,

E
(
Ec|fc

)
= 19.37 + 0.39 · fc (4.28)

V
(
Ec|fc

)
= 18.712 (4.29)

The absolute (unconditional) expected value and variance of the Young’s modulus are,

respectively, given by,

E (Ec) = E
(
E
(
Ec|fc

))
= E (19.37 + 0.39 · fc) = 19.37 + 0.39 ·E (fc) (4.30)

V (Ec) = V
(
E
(
Ec|fc

))
+E

(
V
(
Ec|fc

))
= V (19.37 + 0.39 · fc) +V

(
Ec|fc

)
= 0.392 ·V (fc) + 18.712

(4.31)
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Figure 4.11: Illustrative scheme from data treatment to Young’s modulus regression model.

Tensile strength

The tensile strength is obtained directly from direct tensile tests on cylindric specimens or,

indirectly, from splitting or flexural tests on cylinders or prisms, respectively. Therefore,

results from laboratory tests must be consecutively transformed:

1. Firstly, into the equivalent direct strength of cylindric specimens of standard di-

mensions and geometry (cylinders with h=300 mm and Φ=150 mm, ft,y150, for the

wet-screened concrete or with h=900 mm and Φ=450 mm, ft,y450, for the full-mixed
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concrete). From the flexural strength ff , obtained in prismatic specimens, the direct

tensile strength can be estimated by (Coutinho and Gonçalves 1994),

E
(
ft|ff (h)

)
= 0.06 ·h0.7

1 + 0.06 ·h0.7 · ff (h) (4.32)

with a coefficient of variation of 6%, i.e.,

V
(
ft|ff (h)

)
=
(

0.06 · 0.06 ·h0.7

1 + 0.06 ·h0.7 · ff (h)
)2

(4.33)

where h is the height of the prisms, in mm.

From the splitting strength, fs, the direct tensile strength can be estimated by

(Coutinho and Gonçalves 1994),

E
(
ft|fs

)
= fs (4.34)

with a coefficient of variation of 5%, i.e.,

V
(
ft|fs (h)

)
= (0.05 · fs)2 (4.35)

2. Secondly, into the potential tensile strength ft by removing the scale effects. Similarly

to the compressive strength, the relation proposed by Kim et al. (1999), given in

equation 4.25, can be used to remove the scale effects of the tensile strength obtained

in cylindric specimens (4.12a). The variation, can be estimated by comparing the

tensile strength measured in full-mixed concrete specimens, ft,y450, to the calculated

from wet-screened concrete specimens, ft0 = ft,y150, shown in Figure 4.12b. The

variation can then be given by,

V
(
ft (h,Φ) |ft (hi,Φi)

)
= 0.462 (4.36)

Figure 4.13 illustrates the procedure to obtain the prediction model for the tensile

strength.

From the weighted least square regression, the expected value of the tensile strength
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Figure 4.12: Transformation model from cylindric tensile strength to the potential tensile
strength.

ft is given by,

E
(
ft|fc

)
= 0.10 · fc (4.37)

Given the increasing residuals as the compressive strength increases, the model error

(through variance) is advantageously given by a coefficient of variation which was found

to be approximately 25%. Therefore, the variance of the tensile strength ft is given by

V
(
ft|fc

)
= (0.25 · 0.10 · fc)2 (4.38)

The absolute (unconditional) expected value and variance of the Young’s modulus are,

respectively, given by,

E (ft) = E
(
E
(
ft|fc

))
= E (0.10 · fc) = 0.10 ·E (fc) (4.39)

V (ft) = V
(
E
(
ft|fc

))
+E

(
V
(
ft|fc

))
= V (0.10 · fc) +V

(
ft|fc

)
= 0.102 ·V (fc) + 0.252 ·E

(
f2

c

)
=
(
0.102 + 0.252

)
·V (fc) + 0.252 ·E (fc)2

(4.40)

4.3.2.3 Structural properties

The concrete placing and hardening conditions are influenced by different factors, namely

the formwork preparation, the cleaning of the joints, the construction scheduling process,

the utilization of cooling coils and the heat generation from cement hydration. From the

visual inspection of the conditions of the dam downstream face and gallery, where the
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Figure 4.13: Illustrative scheme from data treatment to tensile strength regression model.
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effects of most construction defects are visible, the construction quality can be roughly

estimated. These conditions usually vary from a compact and homogeneous aspect to

severely altered aspect associated with water transfers.

In view of these circumstances, an empirical classification of the construction quality,

from the visual inspection, is proposed. Table 4.6 presents the referred classification, in

terms of structural acceptability.

Table 4.6: Concrete conditions from visual inspection and corresponding classification in
terms of structural acceptability.

Concrete condition Classification

Homogeneous, the link between batches is perfect, the concrete
joints are imperceptible Excellent

Almost homogeneous, there are a small number of poor links
between batches through which small water transfers plugged Very good

Almost homogeneous, there are some poor links between batches,
including a reduced subset through which small permanent water

transfers were observed
Good

Less homogeneous, there are a significant number of poor links
between batches, including a high percentage (up to 5%) through

which small permanent water transfers were observed
Satisfactory

The characterization of the concrete mechanical properties, during the dam operation,

can be made: i) directly, through laboratory tests on samples cut from the dam (strength

and deformability); or ii) indirectly, through ultra-sound and forced vibration tests (only

deformability).

While, given the structural dimensions, the number of samples cut from the dam is

usually small, ultra-sound and forced vibration tests can provide valuable information

regarding the global deformability of the structure.

The quantification of the construction quality factor γcq, representing the overall in-

tegrity conditions of the structure, can be initially made by comparing the average potential

Young’s modulus (Ep), obtained in laboratory tests, to the average one considered in struc-

tural modeling (Em) in order to interpret properly the observed behavior during the

reservoir filling and first operation period. The cases in which both results are available

(Catapereiro, Pedrógão, Pretarouca, Baixo Sabor and Ribeiradio dams), are presented in

Table 4.7.

Besides the small number of dams with available results, three extreme cases are

included in this group, specifically the Ribeiradio dam with excellent construction quality,
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Table 4.7: Comparison between the average potential Young’s modulus and the one con-
sidered in structural modeling.

Dam Ep (GPa) Em (GPa) Em/Ep

Baixo Sabor 28 27 0.96
Catapereiro 33 28 0.85
Pedrógão 29 25 0.86

Pretarouca 33 30 0.91
Ribeiradio 29 28 0.97

and Catapereiro and Pedrógão dams in which the construction quality is satisfactory. For

the first, there are a significant number of construction joints that have a poor link between

batches. The second is the first RCC dam built in Portugal.

Given the reduced information available, the quantification of the construction quality

factor can be alternatively made by assigning values according to the visual conditions

of several dams. These values were limited between 0.85 and 1.00. The proposal for the

compressive, tensile and shear strength reduction, the corresponding construction quality

coefficient according to the classification made in terms of structural acceptability, and

the number of dams assigned, is presented in Table 4.8.

Table 4.8: Strength reduction and construction quality factor in terms of the structural
classification.

Classification Dams
Strength reduction

γcqCompressive Shear Tension

Excellent 16 1.00 1.00 1.00 1.00
Very good 28 1.00 0.95 0.90 0.95

Good 8 1.00 0.90 0.80 0.90
Satisfactory 1 1.00 0.85 0.70 0.85

The values proposed for the strength reduction, which shall be understood as a portion

of the strength of a concrete in good conditions, are based on the practical experience

of the Materials Department of LNEC from the tests performed on cores drilled from

concrete lift joints of existent dams (LNEC 2007; LNEC 2014). Thus, since the structural

acceptability criteria are fulfilled, it is considered that:

• The compressive strength is not affected;

• Due to imperfect links between batches, the tensile strength may be reduced up to
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70% of a concrete in good conditions;

• Since it is less affected by imperfect links between batches, the shear strength may

be reduced up to 85% of a concrete in good conditions, corresponding to an average

value between the compressive and tensile strengths.

Since the dam structural failure often occurs by shear and the dam design aims at

eliminating the tensile stresses, the construction quality coefficients proposed are identical

to the shear strength reduction.

Based on the classification of 53 Portuguese large concrete dams, for the construction

quality factor γcq, which shall multiply any potential mechanical property, a normal

distribution with mean value of 0.959 and standard deviation of 0.037 truncated at 0.85

(worse cases may not ensure safe operation conditions and need repair works before the

dam entry into operation) and 1.00 (optimal concrete condition), is proposed.

4.3.3 Concrete-rock interface shear strength

According to the Portuguese dam safety regulation (RSB 2018), for failure scenarios,

residual values of the friction component and zero cohesion shall be considered, based on

the simplification proposed by Underwood and Dixon (1976).

To generalize the shear strength parameters of the concrete-rock interface, the Chinese

standards (GB50199 1994) indicate standard values, based on testing results of similar

projects, that could be adopted for the dam design. The approach behind these standard

values is to cover all realistic situations regarding the shear strength capacity of the concrete-

rock interface, in a conservative point of view. The mean value (µ) and the coefficient of

variation (σ/µ) of the friction coefficient, grouped into three rock mass classes associated

with the rock mass properties, such as the uniaxial compressive strength Rb, the p-wave

velocity vp and the Young’s modulus Er, are shown in Table 4.9.

Considering that the mean value (µ) of the friction coefficient follows an uniform

distribution, since no further information is proposed (GB50199 1994), within the range

of values recommended for each rock mass class, the expected value and variance of the

friction coefficient, using the law of total expectation (equation 4.12) and the law of total

variance (equation 4.13), are, respectively, given by,

E (tanφ) = E
(
E
(
tanφ|µ

))
= E (µ) (4.41)
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Table 4.9: Standard values of the friction coefficient of concrete-rock interface according
to the Chinese standards (GB50199 1994).

Rock
mass
class

Rock mass properties
Variation range

of rock mass
mechanical properties

Shear strength
parameter (tanφ)

µ σ/µ

I

Dense and sound rock mass.
Distance between cracks > 1.0 m.

(e.g., magnetic, volcanic,
abysmal and massive thick
layer sedimentary rock).

Rb > 100 MPa
vp > 5000 m/s
Er > 20 GPa

1.30 − 1.50 20%

II

Sound and weakly weathered
massive rock. Distance between

cracks 0.5 − 1.0 m. The rock mass
is stable except in few local

areas (e.g., thick-layer sandstone,
conglomerate, limestone without
resorption, dolomite, quartzite,

pyroclastic, rock).

60<Rb < 100 MPa
4000< vp < 5000 m/s

10<Er < 20 GPa
1.10 − 1.30 20%

III

Medium-sound and weakly
weathered massive rock, poor
completeness and cyclopean
structure. Distance between

cracks 0.3 − 0.5 m.

30<Rb < 60 MPa
3000< vp < 4000 m/s

5<Er < 10 GPa
0.90 − 1.10 20%

V (tanφ) = V
(
E
(
tanφ|µ

))
+E

(
V
(
tanφ|µ

))
= V (µ) +E

(
0.22 ·µ2

)
= V (µ) + 0.22 ·E

(
µ2
)

= V (µ) + 0.22 ·
(
V (µ) +E (µ)2

) (4.42)

where, from Table 2.1, E (µ) and V (µ) are, respectively, given by,

E (µ) = a+ b

2 (4.43)

V (µ) = (b− a)2

12 (4.44)

where a and b are the lower and upper limits of the uniform distribution, respectively.

Table 4.10 synthesizes the probability distribution properties for the residual friction co-

efficient, considering a lognormal distribution, as recommended in the Eurocodes (EN1990

2002) for material physical properties.
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Table 4.10: Distribution properties for the residual friction coefficient tanφ.

Rock mass class Distribution E V

I Lognormal 1.40 0.082
II Lognormal 1.20 0.061
III Lognormal 1.00 0.043

4.4 Model uncertainties

4.4.1 General considerations

The consideration of models, given in terms of random variables, contains inaccuracies due

to the simplification inherent in their mathematical formulation, that shall be considered

in reliability analysis.

In the following sections, the uncertainties introduced by the seismic load models, the

Mohr-Coulomb shear criteria and the rigid body formulation of the stability problem are

addressed.

4.4.2 Seismic load models

4.4.2.1 General considerations

The consideration of either the pseudo-static or the pseudo-dynamic (Fenves and Chopra

1986) seismic load models for the stability analysis results in approximations of the real

structure response, which can only be alternatively assessed using numerical models capable

of simulating both the structure dynamic behavior and the seismic excitation.

Since information on those approximations is lacking, simple numerical models can

be used to compare the analytical solution of the stability problem considering either the

pseudo-static or the pseudo-dynamic seismic load models and the seismic response of the

corresponding numerical models varying, on one hand, the seismic loading according to the

response spectrum of each seismic type and zone, and, on the other hand, the geometrical

characteristics and other loading conditions of the structure.

In the following sections, the time-history loading and the numerical models are pre-

sented. Lastly, the relevant results are analyzed and the model uncertainty is quantified.
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4.4.2.2 Time-history loading

For analyzing the variability of the seismic loading, accelerograms, describing the ground

acceleration over time, are considered to represent the seismic excitation, since the struc-

tural non-linear behavior can only be estimated through time-history analysis. Artificial

accelerograms can be generated according to the characteristics expected for the local seis-

mology. Thus, the variation of the seismic loading is taken from 10 artificial accelerograms

(Carvalho 2007), generated in consistency with the Lisbon seismology. As for rock (type

A) foundations, the unitary acceleration response spectrum does not vary with the seismic

zone (the soil coefficient S is independent of the ground acceleration), the accelerograms

can just be scaled to represent the remain seismic zones. The unitary accelerograms are

shown in Figures 4.14 and 4.15, for seismic action type 1 and 2, respectively.

To verify its suitability according to the seismic zonation, the response spectra of the

artificial accelerograms were compared to the regulatory spectrum (Figure 3.15). Figure

4.16 shows the adequability of the response spectra, obtained through the Duhamel’s

integral, which represent the response of single degree-of-freedom oscillators to time-varying

excitations.

The accelerograms fulfill the regulatory rules (EN1998 2004), since the mean of the

spectral response acceleration (gray line): i) is not smaller, at zero period, than the value of

ag ·S; and ii) is not smaller than 90% of the corresponding value of the response spectrum

(black dashed line), in the range of periods between 0.2 · T1 and 2.0 · T1, where T1 is

the fundamental period of the structure in the direction where the accelerogram will be

applied.

4.4.2.3 Numerical models

Discrete-element models (appendix C), with flexible block for the dam and rigid blocks for

the foundation, of a 100 meter high gravity profile were analyzed for 100 combinations of

geometry, loads and material properties, varying randomly: i) the downstream face slope

(sd) between 0.75 and 1.00; ii) the reservoir water level (Hr) between 50% and 100% of the

dam height; iii) the uplift factor (ku) between 0.10 and 0.70; and iv) the concrete Young’s

modulus (Ec) between the discrete values in which pseudo-dynamic analysis is set: 6.9,

13.8, 17.3, 20.7, 24.1, 27.6, 31.0 and 34.5 GPa.

The dynamic loads, due to seismic actions, are given by velocity histories applied to
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Figure 4.14: Artificial (unitary) accelerograms for seismic action type 1.

the rock foundation block, obtained by numerical integration of the accelerograms. For

different seismic zones, the unitary accelerograms (Figures 4.14 and 4.15) were directly

scaled, according to the respective design acceleration, given in Table 3.3. For the vertical

component, velocity histories corresponding to 30% of the horizontal ones were also applied.

For the inclusion of the dynamic dam-reservoir interaction, a simplified representation

of the reservoir by an elastic block with very low shear modulus can be used (Lemos

140



4.4. MODEL UNCERTAINTIES

-1.0
-0.5
0.0
0.5
1.0

a
g

(m
/s

2 )

(a) Accelerogram 2.1 (b) Accelerogram 2.2

-1.0
-0.5
0.0
0.5
1.0

a
g

(m
/s

2 )

(c) Accelerogram 2.3 (d) Accelerogram 2.4

-1.0
-0.5
0.0
0.5
1.0

a
g

(m
/s

2 )

(e) Accelerogram 2.5 (f) Accelerogram 2.6

-1.0
-0.5
0.0
0.5
1.0

a
g

(m
/s

2 )

(g) Accelerogram 2.7 (h) Accelerogram 2.8

-1.0
-0.5
0.0
0.5
1.0

a
g

(m
/s

2 )

0 5 10 15
t (s)

(i) Accelerogram 2.9

0 5 10 15
t (s)

(j) Accelerogram 2.10

Figure 4.15: Artificial (unitary) accelerograms for seismic action type 2.

1987), allowing the separation of the fluid from the dam face, and quiet boundaries can

be attached to the far end of the reservoir. However, in many practical applications, an

approximate representation of the reservoir effects by means of the added mass concept,

based on Westergaard’s theory (Westergaard 1933), is sufficient. Thus, extra masses are

added to the gridpoints on the dam upstream face, quantified according to the solution

for the dynamic forces that an incompressible fluid exerts on a moving vertical wall.
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Figure 4.16: Response spectrum, obtained from the accelerograms, and regulatory spectrum
according to the NP EN1998-1 (2010).

A schematic representation of the discrete-element model is shown in Figure 4.17.

10 m

90 m sd
1 γc = 24 kN/m3

Ec

ν = 0.2

γr = 30 kN/m3

u̇(t)
0.3 · u̇(t)

g = 9.81 m/s2

Figure 4.17: Schematic representation of the numerical models analyzed.

Each dynamic analysis, using the UDEC software (Itasca 2011) and considering a

Rayleigh damping of 5%, took approximately 5 minutes, for seismic actions type 1, and

2 minutes, for seismic actions type 2, since 40-seconds and 15-seconds accelerograms,

respectively, were used.

The desired numerical solution is obtained using a root-finding procedure, based on the

Brent’s method (section D.3.7 of the appendix D), which, varying judiciously the friction

angle, finds the value resulting in a residual displacement of the dam heel (dt) of 38 mm,

since it is considered that residual displacements beyond half diameter of the drains would

represent the disruption of the drainage system, leading to structural failure caused by

excessive uplift pressures installed. For each seismic zone, this procedure was repeated for
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1000 cases (100 combinations of geometry and loads for each of 10 velocity histories).

The root-finding procedure was not always successful since, in some cases, the wide

initial interval for the friction angle did not lead to opposite sign roots. This was more

prominent for seismic zones with higher ground acceleration since two undesired phenom-

ena may occur more frequently: i) overturning; or ii) rocking, which does not allow the

convergence of the procedure based on the residual displacement of the dam heel. Those

cases were disregarded. Table 4.11 shows the number of successful root-finding procedures

used later as observations for the uncertainty quantification.

Table 4.11: Number of successful root-finding procedures.

Seismic
zone

Seismic type
1 2

1 296 654
2 458 759
3 704 858
4 892 947
5 935 954
6 942 -

As an example, Figure 4.18 shows the displacement history during the dynamic analysis,

considering the Accelerogram 1.5 for the seismic zone 1.3 (ag = 2.46 (m/s2) for a return

period of 1000 years), of a model characterized by: i) downstream face slope of 1.00;

ii) reservoir water level at 96% of the dam height; iii) uplift factor of 0.42; iv) concrete

Young’s modulus of 27.6 GPa; and v) friction angle of 33.7◦, which results in a residual

displacement of 38 mm, approximately.

4.4.2.4 Results analysis and uncertainty quantification

As referred in section 2.3.4, the model uncertainties, which shall be considered as random

variables to account for the neglected information in the simplified formulation, can be

given by the relation between the real and the empirical model.

In this case, it is considered that each observation of the model uncertainty θe is

obtained by solving the following equality, for each case,

φa
c

(
θe · ag

)
= φn

c

(
ag
)

(4.45)
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Figure 4.18: Example of the displacement history obtained for a load case which resulted
in a residual displacement of 38 mm.

where φa
c

(
θe · ag

)
is the analytical solution of the stability problem, given by the condi-

tioning sliding failure mode (from equations 3.38, 3.39 or 3.40), considering a ground

acceleration ag multiplied by the model uncertainty θe, and φn
c is the corresponding nu-

merical solution, considering an unitary accelerogram scaled to ag.

Figures 4.19 and 4.20 show the histograms of the model uncertainty, θe, for each

seismic zone, considering the pseudo-static and the pseudo-dynamic seismic load models,

respectively.

For the samples x̂ obtained for each seismic zone, considering either load models, two

non-negative probability distributions (lognormal and Weibull) were adjusted by the MLE

method and compared. The best distribution to model this variable is the one resulting in

the highest likelihood (equations 2.4 or 2.5). Naturally, in left-skewed samples the lognormal

distribution fits better, whereas, in right-skewed samples, the Weibull distribution fits

better. Table 4.12 presents the estimated distribution moments.

The following aspects are concluded from these results:

• As expected, greater peak accelerations lead to greater standard deviation of the

model uncertainties;

• Pseudo-dynamic seismic load model results, in average, in an overestimation, for

seismic actions type 1, and a good approximation of the analytical solution, for
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Figure 4.19: Histograms of the model uncertainty variable, θe, considering the pseudo-static
seismic load model.

seismic actions type 2;

• Pseudo-static seismic load model results, in average, in a good approximation for
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Figure 4.20: Histograms of the model uncertainty variable, θe, considering the pseudo-
dynamic seismic load model.

seismic actions type 1, and an underestimation of the analytical solution for seismic

actions type 2;
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Table 4.12: Distribution moments of the model uncertainty associated with the pseudo-
static and pseudo-dynamic load models.

Seismic
zone

Pseuto-static model Pseudo-dynamic model

E V
Log-likelihood

E V
Log-likelihood

LN W LN W

1.1 0.91 0.0677 -100.55 -36.75 1.27 0.1519 -231.18 -158.66
1.2 1.06 0.0328 -13.51 117.04 1.50 0.0765 -233.07 -86.48
1.3 1.11 0.0201 305.05 405.98 1.57 0.0569 -130.07 8.69
1.4 1.09 0.0123 701.32 696.69 1.54 0.0467 61.59 135.34
1.5 1.09 0.0099 837.87 781.21 1.54 0.0452 106.50 158.79
1.6 1.17 0.0103 825.16 763.32 1.66 0.0500 59.80 111.18

2.1 0.77 0.0146 341.59 452.41 1.18 0.0257 0.76 222.76
2.2 0.76 0.0082 709.00 771.72 1.15 0.0159 309.08 496.71
2.3 0.74 0.0059 993.86 1030.41 1.12 0.0165 515.54 596.81
2.4 0.70 0.0022 1562.40 1536.54 1.06 0.0151 654.75 692.77
2.5 0.69 0.0012 1851.83 1806.08 1.05 0.0182 586.97 609.07

• For seismic actions type 2, both analytical models show lower standard deviation

than for seismic actions type 1;

• Pseudo-static load model has lower standard deviation than pseudo-dynamic load

model, for all seismic zones.

Unexpectedly, the pseudo-dynamic load model presents a greater bias (or standard

deviation) than the simpler pseudo-static load model. This is probably due to the inad-

equacy of the first to model the seismic loads for large displacement analysis, as it was

developed for the elastic (and therefore non-limit) analysis.

The load duration also plays, apparently, an important role in the precision of the stabil-

ity solution using analytical seismic load models. Actually, the cumulative displacement is

developed by small increments due to the instantaneous acceleration exceeding the critical

acceleration. As the duration of seismic action increases, the number of acceleration peaks

that exceed the critical acceleration will probably increase, leading to a greater residual

displacement. Thus, even for the same peak acceleration, longer dynamic excitations result

in greater residual displacement.
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4.4.3 Mohr-Coulomb shear strength model

Although the shear envelope is recognizedly non-linear (Nicholson 1983), the linear Mohr-

Coulomb failure criteria is a simple model usually considered in stability analysis problems.

Regarding the uncertainty related to this assumption, Krounis et al. (2015) proposed bias

up to 40% of the mean strength due particularly to the spatial variation of the cohesion. On

the other hand, JCSS (2001) proposed the consideration of a lognormal distribution with

mean value of 1.4 and standard deviation of 0.25 for the model uncertainties associated

with shear capacity of concrete.

However, the residual strength assumption justifies the consideration of smoother

variations in strength, since the residual shear envelope shall not differ considerably from a

linear failure criteria. In this work, significantly lower bias is assumed, considering that in

average, the linear Mohr-Coulomb criteria models the strength on the interface. Therefore,

a model uncertainty θS affecting the mobilized friction coefficient, given by a lognormal

distribution with mean value of 1.0 and standard deviation of 0.10, is considered.

4.4.4 Rigid body stability model

The analytical calculation of the necessary friction coefficient, as a function of loads and

the geometry, requires a rigid body formulation which allows the solution of the static

equilibrium. Although the existent discontinuities govern the movement during structural

failure, the required rigid body assumption neglects some aspects, namely: (i) crushing that

may occur in stress concentrated zones (interbody contacts); or (ii) structural deformations.

On one hand, given the high stresses installed in contact points A and B (for the failure

mode 1) or B and C (for the failure mode 3), concrete crushing is expected to occur leading

to a transition from vertex-edge to edge-edge contacts. One other hand, deformations in

the concrete and rock mass would also change the pre-failure equilibrium configuration,

affecting the suitability of the critical friction coefficient computed from the rigid body

formulation.

Since no information regarding the rigid body model uncertainty is available, the in-

troduction of subjectivity in the estimation of related probabilistic properties is inevitable.

So, avoiding the over dependency between the estimated probability of failure and impon-

derable variables, a model uncertainty affecting the computed critical friction coefficient

(tanφc), θS , given by a lognormal distribution with mean value of 1.0 and small standard
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deviation of 0.03, is considered.

4.5 Final considerations

The uncertainty modeling is a central task for the reliability- and risk-based approach to

structural safety analysis. As the estimation of the probability of failure, through reliability

methods, is highly sensitive to the probabilistic distributions used, uncertainty modeling

shall carefully combine data available (objective information) and physical arguments,

experience and judgment (subjective information).

In this chapter, data from monitoring and quality control tests were used to derive

probabilistic models for the water loads and the concrete mechanical properties, respec-

tively. The quantification of other sources of physical uncertainties, such as the concrete

density and concrete-rock interface shear strength, was based on the literature. The model

uncertainty regarding the seismic load models was quantified by comparing the dynamic

response and the analytical stability analysis of equivalent structures. While engineering

judgment regulates all decisions, it became particularly relevant to define probabilistic

models regarding other model uncertainties, such as the Mohr-Coulomb shear strength

model and the rigid body stability formulation, that could not be alternatively quantified.

The advances made allowed the quantification of the relevant sources of uncertainty

involved in the concrete dam safety which will enable, in the following chapters, both the

studies on the reliability-based design and the code calibration for ultimate limit states.
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5.1 General considerations

The decision upon the construction of concrete dams shall balance the expected profits

coming from the exploitation of the water resources against the costs of conceiving a

structural solution that fulfills the performance requirements, regarding the structural

safety, functionality and durability.

In the design phase, the choice for concrete gravity dams, to the detriment of other

types of structures, shall lead to engineering and/or economical advantages, ideally justified

in a risk-based approach minimizing the expected life-cycle costs (Ang and Leon 1997)

as a function of the underlying risk. However, as this approach is highly influenced by

the interpretation of the practitioner, standards often establish deterministic criteria,

representing the performance requirements, which shall accommodate a safety margin

to account for the inherent uncertainties of the problem, as well as, the severity of the

consequences of a structural failure.

Regarding the safety requirements in particular, the Portuguese dam safety regulation

(RSB 2018) simplifies the time-variant safety problem by considering that the ultimate

structural capacity, characterized by the residual strength, shall guarantee the structural

safety under the most conditioning foreseeable load conditions arising during the intended
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service life of the structure, namely those derived from the occurrence of the design flood

and the design earthquake.

In the standards-based approach, the required structural characteristics of a concrete

gravity dam are then obtained by a DDO procedure, considering the local constraints,

namely with regard to the local hydrology, the hydraulic and mechanical characteristics

of the rock mass foundation and the local seismic hazard. Although safety factors shall

implicitly account for the reservations about the predicted structural capacity, the severity

of the consequences of a possible structural failure and the magnitude of loads, the trade-off

between safety and economy is thus only addressed subjectively (Beck and Gomes 2012),

since structural characteristics obtained by a DDO procedure: (i) grossly neglects the

effects of the sources of uncertainties on structural safety, and (ii) may not be optimal due

to the deviations of the reliability levels throughout a class of structures.

In face of unavoidable uncertainties, optimum structural solutions can alternatively

be obtained by a RBDO procedure, where the safety requirements, given by a target

reliability index or a target probability of failure derived from risk acceptance criteria, are

introduced as optimization constraints. Thus, an objective function f (θ), such as the cost

of construction or manufacture (Melchers 1999) given in terms of design variables θ, is

minimized providing that safety requirements are fulfilled.

The benefits from this procedure, upon decision-making, depends on the ability to:

(i) define the boundary conditions between the occurrence of consequences and their

avoidance (failure modes); (ii) simulate either analytically or numerically the structural

response in those conditions (limit states); (iii) quantify properly the relevant sources of

uncertainty; and (iv) define target reliability index reflecting realistically the severity of

the consequences of failure and the risk acceptance criteria. However, doubts on the effects

of the simplifications required regarding the structural behavior of concrete dams, strongly

influenced by roughly known foundation characteristics, on the estimation of the real

probability of failure have refrained the dam engineering community of adopting definitely

a probabilistic-based approach. The successful works (e.g. Altarejos 2009; Westberg 2010),

either on an academic or practical levels, were limited to concrete gravity dams with

well defined failure conditions, whose structural analysis can be conducted based on bi-

dimensional rigid models, enabling the definition of analytical limit states since structural

stability is often the conditioning failure mode.

Therefore, the advances made in this thesis, regarding the failure mode and uncertainty
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modeling, encourage the application of probabilistic principles to the design of theoret-

ical concrete gravity dams, through RBDO procedure, based on similar simplifications

regarding the structural behavior, namely: (i) the pre-selection of a failure surface (dam-

foundation interface); (ii) equivalent rigid body behavior; and (iii) residual shear strength,

given only by the frictional component, corresponding to a limit analysis valid for ultimate

limit states.

Accordingly, since structural safety of concrete gravity dams depends mostly on their

geometry, the objective function f (θ) to be minimized in the RBDO procedure shall

expectedly be proportional to the geometric characteristics (upstream and downstream face

slopes or the keyed depth). Given that the upstream face slope shall not differ considerably

from a vertical surface (Chen 2015) and the keying works may be usually more expensive

than increasing the material volume, the downstream face slope is considered, in this

study, the only design variable θ = sd. Therefore, the RBDO procedure is simplified into

an inverse reliability problem, whose solution algorithm, based on FORM principles, was

detailed in section 2.6.2, in which the minimum design variable θ∗ that fulfills the reliability

requirements βT i for each failure mode i is sought, i.e.,

βi
(
θ∗)= βT i (5.1)

Since the structural solution shall ensure adequate levels of safety for the two different

load events that may plausibly compromise its safety, namely the flood and earthquake

load events, the geometric characteristics of the concrete gravity dam shall meet the safety

requirements for both, being naturally given by the most demanding case. Therefore,

to cover all range of possibilities regarding the loading conditions, the inverse reliability

procedure is applied, for a specific load event, considering separately each limit state, and

repeated to each design situation, within the calculation sequence illustrated in Figure 5.1.

In the following sections, the required information of the case study, namely the

geometrical properties of the theoretical profile, the load effects on the structure, the limit

states, the random variables and the reliability requirements, is presented. After that, the

inverse reliability procedure is applied to the design situations derived from the flood and

seismic load events. At the end, some final considerations regarding the most conditioning

failure modes and load events are made based on the results presented.
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Case study
(geometry)

Failure modes
i and corre-

sponding limit
states, Gi (x)

Random
variables x

Load events
L: Flood and
Earthquake

Reliability
requirements

Design sit-
uations j

Target reliabil-
ity index βT i|L

For each design situation j:

For each failure mode
i: Compute θ∗

ij and u∗
ij

through inverse reliability
procedure (section 2.6)

Figure 5.1: Calculation sequence for the reliability-based design considering each design
situation.

5.2 Case study

5.2.1 Geometric characteristics

The case study considered is a theoretical gravity monolith with 100 meter of height, keyed

into the foundation at a depth corresponding to 10% of its height (hw = 10 m), such as

practiced in the dam construction in Portugal (Pedro 2018).

The stability analysis of the simplified two-dimensional profile is performed analytically

considering the failure modes detailed in section 3.6. For that, a downstream rock wedge,

detached from the remain rock mass foundation, must be considered.

Tests on the influence of the downstream rock wedge slope (α) on the structural

capacity were performed by varying the loading conditions, the downstream face slope

and the downstream rock wedge slope. The most conditioning rock wedge slope, which

result in the loss of equilibrium for a larger critical friction angle (φc), varies between

α= 4◦ and α= 7◦, with an average value of α= 5.5◦, depending on the loading conditions

and the downstream face slope. Note that, if the equilibrium conditions at the complete
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interface plastification (Figure 3.19), corresponding to the small displacement approach,

were considered, the most conditioning rock wedge slope would vary between α= 25◦ and

α= 40◦, validating the suggested (α= 45◦ −φ/2) in the CADAM software (Leclerc et al.

2001) for the stability analysis of gravity dams.

Therefore, in the case study considered, a downstream rock wedge inclined at α= 5.5◦

is assumed. Figure 5.2 shows the geometry of the case study.

C

L(θ)

θ

1

α = 5.5◦

10
m

80
m

10
m

10 m

0.1 · L(θ)

Figure 5.2: Geometry of the case study.

5.2.2 Random variables

The relevant sources of uncertainty in engineering problems are considered, in time- and

space-invariant problems, as random variables, modeled by distribution functions which

assign probabilities to a range of values of a specific quantity.

The sources of uncertainty, involved in the structural safety of concrete gravity dams,

were quantified in chapter 4, combining objective and subjective perspectives, using, in

addition to the elements found in the literature, data from monitoring of the concrete

dam behavior during the construction, first filling and operation periods. The random

variables considered in the inverse reliability procedure, namely in regard to loads, material

properties and model uncertainties, are associated with:

• Uncertainty on the reservoir water level, in normal operation conditions, is modeled

by a beta distributed random variable kr, quantifying the water level in relation to the
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dam height (equation 4.1). Since the probability distribution of kr depends on both

the relative normal water level knwl and the project exploitation type, as observed

in the monitoring data analysis presented in section 4.2.2.2, several theoretical cases

characterized by different values of knwl (from 0.79 to 0.99 with a step of 0.02) were

considered for both groups, namely “Group L1” for storage dams and “Group L2”

for run-of-river dams. The distribution moments, obtained through equations 4.16

and 4.17, were shown in Table 4.2;

• Uncertainty on the uplift pressures is modeled by a beta distributed random variable

ku, quantifying the uplift pressures at the drainage line, which, based on the dis-

tinction made in the French guidelines (CFBR 2012), were divided into two groups,

namely “Group U1” for regular geology foundation and “Group U2” for unfavorable

geology foundation;

• Uncertainty due to the consideration of the linear or bi-linear uplift model is modeled

by a normal distributed random variable θu that shall multiply the uplift factor ku;

• Uncertainty on the structure weight is taken into account by considering the concrete

density modeled by a normal distributed random variable ρc;

• Uncertainty on the dam-foundation shear strength is taken into account by consider-

ing the friction coefficient modeled by a lognormal distributed random variable tanφ,

which, based on the recommendations of the Chinese standars (GB50199 1994), were

divided into three groups, namely “Group S1” for rock mass class I, “Group S2” for

rock mass class II and “Group S3” for rock mass class III;

• Uncertainty due to the consideration of the linear Mohr-Coulomb failure criteria is

modeled by a lognormal distributed random variable θR, which shall multiply the

friction coefficient tanφ;

• Uncertainty introduced by the rigid body formulation is modeled by a lognormal

distributed random variable θS , which shall multiply the critical friction coefficient

tanφc
obtained by solving the systems of equations 3.38, 3.39 and 3.40, for the failure

modes 1, 2 and 3, respectively;

• Uncertainty associated with the consideration of the pseudo-static seismic load model

is modeled by a random variable θe, whose moments were listed in Table 4.12
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according to the seismic type and zone, which shall multiply the seismic acceleration

ag.

The distribution properties of the random variables are synthesized in Table 5.1.

Table 5.1: Distribution properties of the random variables.

Random variable Group Distribution Mean value Variance

Relative reservoir
water level, kr

L1
Beta see Table 4.2

L2

Uplift factor, ku
U1

Beta
0.25 0.012

U2 0.48 0.042
Uplift model uncertainty, θu Lognormal 1.00 0.052

Concrete density, ρc (kg/m3) Normal 2400 81.62

Friction coefficient, tanφ
S1

Lognormal
1.40 0.082

S2 1.20 0.061
S3 1.00 0.043

Mohr-Coulomb shear strength
model uncertainty, θR

Lognormal 1.00 0.102

Model uncertainty due to the
rigid body formulation, θS

Lognormal 1.00 0.032

Seismic load model uncertainty, θe see Table 4.12

5.2.3 Ultimate limit states

As mentioned, limit states, defining the boundary between desired (non-failure conditions)

and undesired (failure conditions) structural response, are generally divided into ultimate

limit states, concerning partial or global structural collapse, and serviceability limit states,

concerning the functionality, durability and aesthetics of the structure.

In this study, ultimate limit states involving the loss of structural equilibrium are

considered. Since most engineering problems can be reduced to a comparison between

solicitation S and structural capacity R, these limit states, derived from the failure modes

1 to 4 presented in section 3.6, are expressed, in terms of the random variables x = { kr,

ku, θu, ρc, tanφ, θe, θR, θS} and the design variable θ, respectively, by,

G1 (x,θ) = tanφ · θR −S1 [Fv (ku · θu,ρc,θe,θ) ,x0 (ku · θu,ρc,θe,θ) ,Fh (kr,θe,θ) ,

y0 (kr,θe,θ) ,Fn,w (θe) ,Ft,w (θe)
]
· θS

(5.2)
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G2 (x,θ) = tanφ · θR −S2 [Fv (ku · θu,ρc,θe,θ) ,Fh (kr,θe,θ) ,

Fn,w (θe) ,Ft,w (θe)
]
· θS

(5.3)

G3 (x,θ) = tanφ · θR −S3 [Fv (ku · θu,ρc,θe,θ) ,x0 (ku · θu,ρc,θe,θ) ,Fh (kr,θe,θ) ,

y0 (kr,θe,θ) ,Fn,w (θe) ,Ft,w (θe)
]
· θS

(5.4)

G4 (x,θ) = −MC (ku · θu,kr,ρc,θe,θ) (5.5)

where S1, S2 and S3 are the critical (or minimum necessary) friction coefficient, below

which failure occurs, obtained in equations 3.38, 3.39 and 3.40, respectively, and:

• Fv is the vertical net force, acting on the dam body, given by,

Fv (ku · θu,ρc,θe,θ) =W (ρc,θ) −U (ku · θu,θ) −Fs,v (θe,θ) (5.6)

where W is the structure weight, given in equation 3.5, U is the total uplift force,

given in equation 3.14 and Fs,v is the vertical component of the inertia forces due to

seismic action;

• x0 is the point of application of the total vertical net force Fv, given by,

x0 (ku · θu,ρc,θe,θ) =
[
W (ρc,θ) −Fs,v (θe,θ)

]
·xW (θ) −U (ku · θu,θ) ·xU (θ)

Fv (ku · θu,ρc,θe,θ)
(5.7)

where xW is the x-coordinate of the centroid of the dam structure and xU is the

application point of the total uplift force, given in equation 3.15.

• Fh is the horizontal net force, acting on the dam body, given by,

Fh (kr,θe) = Iw (kr) +
∑

i

Fs,h,i (θe,θ) (5.8)

where Iw is the total hydrostatic force, given in equation 3.7, and Fs,h is the horizontal

component of the inertia forces due to seismic action, given: (i) for the pseudo-static

seismic load model, by both the equivalent static forces (equation 3.22) and the

hydrodynamic forces (equation 3.24); or (ii) for the pseudo-dynamic seismic load

model, by pseudo-dynamic equivalent lateral forces (equation 3.28);
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• y0 is the point of application of the total horizontal net force Fh, given by,

y0 (kr,θe,θ) =
Iw (kr) · yIw (kr) −

∑
iFs,h,i (θe,θ) · yFs,i (θ)

Fh (kr,θe) (5.9)

where yIw is the application point of the total hydrostatic force, given in equation

3.8, and yFs is the application point of the horizontal component of the inertia forces

due to seismic action, given: (i) for the pseudo-static seismic load model, by the

y-coordinate of the centroid of the dam structure (yW ), for the equivalent static

forces, and by yIws (equation 3.25), for the total hydrodynamic forces; or (ii) for the

pseudo-dynamic seismic load model, by equation 3.29;

• MC is the clockwise moment around the point C, given by,

MC (ku · θu,kr,ρc,θe) =Fh (kr,θe) ·
[
y0 (kr,θe,θ) −hw

]
−

Fv (ku · θu,ρc,θe,θ) ·
[
L(θ) −x0 (ku · θu,ρc,θe,θ)

] (5.10)

• Fn,w is the normal net force due to the downstream rock wedge, given by,

Fn,w (θe) =
[
Ww −Fs,v,w (θe)

]
· cosα+Fs,h,w · sinα (5.11)

where Ww is the weight of the downstream rock wedge and Fs,v,w and Fs,h,w are the

vertical and horizontal components of the pseudo-static seismic forces acting on the

downstream rock wedge.

• Ft,w is the tangential net force due to the downstream rock wedge, given by,

Fh,w (θe) =
[
Ww −Fs,v,w (θe)

]
· sinα−Fs,h,w · cosα (5.12)

5.2.4 Safety or reliability requirements

Although large dams often fall into the highest consequence class (Schneider 1997), West-

berg (2010) concluded that the consequences of structural failure are naturally dependent

on the dam height, acknowledging the suitability of the reliability differentiation principle,

such as followed in the Eurocodes (EN1990 2002). In this study, three different values for

the target probability of failure, pft, are tested, namely 1/108, 1/107 and 1/106.
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Since the probabilistic analysis of the structural response under non-permanent load

events, would result in an estimation of the probability of failure conditioned to the

occurrence of such event, a conditional value for the target probability of failure shall

be considered in the inverse reliability procedure, based on the definition of conditional

probability, expressed as,

p(A) = p
(
A|B

)
· p(B) (5.13)

where A and B are two random variables of the same probability space.

Therefore, the probability of failure targeted in the inverse reliability procedure, given

the occurrence of a load event E is given by,

pft|E = p
(
G
(
x∗,θ∗)< 0, |E

)
= p

(
G(x∗,θ∗)< 0

)
p(E) (5.14)

or, equivalently, the target reliability index,

βt|E = −Φ
(
pft|E

)−1
(5.15)

where p
(
G(x∗,θ∗)< 0

)
is the total probability of failure, p(E) is the probability of oc-

currence of a load event E and p
(
G(x∗,θ∗)< 0, |E

)
is the probability of failure given the

occurrence of such event, computed through reliability analysis.

5.3 Extreme hydrological combination (flood load event)

5.3.1 General considerations

The loading conditions for the extreme hydrological combination are obtained by overlap-

ping the operational loads to the water loads due to the occurrence of the design flood

(RSB 2018), whose return period, depending on the dam height, is presented in Table 3.4.

For a 100 meter high dam, the minimum return period considered is 5000 years (annual

probability of occurrence of 0.0002).

The reservoir water level for the design flood, obtained through probabilistic methods

considering the hydrologic properties of the region and the reservoir water volume-height

curves, is typically located one meter below the dam crest, considering the dry freeboard

usually adopted. Since safety analysis conditioned to the occurrence of such event is

intended, the reservoir water level for the extreme hydrological combination, is considered
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as a deterministic variable defined, for a 100 meter high dam, by a relative reservoir water

level of kr = 0.99. By simplicity, the load effects of the downstream water level are not

considered.

In order to cover all possible scenarios, regarding the foundation hydraulic and me-

chanical properties, the groups of random variables were combined into 6 design situations

F1 to F6, synthesized in Table 5.2.

Table 5.2: Design situations for the extreme hydrostatic load combination.

Design ku tanφ
situation U1 U2 S1 S2 S3

F1 X X

F2 X X

F3 X X

F4 X X

F5 X X

F6 X X

Moreover, given the target values for the total probability of failure assumed above

and the return period of the design flood considered, the target conditional probabilities

of failure for the flood load event are presented in Table 5.3.

Table 5.3: Target probabilities of failure (and reliability indexes) conditioned to the occur-
rence of the design flood with a return period of 5000 years.

pft pft|E (βT |E)

10−8 5 · 10−5 (3.89)
10−7 5 · 10−4 (3.29)
10−6 5 · 10−3 (2.58)

5.3.2 Inverse reliability results

5.3.2.1 General considerations

The inverse reliability procedure starts with the selection of an initial value for the design

variable θ and the design point x. Since the convergence of the procedure is sensitive to the

initial conditions selected, the procedure was restarted with different assumptions when

convergence was not achieved. Mostly, the selection of a small value for the downstream
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face slope (θ0 = 0.30) and a design point given by the mean values of the random variables

was successful.

The main results of the procedures (first and last iterations) considering different target

reliability indexes, for the listed design situations, are presented in the following sections.

5.3.2.2 Design situation F1

Table 5.4 to 5.7 show the relevant results of the inverse reliability procedure, considering

the limit states derived from failure modes 1 to 4, respectively, for the design situation F1.

Table 5.4: Inverse reliability results, considering the limit state derived from failure mode
1, for the design situation F1.

i ku θu ρc (kg/m3) tanφ θR θS θ G1 (x,θ) β

0 0.25 1.00 2400.00 1.40 1.00 1.00 0.30 0.80 -

βt = 3.89 6 0.30 1.00 2360.35 0.69 0.84 1.01 0.38 0 3.89
βt = 3.29 6 0.28 1.00 2371.92 0.76 0.86 1.01 0.21 0 3.29
βt = 2.58 - - - - - - - - - -

Table 5.5: Inverse reliability results, considering the limit state derived from failure mode
2, for the design situation F1.

i ku θu ρc (kg/m3) tanφ θR θS θ G2 (x,θ) β

0 0.25 1.00 2400.00 1.40 1.00 1.00 0.30 0.76 -

βt = 3.89 6 0.32 1.00 2354.10 0.69 0.84 1.01 0.40 0 3.89
βt = 3.29 7 0.29 1.00 2364.07 0.77 0.86 1.01 0.30 0 3.29
βt = 2.58 6 0.27 1.00 2374.63 0.87 0.89 1.01 0.18 0 2.58

Table 5.6: Inverse reliability results, considering the limit state derived from failure mode
3, for the design situation F1.

i ku θu ρc (kg/m3) tanφ θR θS θ G3 (x,θ) β

0 0.25 1.00 2400.00 1.40 1.00 1.00 0.30 0.61 -

βt = 3.89 14 0.44 1.01 2297.66 0.75 0.86 1.01 0.42 0 3.89
βt = 3.29 11 0.34 1.01 2339.34 0.79 0.87 1.01 0.39 0 3.29
βt = 2.58 7 0.26 1.00 2385.48 0.87 0.89 1.01 0.33 0 2.58
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Table 5.7: Inverse reliability results, considering the limit state derived from failure mode
4, for the design situation F1.

i ku θu ρc (kg/m3) tanφ θR θS θ G4 (x,θ) β

0 0.25 1.00 2400.00 - - - 0.30 -127779.28 -

βt = 3.89 9 0.62 1.03 2196.81 - - - 0.40 0 3.89
βt = 3.29 10 0.57 1.03 2230.58 - - - 0.39 0 3.29
βt = 2.58 6 0.50 1.02 2268.05 - - - 0.37 0 2.58

5.3.2.3 Design situation F2

Table 5.8 to 5.11 show the relevant results of the inverse reliability procedure, considering

the limit states derived from failure modes 1 to 4, respectively, for the design situation F2.

Table 5.8: Inverse reliability results, considering the limit state derived from failure mode
1, for the design situation F2.

i ku θu ρc (kg/m3) tanφ θR θS θ G1 (x,θ) β

0 0.48 1.00 2400.00 1.40 1.00 1.00 0.50 0.86 -

βt = 3.89 7 0.71 1.01 2354.22 0.70 0.85 1.01 0.50 0 3.89
βt = 3.29 7 0.65 1.01 2367.30 0.77 0.87 1.01 0.31 0 3.29
βt = 2.58 - - - - - - - - - -

Table 5.9: Inverse reliability results, considering the limit state derived from failure mode
2, for the design situation F2.

i ku θu ρc (kg/m3) tanφ θR θS θ G2 (x,θ) β

0 0.48 1.00 2400.00 1.40 1.00 1.00 0.30 0.73 -

βt = 3.89 6 0.73 1.01 2348.14 0.71 0.85 1.01 0.50 0 3.89
βt = 3.29 6 0.68 1.01 2360.12 0.78 0.87 1.01 0.37 0 3.29
βt = 2.58 6 0.62 1.00 2372.36 0.88 0.89 1.01 0.23 0 2.58

Table 5.10: Inverse reliability results, considering the limit state derived from failure mode
3, for the design situation F2.

i ku θu ρc (kg/m3) tanφ θR θS θ G3 (x,θ) β

0 0.48 1.00 2400.00 1.40 1.00 1.00 0.30 0.60 -

βt = 3.89 26 0.83 1.02 2298.61 0.77 0.86 1.01 0.47 0 3.89
βt = 3.29 16 0.74 1.01 2343.34 0.80 0.87 1.01 0.43 0 3.29
βt = 2.58 8 0.56 1.00 2384.99 0.87 0.89 1.01 0.36 0 2.58
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Table 5.11: Inverse reliability results, considering the limit state derived from failure mode
4, for the design situation F2.

i ku θu ρc (kg/m3) tanφ θR θS θ G4 (x,θ) β

0 0.48 1.00 2400.00 - - - 0.30 -200446.15 -

βt = 3.89 22 0.92 1.06 2171.24 - - - 0.46 0 3.89
βt = 3.29 79 0.90 1.04 2217.31 - - - 0.44 0 3.29
βt = 2.58 24 0.86 1.03 2269.98 - - - 0.42 0 2.58

5.3.2.4 Design situation F3

Table 5.12 to 5.15 show the relevant results of the inverse reliability procedure, considering

the limit states derived from failure modes 1 to 4, respectively, for the design situation F3.

Table 5.12: Inverse reliability results, considering the limit state derived from failure mode
1, for the design situation F3.

i ku θu ρc (kg/m3) tanφ θR θS θ G1 (x,θ) β

0 0.25 1.00 2400.00 1.20 1.00 1.00 0.30 0.60 -

βt = 3.89 7 0.32 1.00 2356.04 0.59 0.84 1.01 0.57 0 3.89
βt = 3.29 7 0.29 1.00 2366.23 0.65 0.86 1.01 0.41 0 3.29
βt = 2.58 7 0.27 1.00 2378.49 0.74 0.89 1.01 0.21 0 2.58

Table 5.13: Inverse reliability results, considering the limit state derived from failure mode
2, for the design situation F3.

i ku θu ρc (kg/m3) tanφ θR θS θ G2 (x,θ) β

0 0.25 1.00 2400.00 1.20 1.00 1.00 0.30 0.56 -

βt = 3.89 6 0.33 1.00 2350.79 0.59 0.84 1.01 0.54 0 3.89
βt = 3.29 6 0.30 1.00 2361.22 0.66 0.87 1.01 0.42 0 3.29
βt = 2.58 6 0.28 1.00 2372.28 0.74 0.89 1.01 0.29 0 2.58

Table 5.14: Inverse reliability results, considering the limit state derived from failure mode
3, for the design situation F3.

i ku θu ρc (kg/m3) tanφ θR θS θ G3 (x,θ) β

0 0.25 1.00 2400.00 1.20 1.00 1.00 0.30 0.41 -

βt = 3.89 18 0.50 1.02 2269.27 0.69 0.88 1.01 0.44 0 3.89
βt = 3.29 11 0.42 1.01 2306.27 0.72 0.88 1.01 0.42 0 3.29
βt = 2.58 9 0.32 1.00 2351.70 0.76 0.90 1.01 0.39 0 2.58

164



5.3. EXTREME HYDROLOGICAL COMBINATION (FLOOD LOAD
EVENT)

Table 5.15: Inverse reliability results, considering the limit state derived from failure mode
4, for the design situation F3.

i ku θu ρc (kg/m3) tanφ θR θS θ G4 (x,θ) β

0 0.25 1.00 2400.00 - - - 0.30 -127779.28 -

βt = 3.89 9 0.62 1.03 2196.81 - - - 0.40 0 3.89
βt = 3.29 10 0.57 1.03 2230.58 - - - 0.39 0 3.29
βt = 2.58 6 0.50 1.02 2268.05 - - - 0.37 0 2.58

5.3.2.5 Design situation F4

Table 5.16 to 5.19 show the relevant results of the inverse reliability procedure, considering

the limit states derived from failure modes 1 to 4, respectively, for the design situation F4.

Table 5.16: Inverse reliability results, considering the limit state derived from failure mode
1, for the design situation F4.

i ku θu ρc (kg/m3) tanφ θR θS θ G1 (x,θ) β

0 0.48 1.00 2400.00 1.20 1.00 1.00 0.30 0.57 -

βt = 3.89 7 0.73 1.01 2349.30 0.61 0.85 1.01 0.71 0 3.89
βt = 3.29 7 0.68 1.01 2361.53 0.67 0.87 1.01 0.51 0 3.29
βt = 2.58 6 0.61 1.00 2375.19 0.75 0.89 1.01 0.29 0 2.58

Table 5.17: Inverse reliability results, considering the limit state derived from failure mode
2, for the design situation F4.

i ku θu ρc (kg/m3) tanφ θR θS θ G2 (x,θ) β

0 0.48 1.00 2400.00 1.20 1.00 1.00 0.30 0.53 -

βt = 3.89 6 0.75 1.01 2344.06 0.61 0.85 1.01 0.66 0 3.89
βt = 3.29 6 0.70 1.01 2356.68 0.67 0.87 1.01 0.51 0 3.29
βt = 2.58 6 0.64 1.01 2369.62 0.75 0.89 1.01 0.35 0 2.58

Table 5.18: Inverse reliability results, considering the limit state derived from failure mode
3, for the design situation F4.

i ku θu ρc (kg/m3) tanφ θR θS θ G3 (x,θ) β

0 0.48 1.00 2400.00 1.20 1.00 1.00 0.30 0.40 -

βt = 3.89 36 0.87 1.03 2263.58 0.70 0.88 1.01 0.50 0 3.89
βt = 3.29 26 0.81 1.02 2309.69 0.73 0.89 1.01 0.47 0 3.29
βt = 2.58 68 0.70 1.01 2355.63 0.77 0.90 1.01 0.43 0 2.58
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Table 5.19: Inverse reliability results, considering the limit state derived from failure mode
4, for the design situation F4.

i ku θu ρc (kg/m3) tanφ θR θS θ G4 (x,θ) β

0 0.48 1.00 2400.00 - - - 0.30 -200446.15 -

βt = 3.89 22 0.92 1.06 2171.24 - - - 0.46 0 3.89
βt = 3.29 79 0.90 1.04 2217.31 - - - 0.44 0 3.29
βt = 2.58 24 0.86 1.03 2269.98 - - - 0.42 0 2.58

5.3.2.6 Design situation F5

Table 5.20 to 5.23 show the relevant results of the inverse reliability procedure, considering

the limit states derived from failure modes 1 to 4, respectively, for the design situation F5.

Table 5.20: Inverse reliability results, considering the limit state derived from failure mode
1, for the design situation F5.

i ku θu ρc (kg/m3) tanφ θR θS θ G1 (x,θ) β

0 0.25 1.00 2400.00 1.00 1.00 1.00 0.30 0.40 -

βt = 3.89 6 0.33 1.00 2352.48 0.49 0.85 1.01 0.81 0 3.89
βt = 3.29 6 0.30 1.00 2362.43 0.54 0.87 1.01 0.63 0 3.29
βt = 2.58 6 0.28 1.00 2373.50 0.61 0.89 1.01 0.43 0 2.58

Table 5.21: Inverse reliability results, considering the limit state derived from failure mode
2, for the design situation F5.

i ku θu ρc (kg/m3) tanφ θR θS θ G2 (x,θ) β

0 0.25 1.00 2400.00 1.00 1.00 1.00 0.30 0.36 -

βt = 3.89 6 0.34 1.01 2347.09 0.49 0.85 1.01 0.72 0 3.89
βt = 3.29 6 0.31 1.00 2358.09 0.54 0.87 1.01 0.58 0 3.29
βt = 2.58 5 0.29 1.00 2369.78 0.62 0.89 1.01 0.43 0 2.58

Table 5.22: Inverse reliability results, considering the limit state derived from failure mode
3, for the design situation F5.

i ku θu ρc (kg/m3) tanφ θR θS θ G3 (x,θ) β

0 0.25 1.00 2400.00 1.00 1.00 1.00 0.30 0.21 -

βt = 3.89 17 0.55 1.02 2244.84 0.63 0.90 1.01 0.46 0 3.89
βt = 3.29 21 0.48 1.02 2279.13 0.65 0.90 1.01 0.44 0 3.29
βt = 2.58 31 0.39 1.01 2319.13 0.67 0.91 1.01 0.42 0 2.58
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Table 5.23: Inverse reliability results, considering the limit state derived from failure mode
4, for the design situation F5.

i ku θu ρc (kg/m3) tanφ θR θS θ G4 (x,θ) β

0 0.25 1.00 2400.00 - - - 0.30 -127779.28 -

βt = 3.89 9 0.62 1.03 2196.81 - - - 0.40 0 3.89
βt = 3.29 10 0.57 1.03 2230.58 - - - 0.39 0 3.29
βt = 2.58 6 0.50 1.02 2268.05 - - - 0.37 0 2.58

5.3.2.7 Design situation F6

Table 5.24 to 5.27 show the relevant results of the inverse reliability procedure, considering

the limit states derived from failure modes 1 to 4, respectively, for the design situation F6.

Table 5.24: Inverse reliability results, considering the limit state derived from failure mode
1, for the design situation F6.

i ku θu ρc (kg/m3) tanφ θR θS θ G1 (x,θ) β

0 0.48 1.00 2400.00 1.00 1.00 1.00 0.30 0.37 -

βt = 3.89 7 0.75 1.01 2345.04 0.50 0.85 1.01 1.00 0 3.89
βt = 3.29 6 0.71 1.01 2357.23 0.56 0.87 1.01 0.77 0 3.29
βt = 2.58 6 0.64 1.01 2370.28 0.62 0.90 1.01 0.54 0 2.58

Table 5.25: Inverse reliability results, considering the limit state derived from failure mode
2, for the design situation F6.

i ku θu ρc (kg/m3) tanφ θR θS θ G2 (x,θ) β

0 0.48 1.00 2400.00 1.00 1.00 1.00 0.30 0.33 -

βt = 3.89 8 0.76 1.01 2339.57 0.51 0.85 1.01 0.88 0 3.89
βt = 3.29 6 0.72 1.01 2352.96 0.56 0.87 1.01 0.71 0 3.29
βt = 2.58 5 0.66 1.01 2366.74 0.63 0.90 1.01 0.52 0 2.58

Table 5.26: Inverse reliability results, considering the limit state derived from failure mode
3, for the design situation F6.

i ku θu ρc (kg/m3) tanφ θR θS θ G3 (x,θ) β

0 0.48 1.00 2400.00 1.00 1.00 1.00 0.30 0.20 -

βt = 3.89 24 0.89 1.04 2231.63 0.64 0.90 1.01 0.52 0 3.89
βt = 3.29 27 0.85 1.03 2277.55 0.66 0.91 1.01 0.49 0 3.29
βt = 2.58 15 0.78 1.02 2325.81 0.69 0.92 1.01 0.46 0 2.58
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Table 5.27: Inverse reliability results, considering the limit state derived from failure mode
4, for the design situation F6.

i ku θu ρc (kg/m3) tanφ θR θS θ G4 (x,θ) β

0 0.48 1.00 2400.00 - - - 0.30 -200446.15 -

βt = 3.89 22 0.92 1.06 2171.24 - - - 0.46 0 3.89
βt = 3.29 79 0.90 1.04 2217.31 - - - 0.44 0 3.29
βt = 2.58 24 0.86 1.03 2269.98 - - - 0.42 0 2.58

5.3.3 Result analysis

Dams, as water-retaining structures, aim to create reservoirs to partially or totally accom-

modate the water inflow from a flood and later to discharge it, at a controlled rate, to

downstream. The structure shall then ensure adequate levels of safety during the occur-

rence of a flood, when subjected to extreme load conditions characterized by a reservoir

water level at the FWL, generally located one meter below the dam crest.

In this section, the design variable was quantified such that the safety requirements,

representing by target reliability indexes, were fulfilled for all design situations covering

the range of possible classifications of the rock mass foundation regarding its hydraulic

and mechanical properties. These results are synthesized in Table 5.28.

Table 5.28: Syntheses of the inverse reliability results for all failure modes, design situations
and target reliability indexes considered.

βt = 3.89 βt = 3.29 βt = 2.58
Design Failure mode Failure mode Failure mode

situation 1 2 3 4 1 2 3 4 1 2 3 4

F1 0.38 0.40 0.42 0.40 0.21 0.30 0.39 0.39 - 0.18 0.33 0.37
F2 0.50 0.50 0.47 0.46 0.31 0.37 0.43 0.44 - 0.23 0.36 0.42
F3 0.57 0.54 0.44 0.40 0.41 0.42 0.42 0.39 0.21 0.29 0.39 0.37
F4 0.71 0.66 0.50 0.46 0.52 0.51 0.47 0.44 0.29 0.35 0.43 0.42
F5 0.81 0.72 0.46 0.40 0.63 0.58 0.44 0.39 0.43 0.43 0.42 0.37
F6 1.00 0.88 0.52 0.46 0.77 0.71 0.49 0.44 0.54 0.52 0.46 0.42

Regarding the influence of the hydraulic properties of the rock mass foundation upon

the conception of proper structural solutions that fulfill the safety requirements, distinction

was made between regular and unfavorable geologic conditions, such as described in the

French guidelines (CFBR 2012). The optimum value for the downstream face slope is

inversely proportional to the efficiency of the uplift reduction works carried out, since
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design situations F1, F3 and F5 (for regular geologic conditions) result in smaller face slopes

than design situations F2, F4 and F6 (for unfavorable geologic conditions), respectively,

for any failure mode.

Regarding the influence of the mechanical properties of the rock mass foundation

upon the conception of proper structural solutions that fulfill the safety requirements,

distinction was made between the three classes defined in the Chinese standards (GB50199

1994) regarding the shear strength of the rock mass foundation. The optimum value

for the downstream face slope is also inversely proportional to the structural capacity,

characterized, for the failure modes 1 to 3, by the dam-foundation friction coefficient, since

design situations F1 and F2 (rock mass class I) result in smaller face slopes than design

situations F3 and F4 (rock mass class II), which, in turn, results in smaller face slopes than

design situations F5 and F6 (rock mass class III). For the failure mode 4 (overturning),

the solution is independent on the shear strength and a pattern of results is repeated for

all rock mass classes.

Regarding the failure modes, the following conclusions might be drawn:

• The most conditioning failure mode depends on the target reliability index and

the design situation. Since, for a smaller target reliability index, the corresponding

downstream face slope is lower, failure mode 4 is more likely to be the conditioning

failure mode, as obtained for the design situations F1 and F2 which considers the

highest shear strength class;

• As the target reliability index increases, greater downstream face slope is required,

specially to ensure stability conditions for the failure mode 1 and 2 which gain

predominance;

• For the highest target reliability index, the failure mode 1 was only not conditioning

for the design situations F1 and F2, since, given its higher shear strength, failure

mode 2 or 3 become critical.

The sensitivity of the probability of failure to changes in random variables can be

evaluated through the vector of direction cosines α which indicates the direction to the

design point located on the failure surface. This evaluation is important to identify which

variables are worth to be further studied in order to reduce the associated uncertainties.

In Figure 5.3 the relative sensitivity of each random variable is illustrated using a bar

graph, reflecting the variability over the design situations considered for each failure mode.
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ku θu ρc tanφ θR θS

FM1 FM2 FM3 FM4

Figure 5.3: Representation of the variability of the relative sensitivity of each random
variable for the design situations derived from the extreme hydrological combination.

For the extreme load combination, further information to reduce the uncertainty mostly

related to the uplift factor and the friction coefficient would improve the estimation on

the probability of failure.

5.4 Accidental earthquake combination (earthquake load event)

5.4.1 General considerations

The loading conditions for the accidental earthquake combination are obtained by overlap-

ping the operational loads to the effects of the occurrence of the MDE (RSB 2018).

In earlier versions of the Portuguese dam safety regulation (RSB 1990; RSB 2007),

specific seismologic studies would be necessary for the quantification of the MDE. In the

last version (RSB 2018), MDE is characterized by a return period which is quantified,

depending on the global seismic risk index, such as presented in Table 3.6. Only for

exceptional cases, with high seismic risk index, the MDE is still taken from the MCE,

deterministically quantified according to the local geological environmental considered

(ICOLD 1989).
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In the theoretical and generic case study analyzed, a return period of 1000 years, for

a probability of exceedance of 10% during the structure service life (generally 100 years),

is considered. Thus, the differentiation between dam implantation sites according to the

regional seismology can be accounted considered the Portuguese seismic hazard maps (NP

EN1998-1 2010). The seismic hazard maps, which divide the Portuguese mainland territory

into zones with approximately constant seismic characteristics, were shown in Figure 3.16,

for both seismic types.

In the case study presented, considering a return period of 1000 years (or equivalently

a probability of annual occurrence of 0.001), the seismic accelerations for each seismic zone

of the Portuguese territory, computed through the equation 3.19, are presented in Table

5.29.

Table 5.29: Seismic ground accelerations ag (m/s2) of a 1000-year return period earthquake
for each seismic zone (NP EN1998-1 2010).

Zone 1 2 3 4 5 6

Type 1 4.11 3.29 2.46 1.64 0.99 0.57
Type 2 3.37 2.69 2.29 1.48 1.08 -

On one hand, the effects on the structure due to the occurrence of the MDE are, by

simplicity, taken into account using the analytical pseudo-static or pseudo-dynamic load

models which simulates the real structural response with approximation errors quantified at

section 4.4.2. Given the lower standard deviation of the model uncertainty, the pseudo-static

load model, which considers inertia forces as the product between mass and acceleration,

is considered hereinafter.

On the other hand, the reservoir water level, in normal operation conditions, are

characterized by the water inflow and outflow, depending on the environmental events but

also on the dam exploitation management policy. Since the NWL, as a design data for

each particular project, is targeted for optimum operation conditions, the variability of the

relative reservoir water level, quantified in section 4.2.2 from data monitored in existing

dams, depends on both the relation between the NWL and the dam height (knwl) and the

project exploitation type. Although commonly varying, in practice, between 0.85 and 0.95,

11 levels of knwl (from knwl = 0.79 to knwl = 0.99 with a step of 0.02), each one with a

different probability distribution, were considered in each design situation.

In order to cover all possible scenarios, regarding not only the project exploitation
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type but also the hydraulic and mechanical properties of the foundation, the groups of the

random variables were combined into 12 design situations E1 to E12, synthesized in Table

5.30.

Table 5.30: Design situations for the accidental earthquake load combination.

Design ku kr tanφ
situation U1 U2 L1 L2 S1 S2 S3

E1 X X X

E2 X X X

E3 X X X

E4 X X X

E5 X X X

E6 X X X

E7 X X X

E8 X X X

E9 X X X

E10 X X X

E11 X X X

E12 X X X

Moreover, given the target values for the total probability of failure assumed and the

return period of the MDE considered, the target conditional probabilities of failure for the

earthquake load event are presented in Table 5.31.

Table 5.31: Target probabilities of failure (and reliability indexes) conditioned to the
occurrence of the MDE with a return period of 1000 years.

pft pft|E (βT |E)

10−8 10−5 (4.26)
10−7 10−4 (3.72)
10−6 10−3 (3.09)

5.4.2 Inverse reliability results

5.4.2.1 General considerations

The inverse reliability procedure starts with the selection of an initial value for the down-

stream face slope and the design values. For convergence purposes, a small value for the
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downstream face slope (θ0 = 0.30) and a design point given by the mean values of the

random variables were considered.

The optimum downstream face slope, for the different design situations, is shown in

the following sections. The conditioning failure mode is also represented.

5.4.2.2 Relevant results

Figures 5.4 to 5.9 show the design variable of the conditional failure mode for the design

situations of the seismic type 1, seismic zones 1 to 6, respectively, and Figures 5.10 to 5.14

show the design variable of the conditional failure mode for the design situations of the

seismic type 2, seismic zones 1 to 5, respectively. Since NWL is known in the design phase,

different values of knwl were tested. The common range of practical values (between 0.85

and 0.95) was highlighted.

5.4.3 Result analysis

When comparing to other structural solutions, the typical geometry that makes concrete

gravity dams economically competitive is characterized by downstream face slopes in the

range of 0.7 to 0.8 (Corns et al. 1988), admitting a maximum value, depending on the

loading conditions, of 1.0. The results obtained in this section, in which the design variable

was quantified such that the safety requirements, representing by target reliability indexes,

were fulfilled for all design situations, show increasing sensitivity to the exploitation type,

the hydraulic and mechanical characteristics of the rock mass foundation and, above all,

to the intensity of the seismic action considered.

For high intensity seismic zones, characterized by peak ground accelerations of consid-

erable value, the minimum downstream face slope, which fulfills the safety requirements,

increases to values that surely make this solution cost-prohibitive. Despite the validity of

this conclusion, this fact may have been exacerbated by the consideration of the pseudo-

static seismic load model to simulate the structural effects due to the occurrence of an

earthquake, since this model, considering inertia forces proportional to the structure mass,

may lose suitability for an exaggerated increase of the downstream face slope. In fact, the

quantification of the analytical seismic load model uncertainty, made in section 4.4.2, was

based on numerical models whose downstream face slope varied within a range of practical

values (0.75 to 1.00). Its appropriateness for values far from that range cannot then be

ensured. Consequently, in some extreme cases, for the most demanding design situations
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Figure 5.4: Optimum design variable for the design situations E1 to E12, considering the
seismic zone 1.1.
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Figure 5.5: Optimum design variable for the design situations E1 to E12, considering the
seismic zone 1.2.
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Figure 5.6: Optimum design variable for the design situations E1 to E12, considering the
seismic zone 1.3.
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Figure 5.7: Optimum design variable for the design situations E1 to E12, considering the
seismic zone 1.4.
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Figure 5.8: Optimum design variable for the design situations E1 to E12, considering the
seismic zone 1.5.
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Figure 5.9: Optimum design variable for the design situations E1 to E12, considering the
seismic zone 1.6.
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Figure 5.10: Optimum design variable for the design situations E1 to E12, considering the
seismic zone 2.1.
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Figure 5.11: Optimum design variable for the design situations E1 to E12, considering the
seismic zone 2.2.
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Figure 5.12: Optimum design variable for the design situations E1 to E12, considering the
seismic zone 2.3.
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Figure 5.13: Optimum design variable for the design situations E1 to E12, considering the
seismic zone 2.4.
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Figure 5.14: Optimum design variable for the design situations E1 to E12, considering the
seismic zone 2.5.
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and larger target reliability index, the inverse reliability procedure did not even converge

to a stable solution since, from certain point, an increase in the downstream face slope led

to a decrease in the reliability index because the dam weight increase do not compensate

the increase in the equivalent inertia force.

The absence of concrete gravity dams built in high intensity seismic zones of the

Portuguese territory, namely the seismic zones 1 to 3 of both seismic types, proves the

difficulty in conceiving structural solutions which are economically more advantageous

than other types of structures. To conceive cost-effective solutions, other constructive

dispositions may be adopted, namely the consideration of a greater keyed depth, such

as embraced in Pedrógão dam (located at Vidigueira, seismic zones 1.4 and 2.4), the

consideration of a curvature in plan (arch-gravity dams) or, in particular cases, the use of

post-tensioned anchors.

Also the influence of the hydraulic and mechanical properties of the rock mass founda-

tion upon the conception of proper structural solutions that fulfill the safety requirements

was tested considering, on one hand, the distinction made in the French guidelines (CFBR

2012) between regular and unfavorable geologic conditions and, on the other hand, the

three classes defined in the Chinese standards (GB50199 1994) regarding the shear strength

of the rock mass foundation. The optimum value for the downstream face slope is inversely

proportional to:

• the efficiency of the uplift reduction works carried out, since design situations E1, E3,

E5, E7, E9 and E11 (for regular geologic conditions) result in smaller face slopes than

design situations E2, E4, E6, E8, E10 and E12 (for unfavorable geologic conditions),

respectively; and

• the structural capacity, characterized, for the failure modes 1 to 3, by the dam-

foundation friction coefficient, since design situations E1 to E4 (rock mass class I)

result in smaller face slopes than design situations E5 to E8 (rock mass class II),

which, in turn, results in smaller face slopes than design situations E9 to E12 (rock

mass class III).

Before designing a concrete gravity dam, geotechnical investigations aiming to char-

acterize the hydromechanical behavior and the mechanical properties of the rock mass

foundation are then crucial to predict the efficiency of uplift reduction works and the shear

strength, respectively, and estimate the downstream face slope.
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Finally, the influence of the project exploitation type was also tested by considering

the distinction between run-of-river and storage exploitation systems whose probability

distributions of the relative reservoir water level, for the same knwl, are different. Although

varying, in practice, between 0.85 and 0.95 (shadow area), 11 levels of knwl were tested,

resulting in smaller downstream face slopes for the storage (design situations E1, E2, E5,

E6, E9 and E10) than for run-of-river (E3, E4, E7, E8, E11 and E12) exploitation systems.

Therefore, for the same exploitation conditions (knwl) and ignoring the environmental

factors that influence the choice on the type of exploitation, a storage exploitation system

is more economically attractive, due to both a more profitable use of the water resources

and the smaller dimensions that the gravity structure must have to ensure adequate levels

of safety.

Regarding the failure modes, the following conclusions might be drawn:

• Failure mode 1 is conditioning for most design situations. Although depending on

the loading conditions, only for lower downstream face slopes (roughly lower than

0.5), other failure modes become relevant;

• Rarely, the failure mode 2 was the conditioning one. Even in those cases, the design

variable for the failure modes 1 and 3 would not differ considerably from the obtained

for the failure mode 2. This was also expected given the proximity of the limit

equilibrium conditions between failure modes 1 and 2, such as illustrated in Figure

3.26;

• Failure mode 4 is less sensitive to loading variations, since the slope of the line

representing the optimum downstream face slope, for different values of knwl, is

nearly vertical. From failure mode 4 to failure mode 1 the sensitiveness to loading

variations increases. Since the slope of the line representing the optimum downstream

face slope is greater, failure mode 1 is the most sensitive to loading variations;

• Failure modes are also sensitive to the target reliability index. The degree of sensi-

tiveness decreases from failure mode 1 to failure mode 4 the degree of sensitiveness

decreases. For failure mode 4 small variations on the downstream face slope result

in extreme variations on the reliability levels.

Regarding the relative sensitivity of each random variable, Figure 5.15 illustrates, using

a bar graph, the variability over the design situations considered for each failure mode.
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Figure 5.15: Representation of the variability of the relative sensitivity of each random
variable for the design situations derived from the accidental earthquake combination.

For the accidental earthquake combination, further information to reduce the uncer-

tainty mostly related to the uplift factor, relative reservoir water level , the seismic load

model uncertainty and the friction coefficient would improve the estimation on the proba-

bility of failure.

5.5 Final considerations

After the decision upon the construction of a dam, invoking political and social reasons,

the choice for concrete gravity dams, between other types of structures and materials, shall

present engineering and/or economical advantages, since the fulfillment of performance

requirements must not be achieved at disproportionate costs.

Regarding the structural safety, the trade-off between safety and economy is, according

to the Portuguese dam safety regulation (RSB 2018), addressed subjectively by considering

deterministic safety criteria representing the safety requirements, which shall accommodate

a safety margin to account for the inherent uncertainties of the problem, as well as the

severity of the consequences of a structural failure. The structural solution obtained shall
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ensure adequate levels of safety for the most conditioning foreseeable load conditions

arising during the intended service life of the structure, namely those derived from the

occurrence of the design flood and the design earthquake, being naturally given by the

most demanding case.

Alternatively, a RBDO procedure for the optimum design of concrete gravity dams, such

that structural safety is analyzed from a reliability-based perspective explicitly considering

the sources of uncertainty, was tested in this chapter covering all design situations derived

from both load events that may plausibly compromise its safety.

When comparing to other structural solutions, the typical geometry that makes concrete

gravity dams economically competitive is characterized by downstream face slopes in the

range of 0.7 to 0.8 (Corns et al. 1988), admitting a maximum value, depending on the

loading conditions, of 1.0. The results obtained, in which the design variable was quantified

such that the safety requirements, representing by target reliability indexes, were fulfilled

for all design situations, show increasing sensitivity to the exploitation type, the hydraulic

and mechanical characteristics of the rock mass foundation and, above all, to the intensity

of the seismic action considered.

The optimal structural solution that satisfies the safety requirements for both load

events is almost always conditioned by the accidental earthquake combination, which

requires greater values for the downstream face slope. Only in low intensity seismic zones,

and for unusual relations between the NWL and the dam height (roughly knwl < 0.85),

the extreme hydrological combination may condition the final solution. To attest that,

Figure 5.16 compares the optimum values, for a total probability of failure of 1/107, of

the downstream face slope for equivalent design situations, namely, E1 or E3, depending

on the type of exploitation system (run-of-river or storage), for the seismic load event and

F1 for the flood load event, which refer to the case of a rock mass foundation with regular

geologic characteristics (Group “U1” the uplift pressures) and rock mass class I (Group

“S1” for the shear strength).

For high intensity seismic zones, characterized by peak ground accelerations of consid-

erable value, the minimum downstream face slope, which fulfills the safety requirements,

increases to values that surely make this solution cost-prohibitive. Despite the validity of

this conclusion, this fact may have been exacerbated by the consideration of the pseudo-

static seismic load model to simulate the structural effects due to the occurrence of an

earthquake, since this model, considering inertia forces proportional to the structure mass,
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Figure 5.16: Comparison between the structural solution, characterized by the downstream
face slope, having a total probability of failure of 1/107, for the extreme hydrological
combination and the accidental earthquake combination, considering the highest and
lowest intensity seismic zones of each type of seismic action.

may lose suitability for an exaggerated increase of the downstream face slope. In fact, the

quantification of the analytical seismic load model uncertainty, made in section 4.4.2, was

based on numerical models whose downstream face slope varied within a range of practical

values (0.75 to 1.00). Its appropriateness for values far from that range cannot then be

ensured. Consequently, in some extreme cases, for the most demanding design situations

and larger target reliability index, the inverse reliability procedure did not even converge

to a stable solution since, from certain point, an increase in the downstream face slope led

to a decrease in the reliability index because the dam weight increase do not compensate

the increase in the equivalent inertia force.

The absence of concrete gravity dams built in high intensity seismic zones of the

Portuguese territory, namely the seismic zones 1 to 3 of both seismic types, proves the
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difficulty in conceiving structural solutions which are economically more advantageous

than other types of structures. To conceive cost-effective solutions, other constructive

dispositions may be adopted, namely the consideration of a greater keyed depth, such

as embraced in Pedrógão dam (located at Vidigueira, seismic zones 1.4 and 2.4), the

consideration of a curvature in plan (arch-gravity dams) or, in particular cases, the use of

post-tensioned anchors.

The most conditioning failure modes depend on the magnitude of the downstream face

slope. For gravity profiles characterized by downstream face slopes roughly greater than

0.5, including the range of practical values 0.7 to 1.00, the failure mode 1 is always the

most conditioning case. This conclusion remains valid as the safety requirements increase,

since gravity profiles shall expectedly be less inclined.
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6.1 General considerations

Historically, the design of concrete dams has been based on the traditional safety factor

methodology, in which the geometric properties of the dam that satisfy a certain design

equation, considering predicted values for the loads and material properties, are sought.

Before the formal definition of explicit safety criteria by national regulations, safety

factors were selected by the practitioner (Donnelly 2006) such that reservations about

the predicted structural capacity, the severity of the consequences of a possible structural

failure and the magnitude of loads were implicitly taken into account.

The development of national safety regulations, in order to provide a regulatory frame-

work to drive engineering decisions, were stimulated, when focus on dam safety was

prioritized given (ICOLD 1987): (i) the incidents, caused by incompetent design or con-

struction; (ii) the growing dimensions of new dams; (iii) the aging of older dams; and

(iv) the increasing number of dams being constructed in countries with little experience

in dam engineering. The common approach suggested (ICOLD 1987), denoted as classical

approach to dam safety, evidence the importance of continuous surveillance as a tool for

the early identification of anomalies and adverse structural behavior and establish explicit

safety criteria, based on safety factors, for the dam safety analysis. Nonetheless, room was

left for local interpretation and the national regulations quantified safety factors according

to their own experience on dam engineering.
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Given the inherent conservatism due to implicitly account for all sources of uncertainty

on a global safety factor, studies on the applicability of probabilistic principles to dam

safety analysis have been encouraged (ICOLD 1987) ever since. It is recognized that

the logical trend and primarily goal goes from the predominantly deterministic concept of

safety factors to the semi-probabilistic method of partial safety factors, which, although not

including explicitly uncertainties and costs, it reduces the inherent conservatism imposed,

compensating the increased complexity introduced.

In the semi-probabilistic design method, considering the LRFD format, a comparison

between design values for resistance and load effects shall ensure that the designed structure

is associated with adequate levels of safety (Faber and Sørensen 2003). Design values are

introduced as characteristic values affected by partial safety factors. Furthermore, load

combination factors can also multiply some variable loads to take into account the effect

of simultaneously occurring variable load effects.

The method for assigning design values for resistance and loads evolved from an

experience-based approach to a reliability-based approach after the development of struc-

tural reliability methods. This way, the calibration of a code applied to a class of structures,

is a process of minimizing the deviations between the reliability of representative structures,

designed according to the suggested code, and the target reliability, such that conservatism

is minimized.

The factors that influence the choice of the target reliability index, such as the frequency

of the load event, the suddenness of structural failure and the severity of the associated

consequences, shall be shared within the class of structures such that the reliability of

structures is approximately homogeneous. If such cannot be ensured, subdivision in several

class of structures, to which the calibration problem is addressed separately, shall be

considered.

The code calibration process (Figure 6.1) for ultimate limit states of concrete gravity

dams, considering separately the main load events (flood and earthquake) which may com-

promise the structural safety, are detailed in the following sections. After the formulation

of the code, introducing the code domain, code objective and the code formats tested, the

partial safety factors for both load events are calibrated in a code optimization procedure.

Later, the obtained code is checked by comparing the reliability of structures designed

according to the code to the target reliability index.

192



6.2. CODE FORMULATION

Code formulation
Definition of the
structure class
(Code domain)

Definition of the
code format (De-

sign equation)

Selection of design
situations covering the
domain of application

Definition of the code
objective (Reliability

requirements)

Code optimization

Code checking

Figure 6.1: Code calibration task scheme.

6.2 Code formulation

6.2.1 Code domain

The definition of the code domain aims to identify the structure class on which the code

should operate (Ditlevsen and Madsen 1996) defining not only the type of structures

covered, but also geographical domains, failure modes, materials, etc.

Since, by definition, large dams encompass a vast group of structures, with heights

above 15 meters or between 5 and 15 meters with large capacity reservoirs (ICOLD

2017), multiple structures, varying the dam height and key depth, must be considered.

However, to keep the process simple and comprehensible, only the case study considered

in Chapter 5 (a theoretical 100-meter-high gravity profile, keyed into the foundation at a

depth corresponding to 10% of its height), is used for the code calibration.

Also, separation between the load events is considered so that one can judge inde-

pendently the partial safety factors calibrated. A more complex code, including load

combination factors, could be considered instead but would introduce redundancy and

unpredictability in the optimization process which is intended to be avoided at this stage.

Therefore, two code domains are considered: (i) one related to the flood load event; and

(ii) other related to the earthquake load event.
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6.2.2 Code objective

The code objective is any requirement that the referred class of structures shall fulfill. It is

generally given by a target reliability index or a target failure probability, corresponding

to the intended level of safety.

The derivation of a target reliability index, intrinsically related to tolerable risks,

is a complex task taken in socio-political and/or institutional levels. The possibility of

calibration to previous codes is often mentioned (Schneider 1997; Melchers 1999), assuming

that the existing practice is optimal. The fact that, if structures designed according to

previous codes have failed the codes/practice would have changed quickly (Westberg 2010),

may attest the suitability of this approach. However, if implicit safety levels of previous

codes were optimal, code reformulation would not be justified. In the case of concrete dams,

since present codes are still based on safety factors and safety is then not measurable, only

the inherent conservatism has ensured sufficient safety levels.

Since target failure probabilities for concrete dams shall be related to the severity of

the consequences and the suddenness of failure (ductile or brittle), three values for the

total failure probability are tested, such as in Chapter 5, assuming that the intended range

of safety levels may thus be covered: 1/108, 1/107 and 1/106.

6.2.3 Code format

The definition of the code format is the process of selecting the design elements (partial

safety factors, load combination factors, etc) in which the code is formulated. Most of

physical quantities (related to geometry, loads, material properties and load models) have

some degree of uncertainty, which is concentrated in these elements.

Simpler code format consists of a specific set of characteristic values and corresponding

partial safety factors. More complexly, code formats can be given by load combination

factors (to cover several load combinations), importance factors (to cover other class of

structures related to different severity of the consequences of failure) and/or partial safety

factors defined explicitly in terms of mathematical expressions (Ditlevsen and Madsen

1996).

In general, since codes cover a wide class of structures and design situations, even

the simplest code objective cannot be satisfied exactly by any chosen code format except

possibly code formats of an unacceptable level of complexity (Ditlevsen and Madsen 1996).
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A code shall then balance simplicity, avoiding misinterpretations, and optimality, ensuring

the most optimal solutions.

Since structural codes usually consider the single failure mode checking format (Faber

and Sørensen 2003), for the safety analysis of concrete gravity dams, according to the

ultimate limit states derived from the failure modes identified, the design equations shall

then be verified separately and the most conditioning one rules the safety level. For the

ultimate limit states, the following design equations are suggested,

Ed ≤Rd ⇔



S1
[
Wk · γW ;Ik · γI ;Uk · γU ; (Ek · γE)

]
≤ tan(φ)k /γm

S2
[
Wk · γW ;Ik · γI ;Uk · γU ; (Ek · γE)

]
≤ tan(φ)k /γm

S3
[
Wk · γW ;Ik · γI ;Uk · γU ; (Ek · γE)

]
≤ tan(φ)k /γm

Mc
[
Wk · γW ;Ik · γI ;Uk · γU ; (Ek · γE)

]
≤ 0

(6.1)

where Wk, Ik, Uk and Ek are the characteristic values of the load effects (net force or

resultant moment) due to the structure weight, the hydrostatic pressure, the uplift pressure

and the seismic action, respectively, and γW , γI , γU and γE are the corresponding partial

safety factors. tan(φ)k and γm are the characteristic value for the friction coefficient and

the corresponding partial safety factor, respectively.

Characteristic values are often given by values associated with a fixed probability p of

non-exceedance, i.e.,

Xk = F−1
X (p) (6.2)

where F−1
X is the inverse distribution function of a random variable X and p is the

probability arbitrarily selected but influenced by rational considerations (Thoft-Christensen

2001):

• characteristic values of loads are values which shall rarely be exceeded (often p= 95%);

• characteristic values of material strength properties should normally be exceeded by

actual properties (often p= 5%);

• the values of p should neither be so large nor so small that the values Xk are not

occasionally encountered.

Moreover, mean values are occasionally considered as characteristic values for quantities

with low variability (such as permanent loads or geometrical features) or when advantages

in the code construction can be taken therefrom.
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The characteristic values considered in this work are defined in order to adapt the

current design practice and to ensure that the partial safety factors calibrated in the

following section are necessarily greater than one for unfavorable loads and smaller than

one for favorable loads. Therefore:

• The same partial safety factor shall affect the three groups in which the residual

friction coefficient, which characterizes the structural capacity, is divided, depending

on the foundation characteristics. Thus, the 5th percentiles of the corresponding

distribution function are considered as characteristic values (tan(φ)k = 0.98 for the

rock mass class I or group S1, tan(φ)k = 0.83 for the rock mass class II or group S2,

tan(φ)k = 0.70 for the rock mass class III or group S3).

• The characteristic hydrostatic pressure Ik is given in terms of the characteristic value

of a dimensionless variable kr,k. In the current practice, deterministic values of the

reservoir water level are used for the safety analysis (FWL for the flood events and

NWL for normal operation), whose corresponding values of kr are here considered, by

simplicity, as characteristic values (kr,k = kfwl for the flood events and kr,k = knwl

for the normal operation), regardless the project type (group R1 for run-of river

projects and group R2 for storage purposes);

• The characteristic value of the structure weight Wk is given in terms of the charac-

teristic concrete density ρc,k, considered equal to the mean value of the distribution

function (ρc,k = 2400 kg/m3), such as recommended in the Eurocodes (EN1990 2002).

• The characteristic uplift pressure is given in terms of the characteristic value of

the uplift factor ku,k, which defines the pressure at the drainage line. Dam safety

regulations indicate round-figure thresholds (0.25, 0.33, 0.50 and 0.66) for its quan-

tification. From the uncertainty modeling presented in section 4.2.3, the mean values

obtained for the uplift factor, opportunely close to 0.25 and 0.50, for regular (Group

U1) and unfavorable (Group U2) foundation geologic conditions, respectively, are

here considered as characteristic values (ku,k = 0.25 for the group U1 and ku,k = 0.50

for the group U2);

• The seismic action is computed through the pseudo-static load model as a function

of the peak ground acceleration, given in the national annex of the Eurocode 8 (NP

EN1998-1 2010), depending on the dam location. The partial safety factor proposed
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shall be understood as a correction factor to account the uncertainties regarding:

(i) the suitability of the model to represent the seismic load; and (ii) the random

nature of the seismic load. Thus, the characteristic value of the seismic load Ek is

computed directly from the pseudo-static load model considering the regulatory peak

ground acceleration.

Regarding the distinction of partial safety factors between the design equations (failure

modes), three approaches are tested:

• Code format CF1 considering different partial safety factors for all design equations;

• Code format CF2 considering partial safety factors grouped for the design equations

mainly associated with sliding mechanisms (failure mode 1 and 2), and for the design

equations associated with rotational mechanisms (failure mode 3 and 4);

• Code format CF3 considering the same set of partial safety factors for all design

equations.

6.3 Code optimization

6.3.1 Optimization procedure

In the code optimization, the best set of partial safety factors γ, which minimizes the

deviations between the inherent reliability level of the structures designed according to

the code and the reliability requirements (code objective), is sought.

The optimization procedure accounts for the relative importance of each design sit-

uation, which shall cover the code domain, through weight factors ω, and penalizes the

deviations of the code from the objective (ζ − ζt or ζ/ζt − 1), through a penalty function

M (equation 2.61), which shall penalize more underdesigned than overdesigned structures,

such that the total expected losses ∆ (equation 2.62) are minimized. The optimization

problem was detailed in section 2.7.2.

In this study, the numerical minimization routine is performed using the alternative

design-value method proposed (Figure 2.15), based on the consideration of the design vari-

able (downstream face slope) as degree-of-fit parameter ζ = θ, which avoids the difficulties

of extracting information from the results of the original design-value method (Ditlevsen

and Madsen 1996) and dispenses the performance of repeated reliability analysis at each
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iteration, as opposite to the global optimization method. Also a relative measure of the

deviations (ζ/ζt − 1) is used in order to account that gravity dams with large values of

the downstream face slope would not probably be built, and gravity structures with other

geometric provisions or other types of structures would be considered instead. Thus, the

importance of achieving a good adjustment to design situations associated with smaller

values of the downstream face slope is enhanced.

However, the relative importance of each design situation shall express, not only the

importance of achieving a good adjustment to the code objective for a specific design

situation (ω(1)
j ), but also the influence of the variation of the design variable θ on the

reliability index (ω(2)
j ). For that, prior to the minimization routine, the weight factor ωj ,

for the design situation j, shall be quantified using equation 2.68. Generally, except in

particular cases, a good adjustment is equally important for all design situations (the

greater importance posed on design situations associated with smaller downstream face

slopes is masked by the selection of the relative measure of deviations). Therefore, the

influence of the variation of the design variable on the reliability index (ω(2)
j ), which

is computed for each design situation using the results of the reliability-based design

presented in Chapter 5, rules the order of magnitude of the associated weight factor ωj .

The next section synthesize the results of the code optimization procedure (illustrated

in Figure 2.15), applied to the structures under load conditions corresponding to the

occurrence of: (i) the design flood; and (ii) the design earthquake.

6.3.2 Extreme hydrological combination (flood load event)

6.3.2.1 General considerations

The code calibrated shall cover not only the design situations F1 to F6, presented in Table

5.2 considering the different subgroups in which the random variables are divided, but also

the failure modes that share the same set of partial safety factors. Therefore:

• For the code format CF1, since partial safety factors depend on the failure mode,

the code optimization procedure is performed, and repeated for each failure mode,

considering N = 6 × 1 = 6 design situations;

• For the code format CF2, since partial safety factors are shared within two groups,

one related to the failure modes 1 and 2 and other related to the failure modes 3
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and 4, the code optimization procedure is performed, and repeated for each group,

considering N = 6 × 2 = 12 design situations;

• For the code format CF3, since all failure modes share the same partial safety factors,

the code optimization procedure is performed considering N = 6 × 4 = 24 design

situations.

Furthermore, the code objective refers to the total probability of failure. The reliability

requirements for non-permanent load events, characterized by a specific return period, is

given by the probability of failure conditioned to their occurrence. For the flood load event

(characterized by the occurrence of the design flood with, for instance, 5000 years of return

period), such as considered for the reliability-based design (Chapter 5), the conditional

probabilities of failure pft|E = 5 · 10−5 (βt|E = 3.89), pft|E = 5 · 10−4 (βt|E = 3.29) and

pft|E = 5 ·10−3 (βt|E = 2.58), corresponding to the code objective 1/108, 1/107 and 1/106,

respectively, are targeted.

6.3.2.2 Relevant results

From an initial set of partial safety factors based on the design points obtained in the

reliability-based procedure, the code optimization led to the results presented in Tables

6.1, 6.2 and 6.3 for target reliability indexes of βt|E = 3.89, βt|E = 3.29 and βt|E = 2.58,

respectively.

Table 6.1: Code optimization results, considering the flood load event, for a target reliability
index of βt|E = 3.89.

CF1 CF2 CF3
FM1 FM2 FM3 FM4 FM1,FM2 FM3,FM4 FM1-FM4

γG 0.96 0.94 0.95 0.92 0.94 0.90 0.92
γI 1.07 1.11 1.05 1.11 1.10 1.08 1.11
γU 1.15 1.15 1.26 1.27 1.13 1.26 1.25
γm 1.55 1.46 1.40 - 1.48 1.30 1.36

N ·∆ (101) < 0.01 < 0.01 0.03 0.00 0.01 0.93 1.67

The following aspects are concluded from these results:

• Structure weight, as a favorable load, shall be affected by a partial safety factors

smaller than one. For the remain loads, partial safety factors greater than one were

ensured;
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Table 6.2: Code optimization results, considering the flood load event, for a target reliability
index of βt|E = 3.29.

CF1 CF2 CF3
FM1 FM2 FM3 FM4 FM1,FM2 FM3,FM4 FM1-FM4

γG 0.98 0.97 0.96 0.94 0.97 0.94 0.94
γI 1.03 1.08 1.03 1.09 1.06 1.08 1.08
γU 1.12 1.12 1.23 1.27 1.10 1.26 1.25
γm 1.44 1.36 1.35 - 1.40 1.27 1.27

N ·∆ (101) < 0.01 < 0.01 0.04 0.00 0.01 1.03 1.31

Table 6.3: Code optimization results, considering the flood load event, for a target reliability
index of βt|E = 2.58.

CF1 CF2 CF3
FM1 FM2 FM3 FM4 FM1,FM2 FM3,FM4 FM1-FM4

γG 0.99 0.98 0.98 0.96 0.98 0.96 0.96
γI 1.02 1.04 1.01 1.06 1.04 1.06 1.06
γU 1.07 1.08 1.08 1.27 1.08 1.26 1.25
γm 1.26 1.22 1.25 - 1.23 1.21 1.20

N ·∆ (101) < 0.01 < 0.01 0.04 0.00 < 0.01 0.90 1.54

• As expected, given the small number of design situations considered in the code

format CF1, the reliability requirements are fulfilled almost perfectly since the total

expected losses N ·∆ are very small;

• Naturally, the simplification from the code format CF1 to the code format CF2, and

posteriorly from code format CF2 to code format CF3, comes at a cost of loss of

optimality, given the higher losses.

• The grouping of failure modes 1 and 2, in the same code domain, is not as much

penalizing as the grouping of failure modes 3 and 4, since, on one hand, the best set

of partial safety factors is similar for both failure modes and, on the other hand, the

smaller weight factors (listed in the following section) allows easier manipulation of

the partial safety factors;

• As the reliability requirements decrease, the partial safety factors naturally get closer

to one, reflecting the lower conservatism required in the code.
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6.3.2.3 Code check

The code check, intending to evaluate the quality of the results and decide upon different

alternatives regarding the code format, is performed by comparing the inherent reliability

index of structures designed according to the new code, considering all design situations,

to the target reliability index. Alternatively, the comparison can be made using the design

variable, since the minimization routine considers the design variable as degree-of-fit

parameter.

Tables 6.4, 6.5 and 6.6 compare the design variable (and reliability index) obtained

using the calibrated code (θ1 for the code format CF1, θ2 for the code format CF2 and θ3 for

the code format CF3) to the optimum solution, obtained from the reliability-based design,

for target reliability indexes of βt|E = 3.89, βt|E = 3.29 and βt|E = 2.58, respectively.

Since an asymmetrical penalty function, penalizing more underdesigned than overde-

signed structures, was considered, the difference between the inherent reliability index

throughout the structure class shall be greater, in average, than the target reliability index.

Accordingly, the computed mean values of this difference, using the code formats CF1,

CF2 and CF3, are presented in Table 6.7.

Alternatively, for comparison purposes, the accuracy of codes calibrated using different

code formats can be evaluated through the variation (i.e., the standard deviation) of the

difference βj − βt|E, which are presented, for the code formats CF1, CF2 and CF3, in

Table 6.8.

Naturally, as the code domain is extended to more design situations (from code format

CF1 to code format CF2 and from code format CF2 to code format CF3), the standard

deviation of the difference βj −βt|E increases.

6.3.3 Accidental earthquake combination (earthquake load event)

6.3.3.1 General considerations

The loads due to the design earthquake shall overlap the existing loading conditions in

normal operation periods. As mentioned, in those cases, the reservoir water level depends

on the normal water level (NWL) of a specific dam. Also the magnitude of the seismic

loads depends on the dam location, according to the Portuguese seismic map (Figure 3.16).

Therefore, the code calibrated shall cover not only the design situations E1 to E12,

presented in Table 5.30 considering the different subgroups in which the random variables
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Table 6.4: Comparison of the optimum design variable and the solution of the optimized
code, for a target reliability index of 3.89.

FM ω(2) θ∗ (β∗) θ1 (β1) θ2 (β2) θ3 (β3)

F1

1 3.15 0.81 (3.89) 0.81 (3.90) 0.81 (3.89) 0.77 (3.76)
2 4.10 0.72 (3.89) 0.72 (3.91) 0.73 (3.95) 0.71 (3.85)
3 31.48 0.46 (3.89) 0.46 (3.86) 0.48 (4.65) 0.49 (4.79)
4 42.54 0.40 (3.89) 0.40 (3.89) 0.40 (3.80) 0.40 (3.83)

F2

1 2.50 1.00 (3.89) 1.00 (3.89) 0.99 (3.87) 1.01 (3.92)
2 3.19 0.88 (3.89) 0.88 (3.89) 0.89 (3.91) 0.92 (3.99)
3 25.27 0.52 (3.89) 0.52 (3.82) 0.55 (4.63) 0.55 (4.70)
4 35.40 0.46 (3.89) 0.46 (3.89) 0.45 (3.78) 0.45 (3.75)

F3

1 3.59 0.57 (3.89) 0.57 (3.90) 0.56 (3.87) 0.52 (3.71)
2 4.73 0.54 (3.89) 0.54 (3.89) 0.55 (3.93) 0.52 (3.81)
3 28.48 0.44 (3.89) 0.44 (4.01) 0.46 (4.57) 0.47 (4.82)
4 42.54 0.40 (3.89) 0.40 (3.89) 0.40 (3.80) 0.40 (3.83)

F4

1 2.91 0.71 (3.89) 0.72 (3.91) 0.71 (3.88) 0.71 (3.88)
2 3.73 0.66 (3.89) 0.66 (3.89) 0.67 (3.92) 0.68 (3.96)
3 22.14 0.50 (3.89) 0.50 (4.00) 0.53 (4.58) 0.53 (4.76)
4 35.40 0.46 (3.89) 0.46 (3.89) 0.45 (3.78) 0.45 (3.75)

F5

1 3.77 0.38 (3.89) 0.38 (3.88) 0.37 (3.83) 0.31 (3.63)
2 5.37 0.40 (3.89) 0.40 (3.87) 0.41 (3.91) 0.38 (3.76)
3 24.22 0.42 (3.89) 0.42 (3.84) 0.41 (3.79) 0.44 (4.41)
4 42.54 0.40 (3.89) 0.40 (3.89) 0.40 (3.80) 0.40 (3.83)

F6

1 3.16 0.50 (3.89) 0.50 (3.91) 0.49 (3.86) 0.47 (3.81)
2 4.27 0.50 (3.89) 0.50 (3.89) 0.50 (3.92) 0.50 (3.92)
3 18.09 0.47 (3.89) 0.47 (3.91) 0.47 (3.92) 0.50 (4.43)
4 35.40 0.46 (3.89) 0.46 (3.89) 0.45 (3.78) 0.45 (3.75)

are divided, but also: (i) the failure modes that share the same set of partial safety factors;

(ii) different values of knwl (in the reliability-based design presented, 11 levels were tested),

since probability distribution functions of the reservoir water level, during normal operation

conditions, depend on this property; and (iii) any dam location. Since optimum solutions

for seismic zones 1.1, 1.2, 2.1 and 2.2 usually imply large values for the design variable

(downstream face slope), discouraging the choice to build concrete gravity dams in those

locations, only the remain 7 seismic zones are considered (seismic zones 3 to 6, for seismic

type 1, and seismic zones 3 to 5, for seismic type 2), avoiding unnecessary constraints in

the optimization procedure. Therefore:
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Table 6.5: Comparison of the optimum design variable and the solution of the optimized
code, for a target reliability index of 3.29.

FM ω(2) θ∗ (β∗) θ1 (β1) θ2 (β2) θ3 (β3)

F1

1 3.48 0.63 (3.29) 0.63 (3.30) 0.63 (3.30) 0.61 (3.23)
2 4.56 0.58 (3.29) 0.58 (3.30) 0.59 (3.33) 0.58 (3.30)
3 31.64 0.44 (3.29) 0.44 (3.29) 0.47 (4.11) 0.46 (4.10)
4 45.29 0.39 (3.29) 0.39 (3.29) 0.39 (3.19) 0.39 (3.17)

F2

1 2.82 0.78 (3.29) 0.77 (3.29) 0.76 (3.26) 0.81 (3.39)
2 3.61 0.71 (3.29) 0.70 (3.27) 0.70 (3.27) 0.75 (3.45)
3 24.00 0.49 (3.29) 0.49 (3.21) 0.52 (4.04) 0.52 (4.00)
4 36.39 0.44 (3.29) 0.44 (3.29) 0.44 (3.12) 0.44 (3.08)

F3

1 3.78 0.41 (3.29) 0.41 (3.30) 0.41 (3.29) 0.37 (3.17)
2 5.29 0.42 (3.29) 0.42 (3.29) 0.42 (3.33) 0.41 (3.26)
3 26.63 0.42 (3.29) 0.42 (3.43) 0.44 (4.01) 0.44 (4.00)
4 45.29 0.39 (3.29) 0.39 (3.29) 0.39 (3.19) 0.39 (3.17)

F4

1 3.17 0.52 (3.29) 0.52 (3.30) 0.51 (3.28) 0.53 (3.34)
2 4.24 0.51 (3.29) 0.51 (3.28) 0.51 (3.29) 0.54 (3.42)
3 19.45 0.47 (3.29) 0.47 (3.41) 0.50 (3.99) 0.50 (3.96)
4 36.39 0.44 (3.29) 0.44 (3.29) 0.44 (3.12) 0.44 (3.08)

F5

1 3.03 0.22 (3.29) 0.21 (3.28) 0.20 (3.26) 0.11 (3.08)
2 6.02 0.30 (3.29) 0.29 (3.28) 0.30 (3.32) 0.28 (3.22)
3 19.03 0.39 (3.29) 0.39 (3.22) 0.38 (3.15) 0.38 (3.15)
4 45.29 0.39 (3.29) 0.39 (3.29) 0.39 (3.19) 0.39 (3.17)

F6

1 3.01 0.31 (3.29) 0.31 (3.31) 0.30 (3.28) 0.29 (3.24)
2 4.89 0.37 (3.29) 0.36 (3.29) 0.37 (3.31) 0.38 (3.38)
3 13.83 0.43 (3.29) 0.43 (3.31) 0.43 (3.31) 0.43 (3.30)
4 36.39 0.44 (3.29) 0.44 (3.29) 0.44 (3.12) 0.44 (3.08)

• For the code format CF1, since partial safety factors depend on the failure mode,

the code optimization procedure is performed, and repeated for each failure mode,

considering N = 12 × 11 × 7 × 1 = 924 design situations;

• For the code format CF2, since partial safety factors are shared within two groups,

one related to the failure modes 1 and 2 and other related to the failure modes 3

and 4, the code optimization procedure is performed, and repeated for each group,

considering N = 12 × 11 × 7 × 2 = 1848 design situations;

• For the code format CF3, since all failure modes share the same partial safety factors,
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Table 6.6: Comparison of the optimum design variable and the solution of the optimized
code, for a target reliability index of 2.58.

FM ω(2) θ∗ (β∗) θ1 (β1) θ2 (β2) θ3 (β3)

F1

1 3.76 0.43 (2.58) 0.43 (2.59) 0.43 (2.57) 0.48 (2.78)
2 5.20 0.43 (2.58) 0.44 (2.59) 0.44 (2.59) 0.48 (2.83)
3 29.97 0.42 (2.58) 0.42 (2.58) 0.44 (3.46) 0.44 (3.40)
4 49.20 0.37 (2.58) 0.37 (2.58) 0.37 (2.52) 0.37 (2.47)

F2

1 3.18 0.54 (2.58) 0.53 (2.56) 0.53 (2.56) 0.65 (2.94)
2 4.21 0.52 (2.58) 0.52 (2.56) 0.52 (2.57) 0.62 (2.98)
3 21.14 0.46 (2.58) 0.46 (2.49) 0.50 (3.41) 0.50 (3.34)
4 36.66 0.42 (2.58) 0.42 (2.58) 0.42 (2.48) 0.42 (2.41)

F3

1 2.92 0.21 (2.58) 0.21 (2.58) 0.20 (2.55) 0.25 (2.70)
2 6.06 0.29 (2.58) 0.29 (2.58) 0.29 (2.59) 0.33 (2.80)
3 19.80 0.39 (2.58) 0.39 (2.69) 0.42 (3.25) 0.41 (3.16)
4 49.20 0.37 (2.58) 0.37 (2.58) 0.37 (2.52) 0.37 (2.47)

F4

1 3.00 0.29 (2.58) 0.29 (2.58) 0.29 (2.57) 0.38 (2.87)
2 4.98 0.35 (2.58) 0.35 (2.57) 0.35 (2.58) 0.43 (2.95)
3 14.37 0.43 (2.58) 0.43 (2.70) 0.47 (3.32) 0.46 (3.23)
4 36.66 0.42 (2.58) 0.42 (2.58) 0.42 (2.48) 0.42 (2.41)

F5

1 - - (-) - (-) - (-) - (-)
2 6.91 0.18 (2.58) 0.18 (2.57) 0.19 (2.59) 0.21 (2.77)
3 6.92 0.33 (2.58) 0.32 (2.52) 0.31 (2.45) 0.29 (2.38)
4 49.20 0.37 (2.58) 0.37 (2.58) 0.37 (2.52) 0.37 (2.47)

F6

1 - - (-) - (-) - (-) - (-)
2 5.77 0.23 (2.58) 0.23 (2.58) 0.23 (2.59) 0.29 (2.91)
3 6.01 0.36 (2.58) 0.36 (2.57) 0.35 (2.54) 0.33 (2.44)
4 36.66 0.42 (2.58) 0.42 (2.58) 0.42 (2.48) 0.42 (2.41)

Table 6.7: Mean values of βj −βt|E, considering the code formats CF1, CF2 and CF3, for
the flood load event.

βt|E = 3.89 βt|E = 3.29 βt|E = 2.58

CF1 0.005 0.006 0.005
CF2 0.093 0.086 0.116
CF3 0.136 0.074 0.203

the code optimization procedure is performed considering N = 12×11×7×4 = 3696

design situations.

Regarding the code objective, for the earthquake load event, such as considered for the
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Table 6.8: Standard deviations of βj −βt|E, considering the code formats CF1, CF2 and
CF3, for the flood load event.

βt|E = 3.89 βt|E = 3.29 βt|E = 2.58

CF1 0.038 0.045 0.044
CF2 0.290 0.309 0.307
CF3 0.386 0.317 0.319

reliability-based design (Chapter 5), the conditional probabilities of failure pft|E = 10−5

(βt|E = 4.26), pft|E = 10−4 (βt|E = 3.72) and pft|E = 10−3 (βt|E = 3.09), corresponding

to the code objective 1/108, 1/107 and 1/106, respectively, are targeted.

6.3.3.2 Relevant results

Tables 6.9, 6.10 and 6.11 show the results of the code optimization for target reliability

indexes of βt|E = 4.26, βt|E = 3.72 and βt|E = 3.09, respectively.

Table 6.9: Code optimization results, considering the earthquake load event, for a target
reliability index of βt|E = 4.26.

CF1 CF2 CF3
FM1 FM2 FM3 FM4 FM1,FM2 FM3,FM4 FM1-FM4

γG 0.94 0.95 0.88 0.84 0.95 0.85 0.86
γI 1.14 1.15 1.14 1.30 1.14 1.24 1.25
γU 1.23 1.30 1.29 1.29 1.28 1.27 1.28
γE,1 1.18 1.21 1.23 1.30 1.17 1.29 1.28
γE,2 0.73 0.78 0.85 0.88 0.79 0.88 0.86
γm 1.59 1.54 1.53 - 1.58 1.26 1.30

N ·∆ (102) 0.70 0.42 0.26 0.44 1.14 1.08 2.52

In addition to similar conclusions to those made for the flood load event, regarding the

optimality losses as the code domain is extended to other failure modes and the order of

magnitude of the partial safety factors, other conclusions are taken:

• As the number of design situations increases, when compared to the optimization

procedure for the flood load event, the total expected losses also increases, since in

order to cover a wider code domain of application and keeping the simplicity of the

code, optimality decreases;

205



CHAPTER 6. CODE CALIBRATION FOR ULTIMATE LIMIT STATES

Table 6.10: Code optimization results, considering the earthquake load event, for a target
reliability index of βt|E = 3.72.

CF1 CF2 CF3
FM1 FM2 FM3 FM4 FM1,FM2 FM3,FM4 FM1-FM4

γG 0.96 0.96 0.91 0.85 0.95 0.85 0.88
γI 1.08 1.09 1.13 1.23 1.07 1.18 1.21
γU 1.17 1.22 1.23 1.22 1.20 1.23 1.24
γE,1 1.13 1.15 1.22 1.26 1.12 1.29 1.25
γE,2 0.71 0.73 0.82 0.87 0.71 0.86 0.84
γm 1.48 1.44 1.35 - 1.48 1.20 1.23

N ·∆ (102) 1.25 0.63 0.20 0.35 1.76 1.56 2.67

Table 6.11: Code optimization results, considering the earthquake load event, for a target
reliability index of βt|E = 3.09.

CF1 CF2 CF3
FM1 FM2 FM3 FM4 FM1,FM2 FM3,FM4 FM1-FM4

γG 0.97 0.98 0.96 0.89 0.98 0.91 0.90
γI 1.06 1.05 1.12 1.20 1.05 1.18 1.06
γU 1.11 1.19 1.20 1.17 1.19 1.18 1.19
γE,1 1.12 1.12 1.18 1.25 1.10 1.24 1.24
γE,2 0.68 0.68 0.78 0.87 0.68 0.82 0.82
γm 1.32 1.31 1.26 - 1.32 1.20 1.22

N ·∆ (102) 1.82 1.48 0.21 0.25 3.35 1.11 4.12

• When grouping all the failure modes within the same set of partial safety factors

(Code format CF3), the importance of a good adjustment to failure modes 3 and 4

are dominant since their weight factors are considerably greater than for the failure

modes 1 and 2 (Figure 6.2 for βt|E = 4.26, Figure 6.3 for βt|E = 3.72 and Figure

6.4 for βt|E = 3.09), reflecting the greater influence that the variation of the design

variable has on the reliability index;

• Advantages are taken by considering different partial safety factors for seismic actions

type 1 and 2, since the corresponding distribution functions are considerably different.

Since the pseudo-static load model underestimates the structural response under

seismic excitations type 1 and overestimates the structural response under seismic

excitations type 2, the corresponding partial safety factors, seen as correction factors,

are greater than one for the first and smaller than one for the latter.
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0.1 1.8 3.5
(a) Failure mode 1.

0.2 2.9 5.6
(b) Failure mode 2.

8.4 17.1 25.8
(c) Failure mode 3.

13.5 23.3 33.1
(d) Failure mode 4.

Figure 6.2: Histogram of ω(2) for the design situations of the earthquake load event, for a
target reliability index of βt|E = 4.26.

0.0 1.7 3.4
(a) Failure mode 1.

0.4 3.4 6.4
(b) Failure mode 2.

7.4 16.9 26.4
(c) Failure mode 3.

13.0 24.0 35.0
(d) Failure mode 4.

Figure 6.3: Histogram of ω(2) for the design situations of the earthquake load event, for a
target reliability index of βt|E = 3.72.

0.2 1.8 3.4
(a) Failure mode 1.

0.6 4.0 7.4
(b) Failure mode 2.

5.5 18.8 32.0
(c) Failure mode 3.

12.6 25.0 37.4
(d) Failure mode 4.

Figure 6.4: Histogram of ω(2) for the design situations of the earthquake load event, for a
target reliability index of βt|E = 3.09.

6.3.3.3 Code check

Since structural reliability analysis for such large number of design situations, code formats

and target reliability indexes, would be a cumbersome task, the code is checked by com-

paring the design variable obtained through the calibrated code (θ1 for the code format

CF1, θ2 for the code format CF2 and θ3 for the code format CF3) to the optimum design

variable θ∗, obtained by the reliability-based design (Chapter 5). This comparison is made

in Figures 6.5 to 6.11, for the seismic zones considered.

Note that, from this comparison:
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βt|E = 4.26: θ∗ θ1 θ2 θ3

βt|E = 3.72: θ∗ θ1 θ2 θ3

βt|E = 3.09: θ∗ θ1 θ2 θ3
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(l) Design situation E12

Figure 6.5: Comparison between the solution of code design to the solution of reliability-
based design for seismic zone 1.3.
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βt|E = 4.26: θ∗ θ1 θ2 θ3

βt|E = 3.72: θ∗ θ1 θ2 θ3

βt|E = 3.09: θ∗ θ1 θ2 θ3
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Figure 6.6: Comparison between the solution of code design to the solution of reliability-
based design for seismic zone 1.4.
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βt|E = 4.26: θ∗ θ1 θ2 θ3

βt|E = 3.72: θ∗ θ1 θ2 θ3

βt|E = 3.09: θ∗ θ1 θ2 θ3
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Figure 6.7: Comparison between the solution of code design to the solution of reliability-
based design for seismic zone 1.5.
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βt|E = 4.26: θ∗ θ1 θ2 θ3

βt|E = 3.72: θ∗ θ1 θ2 θ3

βt|E = 3.09: θ∗ θ1 θ2 θ3
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Figure 6.8: Comparison between the solution of code design to the solution of reliability-
based design for seismic zone 1.6.

211



CHAPTER 6. CODE CALIBRATION FOR ULTIMATE LIMIT STATES

βt|E = 4.26: θ∗ θ1 θ2 θ3

βt|E = 3.72: θ∗ θ1 θ2 θ3

βt|E = 3.09: θ∗ θ1 θ2 θ3
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Figure 6.9: Comparison between the solution of code design to the solution of reliability-
based design for seismic zone 2.3.

212



6.3. CODE OPTIMIZATION
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Figure 6.10: Comparison between the solution of code design to the solution of reliability-
based design for seismic zone 2.4.
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Figure 6.11: Comparison between the solution of code design to the solution of reliability-
based design for seismic zone 2.5.
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• The tested code formats lose suitability for larger values of knwl because they cannot

reflect the non-linearity of the optimal solution due to the decreasing variance of the

probability distribution of kr as knwl tends to one (see Figure 4.3), suggesting that

the corresponding partial safety factor given by a mathematical expression in terms

of knwl could be more appropriate;

• Code formats CF1 and CF2 do not differ considerably regarding the adjustment

quality. This is due to the similarities between the set of partial safety factors for

failure modes 1 and 2 (code format CF1) which, when combined (code format CF2),

do not lose their optimality;

• Code format CF3, although covering a wider domain (all failure modes) and present a

greater conservatism than code formats CF1 and CF2 for some design situations (e.g.

design situations E2, E6 and E10), is the format that best approaches the optimal

solution in other cases (e.g. design situations E4, E8 and E12);

• The adjustment differences between design situations E1, E5 and E9 and E3, E7 and

E11, respectively, and between design situations E2, E6 and E10 and E4, E8 and

E12, respectively, is due to the different subgroups regarding the reservoir water level,

suggesting that distinct partial safety factors for the hydrostatic pressure, depending

on the project type, could be more appropriate.

The ratio θ/θ∗ are synthesized in Figure 6.12, for different target reliability indexes

and using different code formats.

0.0 0.5 1.0 1.5 2.0

CF1
CF2
CF3

(a) βt|E = 4.29

0.0 0.5 1.0 1.5 2.0
(b) βt|E = 3.72

0.0 0.5 1.0 1.5 2.0
(c) βt|E = 3.09

Figure 6.12: Histogram of the relative deviations (θ/θ∗ (βt|E
)
) between the code solution

and the target values.

For comparison purposes, the accuracy of codes calibrated, using different code formats,

can be evaluated through the standard deviations of the relative deviations presented in

Table 6.12.
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Table 6.12: Standard deviations of θ/θ∗, considering the code formats CF1, CF2 and CF3,
for the earthquake load event.

βt|E = 3.89 βt|E = 3.29 βt|E = 2.58

CF1 0.074 0.088 0.123
CF2 0.082 0.103 0.128
CF3 0.093 0.113 0.168

Again, as the code domain is extended to more design situations (from code format

CF1 to code format CF2 and from code format CF2 to code format CF3), the standard

deviation of relative deviations θ/θ∗ increases.

6.4 Final considerations

6.4.1 Synthesis

The adaptation from deterministic to semi-probabilistic safety criteria has been encouraged

(ICOLD 1987) and has already been implemented in regulations or technical notes from

some countries. Other regulators and/or institution have followed a risk-based approach,

since the aging of dams became the main concern and maintenance and rehabilitation

have surpassed the construction era.

This chapter addressed the code calibration for the semi-probabilistic safety analysis of

concrete gravity dams, considering the ultimate limit states reflecting the loss of structural

equilibrium, intending to reduce the inherent conservationism levels presented in the

classical approach to dam safety, based on the concept of global safety factors.

The code calibration process required the code formulation and the code optimization

tasks. Regarding the code formulation, the simple case study used in the previous chapter

was considered for the representation of a structure class addressing large concrete gravity

dams. Different code objectives were tested in order to evaluated its influence on the

partial safety factors. Simple code formats, concentrating the sources of uncertainty in

few partial safety formats, was considered, testing the effects of varying their application

domain, from each failure mode individually or all failure modes together. Regarding the

code optimization, the alternative procedure proposed in chapter 2 was considered. The

procedure was applied to the extreme hydrological and accidental earthquake combinations

separately in order to judge independently the partial safety factors for each case.
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Although differing between load combinations, common values were obtained for the

partial safety factors. The extension of the code domain to multiple failure modes has differ-

ent effects when comparing the extreme hydrological to the accidental seismic combinations.

While, for the first, the deviations from the optimum solutions increase considerably when

the partial safety factors are shared by multiple failure modes, for the latter, this difference

is not so abrupt.

6.4.2 Code proposal

In this work, it is intended to propose a semi-probabilistic criteria for the structural safety

analysis of concrete gravity dams that, when applied to any design situation considering

the failure modes identified, results in structural solutions close to those obtained by the

RBDO procedure, considered as the optimum solutions.

It is known that, in practice, the typical geometry that makes concrete gravity dams

economically competitive is characterized by downstream face slopes in the range of 0.7 to

0.8 (Corns et al. 1988), admitting a maximum value of 1.0. For more demanding design

situations, to conceive cost-effective solutions, other constructive dispositions are preferred,

such as the consideration of a greater keyed depth, the consideration of a curvature in

plan (arch-gravity dams) or, in particular cases, the use of post-tensioned anchors. On the

other hand, for less demanding design situations, the adoption of hollow gravity dams is

also preferred, for economic reasons.

Furthermore, from the previous chapter, it was concluded that failure mode 1 is the

most conditioning failure mode in the range of practical values of the downstream face

slope. Therefore, since structural codes usually consider the single failure mode checking

format (Faber and Sørensen 2003), the partial safety factors calibrated for the design

equations derived from the failure mode 1 (code format CF1) can be used throughout the

code domain, since it does not result, when applied to the remaining failure modes, in

most demanding structural solutions characterized by greater values of the downstream

face slope.

The partial safety factors proposed, obtained by rounding the partial safety factors

calibrated for the design equations derived from the failure mode 1 (code format CF1)

to the nearest significant and conservative value, are presented in Tables 6.13 and 6.14,

for the extreme earthquake and accidental hydrological load combinations, respectively,

considering the three targeted values of the total probability of failure tested for the code
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objective.

Table 6.13: Partial safety factors proposed for the extreme earthquake load combination.

pft = 1/108 pft = 1/107 pft = 1/106

γG 0.90 0.95 0.95
γI 1.15 1.10 1.10
γU 1.25 1.20 1.15
γE,1 1.20 1.15 1.15
γE,2 0.75 0.75 0.70
γm 1.60 1.50 1.35

Table 6.14: Partial safety factors proposed for the accidental hydrological load combination.

pft = 10−8 pft = 10−7 pft = 10−6

γG 0.95 0.95 0.95
γI 1.10 1.05 1.05
γU 1.15 1.15 1.10
γm 1.55 1.45 1.30

Comparing to the values proposed, the Portuguese dam safety regulation (RSB 2018),

which considers a global safety coefficient applied to the frictional component of the shear

strength with values between 1.2 and 1.5, should inherently target to a total probability of

failure in the order of magnitude of 10−6. Note that this value is larger than the probability

of failure admitted, in the Eurocodes (EN1990 2002), for structures of the consequence

class CC3.

However, the results obtained in this chapter may have been conditioned both by:

(i) the consideration of the pseudo-static seismic load model, which underestimates the

structural response under seismic actions type 1 and overestimates the structural response

under seismic actions type 2; and (ii) the consideration of a single case study corresponding

to a 100 meter high concrete gravity dam.
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Conclusions

7.1 Summary and main conclusions

The main objective of this thesis was to explore the applicability of probabilistic principles

to structural safety of concrete gravity dams. The intermediate tasks to perform a reliability-

based design of concrete gravity dams and to calibrate safety criteria, based on the semi-

probabilistic approach, for ultimate limit states, namely the failure mode and uncertainty

modeling, enabled the success of this work.

Firstly, introductory notes were presented. The role of dams in society, in general, and

in Portugal, in particular, was reviewed. The structural safety of dams was framed by a

historical perspective. After the propagation of dam construction for hydropower gener-

ation, since the industrial revolution, dam safety gained importance. The formation of

the International Commission on Large Dams (ICOLD) encouraged advances in planning,

design, construction, operation and maintenance of large dams. When focus was put on

sujects of current concern such as safety, monitoring, aging and environmental impacts, a

common approach to dam safety, denoted as classical approach, came formally (ICOLD

1987), introducing the lessons taken from experience and collaboration of several national

members. The theoretical development of classical structural reliability motivated develop-

ments in other areas of civil engineering and discussions regarding its application in dam

engineering was also taken, recognizing that the logical trend goes from a predominantly

deterministic concept of safety factors to the semi-probabilistic method of partial safety
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factors. Since then, studies have been developed and probabilistic approaches to dam safety

are already implemented either in national regulations/technical rules or in guidelines for

dam safety management.

In the second chapter the formulation of the structural safety problem, from a proba-

bilistic perspective, was presented. Again, a historical background on structural design was

mentioned. Themes such as the uncertainty modeling, the approaches for the structural

safety analysis and reliability methods were detailed in order to frame the standards-based

approach for the structural design, whose link to probabilistic approach is set on the

theory of code calibration. Procedures for the reliability-based design and the code cali-

bration, that latter were applied, was also presented. Regarding the code optimization, an

alternative method was proposed, reducing the computational demand.

In the third chapter, the aspects related to the structural safety of concrete gravity dams

are presented. After a review on the historical background on concrete dam design and

construction, the constructive aspects and design principles, the loads acting on concrete

gravity dams and the philosophy of the design codes are detailed. At the end, failure modes

are derived by comparing analytical and numerical solutions of a representative, though

generic, case study.

In the forth chapter, the tasks related to the modeling of the relevant sources of

uncertainty associated with the safety of concrete gravity dams, were detailed. Data from

monitoring and quality control tests were used to derive probabilistic models for the

water loads and the concrete mechanical properties, respectively. The quantification of

other sources of physical uncertainties, such as the concrete unit weight and concrete-rock

interface shear strength, was based on the literature. Sources of model uncertainty were

also analyzed, mainly those related to the consideration of analytical seismic load model

for the representation of the structural response to seismic actions.

The advances made allowed the quantification of the relevant sources of uncertainty

involved in the concrete dam safety which will enable, in the following chapters, both the

studies on the reliability-based design and the code calibration for ultimate limit states.

In the fifth chapter, probabilistic principles for the reliability-based design were applied.

The objective was to obtain the structural solution that ensures adequate levels of safety

for the most conditioning foreseeable load conditions arising during the intended service

life of the structure, namely those derived from the occurrence of the design flood and

the design earthquake, being naturally given by the most demanding case. Therefore, a
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theoretical case study, representing the structural class of large concrete gravity dams, and

the design situations derived from the flood (extreme hydrological load combination) and

earthquake (accidental earthquake load combination) load events were considered.

The results obtained, in which the design variable was quantified such that the safety

requirements, representing by target reliability indexes, were fulfilled for all design situa-

tions, show increasing sensitivity to the exploitation type, the hydraulic and mechanical

characteristics of the rock mass foundation and, above all, to the intensity of the seis-

mic action considered. While the structural characteristics required to face the accidental

earthquake load combination are frequently the conditioned ones, the predominance of

this conclusion varies with the dam location.

For high intensity seismic zones zones, characterized by peak ground accelerations

of considerable value, the minimum downstream face slope, which fulfills the safety re-

quirements, increases to values that surely make this solution cost-prohibitive (practical

values are in the range of 0.7 to 0.8, admitting a maximum value of 1.0). Despite the

validity of this conclusion, this fact may have been exacerbated by the consideration of the

pseudo-static seismic load model to simulate the structural effects due to the occurrence

of an earthquake, since this model, considering inertia forces proportional to the structure

mass, may lose suitability for an exaggerated increase of the downstream face slope.

For low intensity seismic zones, the extreme hydrostatic combination may condition

the structural solution, even though, the required downstream face slope is small when

compared to the current practice. Regarding the failure modes, the failure mode 1, involving

the sliding of the dam body while pushing the downstream rock wedge, is often the

conditioning one. Only for less demanding design situations, frequently those coming from

the flood load event, other failure modes may become prominent.

Regarding the failure modes, the most conditioning one depends on the magnitude of

the downstream face slope. For gravity profiles characterized by downstream face slopes

roughly greater than 0.5, including the range of practical values 0.7 to 1.00, the failure

mode 1 is always the most conditioning case. This conclusion remains valid as the safety

requirements increase, since gravity profiles shall expectedly be less inclined.

From the results obtained, it was evident the advantages that can be taken from the

reliability-based design of concrete gravity dams, since safety levels can be controlled and

different thresholds can easily be achieved by updating the design variable (downstream

face slope). The algorithm developed for that purpose was based, on one hand, on the
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limit states derived from the construction aspects and design principles of this type of

structures and, on other hand, on robust theoretical reliability methods.

In the sixth chapter, a code calibration procedure was applied to derive partial safety

factors, for ultimate limit states, such that the inherent conservationism levels presented

in the classical approach to dam safety, may be reduced.

The code calibration process required the code formulation and the code optimization

tasks. Regarding the code formulation, the simple case study used in chapter 5 was

considered for the representation of a structure class addressing large concrete gravity

dams. Different code objectives were tested in order to evaluated its influence upon the

partial safety factors. Simple code formats, concentrating the sources of uncertainty in

few partial safety formats, were considered, testing the effects of varying their application

domain, from each failure mode individually or all failure modes together.

The extension of the code domain to multiple failure modes was found to produce differ-

ent effects when comparing the extreme hydrological to the accidental seismic combinations.

While, for the first, the deviations from the optimum solutions increase considerably when

the partial safety factors are shared by multiple failure modes, for the latter, this difference

is not so abrupt.

A set of partial safety factors, for the load and material properties were proposed

considering that the failure mode 1 is the most conditioning one in the range of practical

values of the downstream face slope. For more demanding design situations, to conceive cost-

effective solutions, other constructive dispositions are preferred, such as the consideration

of a greater keyed depth, the consideration of a curvature in plan (arch-gravity dams)

or, in particular cases, the use of post-tensioned anchors. On the other hand, for less

demanding design situations, the adoption of hollow gravity dams is also preferred, for

economic reasons.

In the seventh chapter, the summary and main conclusions are presented, as well as,

the future developments.

7.2 Future developments

Being this work a first step towards the adoption of probabilistic principles, the devel-

opment of full risk analysis tools to dam safety management may, at this moment, seem

a distant objective. Several accessory subjects, namely probabilistic models that relates

222



7.2. FUTURE DEVELOPMENTS

the magnitude of load events with the respective probability of occurrence and models to

estimate the consequences in terms of the flood wave from a dam break, must be studied

and a discussion on institutional and political levels should first be taken.

Nonetheless, reliability-based tools for the assessment of existing structures, provid-

ing valuable information for the decision-making process, may apparently be prioritized.

These tools may be specifically useful for the estimation of the service life of deteriorated

structures, either for the planning and scheduling of interventions or for the allocation of

financial, material and environmental resources on a prioritized basis.

Meanwhile, in order to go through the necessary tasks aiming at a definitive adoption

of semi-probabilistic approach to structural safety of concrete dams, which would also be

required for the development of reliability-based tools, some extensions must be taken,

namely:

• Extension to the rock mechanics, in order to account the possible failure modes

involving the movement of considerable volumes of rock;

• Extension to other types of concrete dams. Arch dams and buttress dams must also

be analyzed in similar way. For that, the procedure followed in this thesis to the

concrete gravity dams must be generalized to theoretical arch and buttress dams;

• Extension to other limit states corresponding, essentially, to the serviceability and

durability requirements. Extreme or accidental situations are fortunately extremely

rare and the reliability principles can also be advantageously considered in the

continuous monitoring of concrete dams, aiming at supporting the decision-making

regarding their maintenance;

• For that, it is essential to develop an algorithm for the continuous (bayesian) updating

of the uncertainty models as soon as data from monitoring become available.

It was shown that the application of the partial safety factor method to the design

of concrete gravity dams can be sought. However, in order to built new paradigm-shifted

safety regulation, renouncing the working stress philosophy to the detriment of limit state

philosophy, several aspects must be also studied:

• The definition of the structural class, namely the application field of the desired

designed criteria;
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• The definition, on institutional and political levels, of the code objective, i.e. the

required levels of safety, given in terms of probability of failure or reliability index,

that this type of structures shall ensured.

• The code format by establishing structural coefficients, in order to differentiate

reliability requirements for different types of structures, combinations coefficients,

in order to represent adequately the realistic load combinations defined and partial

safety factors using a methodology similar to the presented in this study.
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Pseudo-dynamic seismic load model

A.1 General considerations

Chopra (1978) suggested the pseudo-dynamic seismic load model, as a simplified version

of a general dynamic analysis procedure, to overcome the unrealistic assumptions of the

pseudo-static model, namely, the rigid dam and water incompressibility.

Based on simplified analysis in which the maximum response is estimated directly from

the seismic design spectrum and response history of finite element idealizations of the dam

monolith, the procedure proposed involves the computation of equivalent lateral forces

associated with the fundamental vibration mode of the dam and includes the effects of the

dam-reservoir interaction and compressibility of water.

Later, Fenves and Chopra (1986) extended this procedure to account both the effects

of dam-foundation interaction and the response contribution of higher vibration modes,

through the “static correction” concept, which shall make this procedure sufficiently accu-

rate for the elastic analysis for the design phase and safety evaluation of concrete gravity

dams.

In the following sections the computation of the equivalent lateral forces for the funda-

mental and higher mode response is described.
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A.2 Simplified analysis for the fundamental mode response

A.2.1 Vibrational properties

Although the analysis of the fundamental mode response of the concrete dam is complicated

due to the frequency-dependent and complex-valued hydrodynamic and foundation terms

in the response governing equations (Fenves and Chopra 1986), a equivalent single degree-

of-freedom (SDF) system can be considered to represent approximately the fundamental

mode response of concrete gravity dams, since it corresponds to a shear deformation of

the cross-section.

The vibrational properties (period and damping ratio) of the equivalent SDF system

can be represented by the corresponding approximated properties of the concrete gravity

dam monolith.

The fundamental vibration period T1 of a standard nonoverflow cross-section of concrete

gravity dams on rigid foundation with empty reservoir is, according to finite-element tests

(Chopra 1978), given by,

T1 = 0.38 · H√
Ec

(A.1)

where H is the dam height in meters and Ec is the Young’s modulus of the dam in MPa.

After forced vibration tests (Chopra 1978), it was concluded that the viscous damping

ratio ξ1, in the same conditions, is in the range of 1% to 3%. However, for large motions

and high stresses expected in a dam during intense earthquakes, ξ1 = 5% is recommended

for lower vibration modes of concrete gravity dams (Chopra and Chakrabarti 1973; Chopra

1978).

The effect of the impounded water on the vibration period and damping ratio of the

dam on rigid foundation is accounted, respectively, by,

T̃r = T1 ·Rr (A.2)

and,

ξ̃r = 1
Rr

· ξ1 + ξr (A.3)

where Rr and ξr are the period lengthening ratio and the additional damping due to the

added hydrodynamic mass from dam-water interaction and reservoir bottom absorption,
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respectively. Values of Rr are given in Table A.1, in terms of the relative reservoir water

height kr, for a wave reflection coefficient α= 1, such as recommended for nonabsorptive

reservoir bottom of new or recent dams (Chopra 1978).

Table A.1: Standard values for the period lengthening ratio Rr due to dam-reservoir
interaction, for α= 1 (Fenves and Chopra 1985).

E (106 psi) ≈E (GPa)×0.145

kr 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.0

1.00 1.454 1.409 1.37 1.341 1.32 1.301 1.286 1.263
0.95 1.368 1.323 1.289 1.259 1.241 1.224 1.212 1.193
0.90 1.289 1.247 1.214 1.191 1.176 1.164 1.154 1.140
0.85 1.215 1.179 1.152 1.136 1.126 1.117 1.110 1.100
0.80 1.148 1.121 1.104 1.095 1.087 1.081 1.077 1.071
0.75 1.092 1.078 1.070 1.063 1.059 1.055 1.053 1.049
0.70 1.055 1.048 1.044 1.041 1.039 1.037 1.035 1.033
0.65 1.033 1.031 1.028 1.026 1.025 1.024 1.023 1.022
0.60 1.020 1.020 1.017 1.016 1.016 1.016 1.016 1.014
0.55 1.013 1.012 1.010 1.010 1.01 1.009 1.009 1.009
0.50 1.009 1.008 1.006 1.006 1.006 1.006 1.006 1.005

The effect of the rock mass foundation flexibility on the vibration period and damping

ratio of the concrete gravity dam with impounded reservoir is accounted, respectively, by,

T̃1 = T1 ·Rr ·Rf (A.4)

and,

ξ̃1 = 1
Rr

· 1
R3

f

· ξ1 + ξr + ξf (A.5)

where Rf and ξf are the period lengthening ratio and the additional damping due to

the dam-foundation interaction. Their values are given in Table A.2, in terms of the

ratio between the Young’s modulus of the foundation and the dam materials (Ef/Ec)

and a constant hysteretic damping factor η = .10, such as recommended in the absence

of information on damping properties of the rock mass foundation (Fenves and Chopra

1985).

Equation A.5, shows that the dam-water and dam-foundation interactions reduce the

effectiveness of the structural damping, although the overall damping of the system is
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Table A.2: Standard values for the period lengthening ratio Rf , and added damping ratio
ξf due to the dam-foundation interaction, for ηf = 0.10 (Fenves and Chopra 1985).

Ef/Ec Rf ξf

5.0 1.044 0.014
4.5 1.049 0.016
4.0 1.054 0.018
3.5 1.061 0.020
3.0 1.070 0.024
2.5 1.083 0.028
2.0 1.102 0.035
1.5 1.131 0.047
1.4 1.139 0.050
1.3 1.149 0.053
1.2 1.159 0.057
1.1 1.172 0.062
1.0 1.187 0.067
0.9 1.204 0.074
0.8 1.225 0.082
0.7 1.252 0.091
0.6 1.286 0.103
0.5 1.332 0.118
0.4 1.396 0.138
0.3 1.495 0.166
0.2 1.670 0.208

increased due to these effects.

A.2.2 Lateral forces

The maximum response of the concrete gravity dam, given in terms of lateral equivalent

forces, is then estimated from the seismic design spectrum, based on the vibration properties

and the fundamental mode shape, obtained through the response history of finite element

idealizations of the dam monolith.

The lateral equivalent forces include both the dynamic amplification of the inertia

forces along the dam height but also the hydrodynamic forces due to the effects of water
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compressibility, expressed by the period ratio Rw,

Rw = T r
1
T̃r

(A.6)

where T r
1 = 4 ·Hr/C is the fundamental vibration period of the impounded water, and

C = 1440m/s is the velocity of pressure waves in water.

For the computation of the lateral equivalent forces, the generalized mass M̃1, including

the hydrodynamic added mass, and the earthquake force coefficient L̃1 must be computed,

such as, respectively,

M̃1 =M1 · (Rr)2 (A.7)

and,

L̃1 = L1 + 1
g

· Iw ·
(
Hr

H

)2

·Ap (A.8)

where Iw = γw ·H2
r /2 is the total hydrostatic force on the dam, Ap is the hydrodynamic

force coefficient, given in Table A.3 in terms of Rw, and the generalized mass M1 and

earthquake force coefficient L1, with empty reservoir, are, respectively, given by,

M1 = 1
g

·
∫ Hr

0
w (y) ·φ2 (y) ∂y (A.9)

and,

L1 = 1
g

·
∫ Hr

0
w (y) ·φ(y) ∂y (A.10)

where w (y) is the dam weight per unit height, and φ(y) is the displacement of the

fundamental mode shape of a standard monolith, given in TableA.4.

Finally, the lateral equivalent forces are given by,

f1 (y) = L̃1
M̃1

·
Sa

(
T̃1, ξ̃1

)
g

·
[
w (y) ·φ(y) + g · p

(
y, T̃r

)]
(A.11)

where Sa

(
T̃1, ξ̃1

)
is the pseudo-acceleration ordinate of the design spectrum evaluated

at the vibration period T̃1, and p
(
y, T̃r

)
is a function representing the hydrodynamic

pressure of a full reservoir on the upstream face due to a harmonic acceleration of period

T̃r, extracted from the Table A.5, based on a nondimensional form g ·p(ŷ)/(γw ·H), where

ŷ = y/H. For reservoir water levels lower than a full reservoir, the values of p(y) must be
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Table A.3: Standard values for the hydrodynamic force coefficient Ap.

Rw Ap

0.99 1.242
0.98 0.893
0.97 0.739
0.96 0.647
0.95 0.585
0.94 0.539
0.93 0.503
0.92 0.474
0.9 0.431
0.85 0.364
0.8 0.324
0.7 0.279

≤0.5 0.237

multiplied by
(
Hr/H

)2.

A.3 Static correction for higher mode response

Since periods of higher vibration modes of concrete gravity dams are very short, the corre-

sponding ordinates of the pseudo-acceleration response spectrum for the design earthquake

are close to the peak ground acceleration, with little dynamic amplification, responding

statically as a rigid body.

The maximum earthquake effects associated with the contribution of the nth vibration

mode can by represented by equivalent lateral forces (Fenves and Chopra 1986), such as,

fn (y) = Ln

Mn
·San ·m(y) ·φn (y) (A.12)

where San ≈ āg is the pseudo-acceleration ordinate of the design spectrum which, due

to the very short vibration period, is very close to the maximum ground acceleration

āg, m(y) = w (y)/g is the dam mass per unit height and ωn and φn (y) are the natural

frequency and the horizontal component nth vibration mode shape.

The maximum earthquake response is given by overlapping the maximum response of

all higher vibration modes, since they are attained at the same instant when the ground
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Table A.4: Standard fundamental mode shape φ(y) for concrete gravity dams.

y/H φ(y)

1.00 1.000
0.95 0.866
0.90 0.735
0.85 0.619
0.80 0.530
0.75 0.455
0.70 0.389
0.65 0.334
0.60 0.284
0.55 0.240
0.50 0.200
0.45 0.165
0.40 0.135
0.35 0.108
0.30 0.084
0.25 0.065
0.20 0.047
0.15 0.034
0.10 0.021
0.05 0.010
0.00 0.000

acceleration is at its maximum value āg, i.e.,

fsc (y) =
∞∑

n=2
fn (y) =

∞∑
n=2

Ln

Mn
·m(y) ·φn (y) · āg (A.13)

Since the deformation response of a dam to ground acceleration ag (t) is identical to

the response of a structure on fixed base to external forces equal to the product between

mass per unit height and ground acceleration (Fenves and Chopra 1986), these forces can

be expressed as the summation of modal contributions given, for the maximum ground

acceleration, by

m(y) · āg =
∞∑

n=1

Ln

Mn
·m(y) ·φn (y) · āg (A.14)
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Table A.5: Standard values for the nondimensional hydrodynamic pressure function
g · p(ŷ)/(γw ·H), for full reservoir, due to harmonic acceleration of period T̃r.

ŷ
Rw

≤0.50 0.70 0.80 0.85 0.90 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

1.00 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
0.95 .070 .073 .076 .079 .083 .086 .088 .090 .092 .096 .102 .111 .133
0.90 .112 .118 .124 .129 .138 .143 .147 .151 .157 .164 .176 .195 .238
0.85 .127 .135 .144 .152 .164 .172 .178 .184 .193 .204 .221 .249 .313
0.80 .133 .144 .155 .165 .182 .193 .200 .208 .220 .235 .257 .295 .379
0.75 .141 .154 .168 .180 .201 .214 .223 .234 .248 .267 .294 .340 .445
0.70 .145 .161 .178 .192 .216 .232 .242 .255 .272 .294 .327 .382 .506
0.65 .143 .161 .180 .197 .224 .242 .254 .269 .288 .313 .351 .414 .558
0.60 .139 .159 .180 .199 .230 .250 .264 .280 .301 .330 .373 .444 .605
0.55 .137 .159 .183 .203 .237 .260 .274 .293 .316 .348 .395 .473 .651
0.50 .135 .159 .184 .206 .244 .269 .284 .304 .329 .364 .415 .500 .694
0.45 .130 .155 .182 .206 .246 .272 .289 .310 .338 .375 .430 .522 .730
0.40 .124 .151 .179 .204 .247 .275 .293 .315 .345 .384 .442 .540 .762
0.35 .121 .149 .179 .205 .250 .279 .298 .322 .353 .395 .456 .559 .793
0.30 .118 .147 .178 .206 .252 .283 .303 .328 .360 .403 .467 .575 .820
0.25 .113 .143 .175 .204 .252 .284 .304 .330 .363 .408 .475 .587 .840
0.20 .109 .139 .172 .202 .252 .284 .305 .332 .366 .412 .481 .596 .856
0.15 .107 .138 .172 .202 .252 .286 .307 .334 .369 .417 .487 .604 .871
0.10 .106 .137 .172 .202 .253 .287 .309 .337 .372 .420 .491 .611 .881
0.05 .103 .135 .169 .200 .252 .286 .308 .336 .372 .420 .492 .613 .886
0.00 .100 .133 .168 .198 .251 .285 .307 .335 .371 .420 .492 .613 .886

which can be used to rewrite equation A.13 such as,

fsc (y) = āg

g
·w (y) ·

[
1 − L1

M1
·φ(y)

]
(A.15)

In the “static correction” concept, the effects of the impounded water are introduced

as additional hydrodynamic force, since inertia and damping terms are neglected, leading

to a generalization of the maximum earthquake response (equation A.13) into,

fsc (y) =
∞∑

n=2

Ln

Mn
·m(y) ·φn (y) · āg +

∞∑
n=2

Bn

Mn
·m(y) ·φn (y) · āg (A.16)
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where Bn, representing the added hydrodynamic pressure is given by,

Bn =
∫ Hr

0
p0 (y)φn (y) ∂y (A.17)

where p0 (y) is a real-valued and frequency-independent function for hydrodynamic pressure

on a rigid dam under unit acceleration, with water compressibility neglected, given in Table

A.6, based on a nondimensional form g · p0 (ŷ)/(γw ·H), where ŷ = y/H.

Table A.6: Standard values for the nondimensional hydrodynamic pressure function
g · p0 (ŷ)/(γw ·H) on a rigid dam, for full reservoir, undergoing unit acceleration.

ŷ g · p0 (ŷ)/(γw ·H)

1.00 0.000
0.95 0.137
0.90 0.224
0.85 0.301
0.80 0.362
0.75 0.418
0.70 0.465
0.65 0.509
0.60 0.546
0.55 0.580
0.50 0.610
0.45 0.637
0.40 0.659
0.35 0.680
0.30 0.696
0.25 0.711
0.20 0.722
0.15 0.731
0.10 0.737
0.05 0.741
0.00 0.742

Again, the maximum response value is given by the summation of modal contributions,

i.e.,

p0 (y) · āg =
∞∑

n=1

Bn

Mn
·m(y) ·φn (y) · āg (A.18)

which can be used to extended the equation A.15, introducing the effects of the impounded
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water, such as,

fsc (y) = āg

g
·

w (y) ·
[
1 − L1

M1
·φ(y)

]
+
[
g · p0 (y) − B1

M1
·w (y) ·φ(y)

] (A.19)

where B1 provides a measure of the portion of p0 (y) that acts in the fundamental vibration

mode, given by,

B1 = 0.20 · Iw

g
·
(
Hr

H

)2

(A.20)
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Deduction of the fai lure mode equations

B.1 Failure mode 1

The limit stability conditions, considering the failure mode 1, can be obtained by solving,

in order to the critical friction coefficient tanφc, the following system of equations,



∑
Micr =Fv ·x0 −Fh ·

(
L/tanα− y0

)
+Rv,A · tanφc ·L/tanα+(

Rn,B · tanφc +x
)

·L/sinα= 0∑
Ft,h =Rv,A · tanφc +Rn,B · sinα+

(
Rn,B · tanφc +x

)
· cosα= Fh∑

Ft,v =Rv,A +Rn,B · cosα−
(
Rn,B · tanφc +x

)
· sinα= Fv∑

Ft,t,w = Ft,w +x−Fn,w · tanφc = 0

(B.1a)

(B.1b)

(B.1c)

(B.1d)

where
∑
Mirc expresses the equilibrium of moments around the point icr, located at

the intersection point between lines perpendicular to the movement of points A and B,∑
Ft,h and

∑
Ft,v express the equilibrium of horizontal and vertical forces, respectively

and
∑
Ft,t,w express the equilibrium of tangential moments at the downstream rock wedge.

Apart from the friction coefficient tanφc, the remain unknown variables are the vertical

reaction at point A (Rv,A), the normal reaction at point B (Rn,B) and the unbalanced

force that pushes the downstream rock wedge (x).
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From equation B.1d, x is given by,

x= Fn,w · tanφc −Ft,w (B.2)

Replacing x in equation B.1a, Rv,A is given by,

c1 +Rv,A · tanφc ·L/tanα+
(
Rn,B · tanφc +Fn,w · tanφc −Ft,w

)
·L/sinα= 0

⇐⇒ −Rv,A · tanφc ·L/tanα= c1 +
(
Rn,B · tanφc +Fn,w · tanφc −Ft,w

)
·L/sinα

⇐⇒Rv,A = −
c1 +

(
Rn,B · tanφc +Fn,w · tanφc −Ft,w

)
·L/sinα

tanφc ·L/tanα ⇐⇒

Rv,A = −
(
Rn,B

cosα + Fn,w

cosα + c2
tanφc

)
(B.3)

where c1 is given by,

c1 = Fv ·x0 −Fh ·
(
L/tanα− y0

)
(B.4)

and c2 is given by,

c2 = c1
L/tanα − Ft,w

cosα (B.5)

Replacing x and Rv,A in equation B.1c, Rn,B is given by,

−
(
Rn,B

cosα + Fn,w

cosα + c2
tanφc

)
+Rn,B · cosα−

(
Rn,B · tanφc +Fn,w · tanφc −Ft,w

)
·sinα= Fv ⇐⇒ −

Rn,B

cosα − Fn,w

cosα − c2
tanφc

+Rn,B · cosα−Rn,B · tanφc · sinα

−Fn,w · tanφc · sinα+Ft,w · sinα= Fv
·tanφc⇐⇒ Rn,B · tanφc · cosα−

Rn,B · tanφc

cosα

−Rn,B · tan2φc · sinα= Fn,w · tan2φc · sinα+ Fn,w · tanφc

cosα −Ft,w · tanφc · sinα

+Fv · tanφc + c2 ⇐⇒Rn,B ·
(
c3 · tanφc − sinα · tan2φc

)
= Fn,w · sinα · tan2φc

+c4 · tanφc + c2 ⇐⇒Rn,B = Fn,w · sinα · tan2φc + c4 · tanφc + c2
−sinα · tan2φc + c3 · tanφc

(B.6)

where c3 and c4 are given, respectively, by,

c3 = cosα− 1/cosα (B.7)

c4 = Fn,w · tanφc

cosα −Ft,w · sinα (B.8)
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Finally, replacing x, Rv,A and Rn,B in equation B.1b, tanφc is given by,

−
(
Rn,B

cosα + Fn,w

cosα + c2
tanφc

)
· tanφc +Rn,B · sinα+

(
Rn,B · tanφc +Fn,w · tanφc

−Ft,w
)

· cosα= Fh ⇐⇒ −
Rn,B · tanφc

cosα − Fn,w · tanφc

cosα − c2 +Rn,B · sinα

+Rn,B · cosα · tanφc +Fn,w · cosα · tanφc −Ft,w · cosα= Fh ⇐⇒

Rn,B · (sinα+ c3 · tanφc) = c5 −Fn,w · c3 · tanφc ⇐⇒

Fn,w · sinα · tan2φc + c4 · tanφc + c2
−sinα · tan2φc + c3 · tanφc

· (sinα+ c3 · tanφc) = −Fn,w · c3 · tanφc

+c5 ⇐⇒
(
Fn,w · sinα · tan2φc + c4 · tanφc + c2

)
· (sinα+ c3 · tanφc)

=
(
−Fn,w · c3 · tanφc + c5

)
·
(
−sinα · tan2φc + c3 · tanφc

)
⇐⇒

Fn,w · sin2α · tan2φc +
(((((((((((
Fn,w · sinα · c3 · tan3φc + c4 · sinα · tanφc

+c4 · c3 · tan2φc + c2 · sinα+ c2 · c3 · tanφc =
(((((((((((
Fn,w · sinα · c3 · tan3φc

−Fn,w · c2
3 · tan2φc − c5 · sinα · tan2φc + c5 · c3 · tanφc ⇐⇒

c6 · tan2φc + c7 · tanφc + c8 = 0 ⇐⇒ tanφc =
−c7 ±

√
c2

7 − 4 · c6 · c8

2 · c6

(B.9)

where c5, c6, c7 and c8 are given, respectively, by,

c5 = c2 +Ft,w · cosα+Fh (B.10)

c6 = Fn,w · sin2α+ c4 · c3 +Fn,w · c2
3 + c5 · sinα (B.11)

c7 = c4 · sinα+ (c2 − c5) · c3 (B.12)

c8 = c2 · sinα (B.13)

B.2 Failure mode 2

The critical friction coefficient tanφc, expressing the limit equilibrium conditions consider-

ing the failure mode 2, is given by,

tanφc = Ft,w +Ft

Fn,w +Fn
(B.14)
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where Ft,w and Fn,w are the tangential and normal forces acting on the downstream rock

wedge, respectively, and Ft and Fn are the tangential and normal components of the total

forces acting on the dam projected to the sliding plane, respectively, given by,

Ft = Fh · cosα−Fv · sinα (B.15)

Fn = Fh · sinα+Fv · cosα (B.16)

B.3 Failure mode 3

The critical friction coefficient tanφc, expressing the limit equilibrium conditions consider-

ing the failure mode 3, is obtained by solving the following equation,

Ft,w +Ft =
(
Fn,w +Fn

)
· tanφc (B.17)

where Ft,w and Fn,w are the tangential and normal forces acting on the downstream rock

wedge, respectively, and Ft and Fn are the tangential and normal components, respectively,

of the reaction forces at the point contact C, given by,

Ft =Rh,C · cosα+Rh,C · tanφc · sinα (B.18)

Fn = −
(
Rh,C · sinα+Rh,C · tanφc · cosα

)
(B.19)

where Rh,C is the horizontal component of the reaction at the contact point C, given,

considering the equilibrium of the dam body, by,

Rh,C = MB

hw
= Fh · y0 −Fv · (L−x0)

hw
(B.20)

Equation B.17 is then re-written as a quadratic function, whose roots define the the

limit equilibrium conditions through the critical friction coefficient tanφc, given by,

a · tanφ2
c + b · tanφc + c= 0 ⇐⇒ tanφc = −b±

√
b2 − 4 · a · c
2 · a

(B.21)
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where a, b and c are the quadratic polynomial parameters given, respectively, by,

a=Rh,C · cosα (B.22)

b= 2Rh,C · sinα−Fn,w (B.23)

c= Ft,w +Rh,C · cosα (B.24)

B.4 Failure mode 4

The limit conditions are expressed by a null moment around the point C.
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C
Discrete element method

C.1 General considerations

Structural analysis methods, aiming to determine the effects of loads on structures, must

be able to model properly the geometry, support conditions, material properties and

loads. Apart from simple linear elastic models of particular structures, whose structural

response can be obtained analytically using classical mechanic principles and elasticity

theory, numerical methods are used to approximate solutions of large systems of differential

equations generated by the application of those principles to more complex structures.

Finite-element method (FEM) is the most widespread numerical method for structural

analysis. It considers a subdivision of a large model into a mesh of smaller finite-elements

interconnected by nodal points. The solution of the system equilibrium is approximated by

solving a large system of partial differential equations, composed by the simple equations

related to each finite element, that models the structural response. Several authors used

FEM for structural analysis of concrete dams (e.g. Pedro (1977) and Wittke (1990)),

considering equivalent continuum models.

However, concrete dams should not be analysed as independent structures but in-

tegrated in dam-reservoir-foundation systems characterized by the interaction between

materials and the existence of discontinuities which control its structural behaviour, namely

in the case of gravity dams, since they represent low-resistance paths that govern failure
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mechanisms. In the case of the explicit consideration of the discontinuities into discon-

tinuous models, FEM with joint elements can be used for that purpose (Goodman et al.

1968). However, discrete-element method (DEM), which emerged as an alternative to FEM

for applications in the field of rock mechanics (Cundall 1971) since it intends to analyse

especially discontinuous media, has been successfully used for the structural analysis of

concrete dams and dam foundations.

It differs, advantageously in these cases, from FEM more from the numerical than the

conceptual point of view, namely (Lemos 2008; Lemos 2012): (i) contact logic based on

point contacts, suitable for large displacements; (ii) ease of generation of complex block

patterns with the automatic contact detection; (iii) explicit solution algorithms using

dynamic relaxation, for both static and dynamic analysis, instead of matrix solutions; and

(iv) more satisfactory representation of failure modes involving complete block separation.

In the following sections, the basic principles of the method, the software currently

used for dam structural analysis (e.g. Barla et al. 2004; Farinha 2010), its application to

static and dynamic analysis, the contact representation and the solution procedure are

presented.

C.2 Basic principles

In DEM, the structural system consists of an assembly of interacting polygonal blocks.

In the earlier versions, only rigid blocks could be used. Later, the method was extended

to deformable blocks (Cundall et al. 1978), discretizing each block into an internal finite-

element mesh. Hybrid models with both block types are also available.

Nonetheless, rigid block models still have their field of application, being appropriate

for problems involving strong materials or when the installed stress field is not relevant

for the analysis. In these models, deformation is concentrated at the discontinuities, being

even possible to adapt the joint stiffness to account for block elastic deformation, if it is not

negligible. Rigid block models present a significant time-consuming advantage, especially

for dynamic analysis.

For deformable blocks, FEM is applied to solve partial differential equations, given

the boundary conditions, in order to compute nodal displacements, the stress field and

equivalent nodal forces.

The solution algorithm of DEM is based on the integration of the equations of motion
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of each block. In two-dimension analysis, the three equations of motion, related to the

centroid of a rigid block or the nodal points of each finite-element of a deformable block,

are separated in translational equations in the x-y plane expressed by,

m · ü+ c · u̇= f (C.1)

and a rotational equation expressed by,

I · θ̈+ c · θ̇ =M (C.2)

where m is the block mass, c is the damping coefficient, I is the moment of inertia around

z-axis, u and θ are the corresponding displacement and angle of rotation, and f and M

are the forces and moment at the degree-of-freedom, which include the contact forces and

external loads, respectively.

Other innovation of this method is the modelling of mechanical contacts by means of

interaction constitutive laws.

C.3 Software: Universal Distinct Element Code (UDEC)

The developments on DEM, since Cundall (1971), were the basis of the commercial software

named Universal Distinct Element Code (UDEC), for two-dimensional analysis, whose first

version was released in 1980. After several contributions and related studies, continuously

improved versions have been released.

UDEC is intended for analysis of progressive failure and study of the influence of

discontinuities. Therefore, UDEC is ideally suited to study potential modes of failure

directly related to the presence of discontinuous features.

The general features of UDEC are (Itasca 2011):

• Manual and automatic joint generators built to create sets of discontinuities which

represent jointed structures;

• Different material behaviour models are available: (i) Coulomb slip criterion which

assigns elastic stiffness, frictional, cohesive and tensile strengths, and dilation char-

acteristics to a joint; (ii) additional displacement weakening, as a result of loss in
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cohesive and tensile strength at the onset of shear failure, can be included; (iii) contin-

uously yielding joint model simulating continuous weakening behavior as a function

of accumulated plastic shear displacement; (iv) Barton-Bandis joint model; and

(v) additional properties that can be assigned individually.

• Rigid and deformable blocks, with several built-in materials;

• Assumes a two-dimensional plane-strain state;

• Explicit solution algorithm, which considers the central-difference method to inte-

grate the equations of motion, allowing either dynamic or static analysis using the

same calculation scheme;

• Both stress (force) and displacement (velocity) boundary conditions, which may

differ throughout the model, are available;

• Fluid flow through discontinuities and voids can be simulated and mechanical-

hydraulic analysis can be performed with different flow idealisation models;

• Reinforcement and thermal models are available;

• Contains a built-in programming language, FISH, which enables the user to define

new variables and functions, allowing: (i) user-prescribed property variations in the

grid; (ii) implementation of special joint generators; (iii) servo-control of numerical

tests; (iv) specification of unusual boundary conditions, varying in time and space;

and (v) automation of parameter studies.

In UDEC, the internal finite-element discretisation is based on uniform strain triangular

elements. The choice of internal elements with a linear displacement field guarantees the

block boundary to remain a polygonal line which simplifies contact calculations. It also has

the advantage of fitting arbitrary block geometries, making use of well-tested procedures

for automatic generation.

An user-friendly graphical interface is available in the last versions, with an extensive

plotting facility built directly in UDEC. The history plots are especially helpful in moni-

toring the equilibrium or failure state during transient calculations. Data exporting is also

possible which allows the interaction with other post-analysis software.

In this work, UDEC 5.0 (Itasca 2011) is used.
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C.4 Contact representation

The representation of contact between blocks is based on the point contact approach,

i.e. the interaction between blocks is represented by a set of contact points. Contrary to

the joint element approach where the stresses in the joint elements are obtained directly

from displacement differences between adjacent continuum elements, in point contacts

the stress at a point depends solely on the joint displacement at that point, leading to

a discontinuous stress distribution on the joint plane (Lemos 2008). Consequently, the

accuracy of the stress distribution obtained on the joint plane is lower with this approach,

requiring a larger number of contact points for rigorous stress analysis.

Three types of contact are available in UDEC (Figure C.1): vertex-vertex, vertex-

edge and edge-edge. A great advantage of point contacts lies in the handling of large

displacements with the system connectivity automatically updated during a simulation,

due to contact detection technique. Point contacts may be relocated as the vertices move

on the joint plane, and the transition between vertex-to-edge and edge-to-edge interactions

is smooth (Figure C.2), due to the original logic implemented in UDEC of rounding corner

contacts, as one of the contacts remains and its force can vary continuously.

(a) Vertex-vertex.
(b) Vertex-edge.

(c) Edge-edge.

Figure C.1: Types of contact considered in UDEC.

Figure C.2: Transaction between contact types: from vertex-vertex to edge-edge.
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C.5 Static analysis

In static analysis, the aim is to find the final steady-state equilibrium conditions of the

model. For that, in the transient phase, dynamic relaxation algorithms (Underwood 1983)

are typically used in order to eliminate the vibrational response by introducing energy

dissipation, thus allowing the convergence to equilibrium or the development of a failure

mechanism. This leads to the so-called quasi-static solution.

Due to the difference in block and element size and stiffness, artificial damping is

intended to improve the convergence to the final solution, since transient response is

meaningless. For that purpose, high mass-proportional viscous damping is often use, by

replacing the mass and the moment of inertia in the equations of motion (equations C.1

and C.2) by their scaled values (Lemos 2008).

C.6 Dynamic analysis

For dynamic analysis, Rayleigh damping is typically used, composed by mass-proportional

and stiffness-proportional components,

c= α ·m+β · k (C.3)

Optimal convergence is usually achieved by adjusting Rayleigh damping to a minimum

frequency corresponding to the dominant mode in the response. Traditionally, minimum

Rayleigh damping is set to 5% (Figure C.3), as recommended for the lower modes of

concrete gravity dams (Chopra and Chakrabarti 1973).

The mass-proportional component, which affects mostly the lower frequencies, is in-

cluded in the equations of motion. In an explicit algorithm, the stiffness-proportional

component, responsible for damping the higher frequencies, is added to the contact forces

and the element stresses (Lemos 2008).

The reduction of the time step due to the inclusion of the stiffness-proportional damping

may be substantial, leading to excessively high run times. This term is often left out,

specially in deformable block models, which increases the high frequency noise in the

response. Bretas (2012) suggests that the type of damping chosen (mass-proportional,

stiffness-proportional, or Rayleigh damping) depends on the sensitivity of the model to

this parameter. In some cases, the consideration of the mass-proportional damping is the
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ω

ξ ξ = 1
2 ·

(α
ω + β · ω

)

ξ = 1
2 · α

ω

ξ = 1
2 · β · ω

ξ1 = 5%

ω1

Figure C.3: Rayleigh damping definition.

best approach, since it significantly reduces the run time while not affecting considerably

the system response.

C.7 Solution procedures

In order to ensure numerical stability, the time step of an explicit algorithm cannot be

larger than a critical value. This may be a significant drawback in dynamic analysis, as

very stiff joints or thin elements imply small time steps. For deformable blocks, smaller

the maximum dimension of a finite-element, slower became the analysis. On the other

hand, for static problems, scaled damping mitigates the problem, but large contrasts in

stiffness or element size may still cause longer solution times. For that reason, very stiff

blocks should be represented as rigid, and very stiff elastic joints should be attached to

the adjacent blocks.

At each time step, when equations of motion must be solved for time-independent

(static) or time-dependent (dynamic) external forces, the following cycle is repeated: (i) the

application of the equations of motion, defining the differential equations based on the

Newton’s second law, produces new velocities and displacements; and (ii) the application

of the constitutive models of the continuum elements (deformable blocks), interfaces and

contacts, provides new stresses, nodal and contact forces, resulting in unbalanced forces

which causes new velocities and displacements.
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Root-f inding methods

D.1 General considerations

Root-finding methods are iterative procedures that find approximated roots of a continuous

function f (x) which is not expressed in a closed-form.

The root-finding methods are distinguished, according to the concept followed, into:

• Bracketing methods that determine successively smaller intervals (brackets) contain-

ing the root;

• Interpolation methods that replace the original function by low-degree polynomials,

which match the last computed values, to approximate its root.

The number of iterations needed is usually related to the accuracy required for the

approximation of the root and/or the properties of the function.

Some methods for finding the roots of unknown continuous functions are detailed in

the following sections.

D.2 Bracketing methods

D.2.1 General considerations

Bracketing methods are based on the intermediate value theorem which states that, at

least, one root exists if a continuous function f (x) has opposite sign at the end points of
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an interval [a,b], i.e. f (a)/f (b)< 0.

In the following sections, bracketing methods, such as bisection and false position

methods, are detailed.

D.2.2 Bisection method

In the bisection method, the initial bracketing interval [a,b] is successively bisected in equal

subintervals by evaluating the function f (x) at the end and middle points and selecting

the subinterval in which the root must lie.

Although this method presents a slow convergence rate, its main advantages are the

guaranteed convergence and the ability of predicting the necessary number of iterations

N to find the root, given the maximum admissible error ε, such as,

N ≥ log2
(a− b)
ε

(D.1)

D.2.3 False position method

In the false position method, not only the sign but also the values of the function f (x)

computed at the end points of the interval are used. In each iteration, the root of the

function is approximated by the x-intercept of the line that connects f (a) to f (b).

Although this method has a higher convergence rate than the bisection method, im-

provements, such as Anderson & Björk’s (Anderson and Björck 1973), Illinois (Dowell and

Jarratt 1971), and Ridders (Ridders 1979) methods, can be useful in slow-convergence

conditions.

D.3 Interpolation methods

D.3.1 General considerations

Interpolation methods consist in approximate, iteratively, the continuous function f (x) by

a low-degree polynomial whose root is used as an approximation of the root of the original

function.
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D.3.2 Newton-Raphson method

Newton-Raphson method, such as other similar derivative-based methods, needs the ex-

plicit description of the derivative function to estimate a root. The function f (x) is

approximated by its tangent line around the previous guess point whose x-intercept point

is easily computed. Apart from cases which may diverge due to derivative issues, the

method obtains successively better estimates of the root, within an iterative procedure,

given by,

xi = xi−1 − f (xi−1)
f ′ (xi−1) (D.2)

D.3.3 Secant method

In the secant method, the derivative of the function f (x) required in the Newton-Raphson

method is replaced by its finite-difference approximation, i.e. the secant line between two

computed values of f (x).

The estimation of the root, that follows an iterative process based on the two last

computed values, is given by,

xi = xi−1 − f (xi−1) · xi−1 −xi−2
f (xi−1) − f (xi−2) (D.3)

This method requires two initial computed values f (x0) and f (x1) that, unlike the

false position method, do not need to have opposite signs. Consequently, convergence is

not guaranteed.

D.3.4 Steffensen’s method

Steffensen’s method (Steffensen 1933) is similar to Newton-Raphson’s, since both have

quadratic convergence rate, but it does not require the derivation of the function f (x).

Its disadvantage, when compared to the secant method, is that it needs double function

evaluation to estimated the root, in an iterative process, since,

xi = xi − f (xi−1)
g (xi−1) (D.4)

where,

g (xi−1) = f
(
xi−1 + f (xi−1)

)
− f (xi−1)

f (xi−1) (D.5)
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Although the convergence rate is lower, secant method may converge faster than

Steffensen’s since it may need less function evaluations.

D.3.5 Muller’s method

Muller’s method (Muller 1956) replaces the function f (x) by a parabola, i.e. a second-order

polynomial, and takes its x-interception as the approximation of the root. The estimation

of the root, that follows an iterative process based on the three last computed values, is

given by,

xi = xi−1 − 2 · f (xi−1)
w±

√
w2 − 4 · f (xi−1) · f [xi−1,xi−2,xi−3]

(D.6)

where,

w = f [xi−1,xi−2] + f [xi−1,xi−3] − f [xi−2,xi−3] (D.7)

and f
[
xv, · · · ,xv+j

]
denotes divided difference given by,

f
[
xv, · · · ,xv+j

]
=
f
[
xv+1, · · · ,xv+j

]
− f

[
xv, · · · ,xv+j−1

]
xv+j −xv

(D.8)

This method requires three initial computed values f (x0), f (x1) and f (x2).

D.3.6 Inverse quadratic interpolation

In inverse quadratic interpolation, the function f (x) is replaced by an inverse quadratic

function, by applying the Lagrange interpolation formula using the three last computed

points, whose root is given by,

xi = f (xi−2) · f (xi−1)(
f (xi−3) − f (xi−2)

)
·
(
f (xi−3) − f (xi−1)

) ·xi−3+

+ f (xi−3) · f (xi−1)(
f (xi−2) − f (xi−3)

)
·
(
f (xi−2) − f (xi−1)

) ·xi−2+

+ f (xi−3) · f (xi−2)(
f (xi−1) − f (xi−3)

)
·
(
f (xi−1) − f (xi−2)

) ·xi−1

(D.9)

This method also requires three initial computed values f (x0), f (x1) and f (x2). This

method is seldom used by itself since its behaviour depends on the initial values chosen.
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D.3. INTERPOLATION METHODS

D.3.7 Brent’s method

Since inverse quadratic interpolation converges fast, since it get close to the root, but

performs poorly otherwise, Brent (1971) proposed a method that combines the bisection

method, the secant method and inverse quadratic interpolation. Previously, Dekker (1969)

had already suggested the combination of bisection and secant methods, but Brent’s

method also benefits from the inverse quadratic interpolation faster convergence rate in

the vicinity of the root.

During Brent’s method, tests are performed in order to determine which method is

used in the next iteration. Initially, two brackets a and b, with opposite sign, are selected.

A third point c is initially set equal to a. In the iterative procedure, b is interpreted as the

best guess of the root, a is the previous guess, and c is the best guess with opposite sign.

The new guess, computed from inverse quadratic interpolation (if f (a) , f (c)) or secant

method (if f (a) = f (c)) is rejected if it does not lie up to three-quarters or half the way

from b to c, respectively. In that case, the new guess is computed using bisection method.

This process is repeated until convergence.
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