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Abstract 

The homogenization of climate data is of major importance because non-climatic 

factors make data unrepresentative of the actual climate variation, and thus potentially 

bias the conclusions of climatic and hydrological studies. A great deal of effort has been 

made in the last two decades to develop procedures to identify and remove non-climatic 

inhomogeneities. This paper reviews the characteristics of several widely used 

procedures, and discusses the potential advantages of geostatistical techniques. In the 

case study, a geostatistical simulation approach is applied to precipitation data from 66 

monitoring stations located in the southern region of Portugal (1980-2001). The results 

from this procedure are then compared with those from three well established statistical 

tests: the Standard normal homogeneity test (SNHT) for a single break, the Buishand 

range test and the Pettit test. The promising results from the case study open new 

research perspectives on the homogenization of climate time series. 

KEY WORDS: Data quality, Composite reference series, Homogeneity tests, 

Nonparametric tests. 
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1. Introduction 

A homogeneous climate time series is defined as one where variations are caused only 

by variations in climate (Aguilar et al 2003). Non-climatic factors may hide the true 

climatic signal and patterns, and thus potentially bias the conclusions of climate and 

hydrological studies. Frequent factors are: monitoring stations relocations, changes in 

instrumentation, changes of the surroundings, instrumental inaccuracies, and changes of 

observational and calculation procedures. Unfortunately, few long-term climate time 

series are free of irregularities (e.g. Auer et al 2005). Consequently, it is an important 

task to assess the homogeneity of long climate records before they can be reliably used. 

Several techniques have been developed for non-climatic inhomogeneities detection and 

adjustment, i.e. homogenization. If the identified irregularities are due to non-climatic 

factors then adjustments are performed to compensate for the biases produced by the 

inhomogeneities. Since there is not one single best technique to be recommended, the 

following four steps are commonly followed (Aguilar et al 2003): (i) metadata analysis 

and basic quality control; (ii) creation of reference time series; (iii) breakpoint detection; 

and (iv) data adjustment. 

Most of the procedures that have been proposed to identify and remove non-climatic 

inhomogeneities are not proper for immediate application on data with low temporal 

resolution (e.g., daily or hourly data). In fact, well-established statistical methods for 

homogeneity testing sub-monthly precipitation data are lacking (Aguilar et al 2003; 

Auer et al 2005; Wijngaard et al 2003). Furthermore, adjusting daily and hourly data is 

not straightforward, thus the World Meteorological Organization (WMO) makes no 

recommendations regarding adjusting sub-monthly data. As an alternative, the WMO 



 3 

advises that data should be carefully evaluated for the impacts of inhomogeneities, and 

that portions of time series with homogeneity problems be excluded from the analysis 

before using sub-monthly data in long-term climate change analysis (Aguilar et al 

2003). 

This paper reviews the characteristics of the procedures that are most commonly used 

for the homogenization of climate time series, and discusses the potential advantages of 

using geostatistical techniques for inhomogeneities detection and adjustment. First, 

several basic concepts and general issues concerning the homogenization of climate 

data are introduced (section 2). The most commonly used inhomogeneities detection 

procedures are reviewed in section 3. The methodological framework of the 

geostatistical simulation approach is described in section 4, and the case study results 

are summarized in section 5. Finally, in section 6, different homogenization approaches 

are discussed by highlighting their advantages and limitations, and new research 

perspectives are suggested. 

2. Absolute and relative approaches 

Two groups of homogeneity testing techniques can be distinguished and are usually 

referred to as absolute and relative methods. In the first set of procedures, the statistical 

tests are applied to each station data separately. In the second one, the testing 

procedures use records from neighbouring stations (named reference stations) which 

presumably are homogeneous. While both approaches are worthwhile and valid, they 

each have drawbacks. Using only data from an individual station is problematical 

because it is difficult to determine if changes or lack of changes result from non-

climatic or climatic influences (Peterson et al 1998). To overcome this problem, 
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metadata support from station history information is essential for evaluating the breaks 

detected. 

Relative methods intend to isolate the non-climatic influences. They assume that within 

a geographical region, climatic patterns will be identical and that observations from all 

sites within the region will reflect this identical pattern. The data collected at all sites 

within the same climatic region should be highly correlated, have similar variability, 

and differ only by scaling factors and random sampling variability. Problems arise when 

the inhomogeneities in the climate data series are caused by simultaneous changes in the 

observational network, such as simultaneous changes in the measuring technique, as 

relative tests become insensitive since all series are affected at the same time 

(Tuomenvirta, 2001; Wijngaard et al 2003). Furthermore, ambiguous conclusions are 

possible when several neighbouring stations do have inhomogeneities themselves 

(Boissonnade et al 2002; Reeves et al 2007; Tayanç et al 1998). 

The most common approach for selecting reference stations is to form Pearson 

correlation matrices between the candidate site and neighbouring stations' data, and to 

take as reference the highest correlated ones (e.g., Boissonnade et al 2002; Tayanç et al 

1998). Other approaches extract principal components from the whole data network, or 

use an independent data source thought to be homogeneous (Aguilar et al 2003). Some 

procedures search for breakpoints or artificial trends in a composite reference series (or 

alternatively in the data when a suitable composite series cannot be built), while some 

statistical tests compare the candidate data series with data from reference stations (e.g., 

tests for the difference between medians). 

Using composite reference series – ratio series for precipitation and difference series for 

temperature – is a standard procedure in the detection of non-climatic homogeneities. 
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The assumption from this approach is that the composite reference series includes the 

regional climate trends and fluctuations present in the data of the candidate, but does not 

contain discontinuities itself during the period of analysis of the discontinuity in the 

candidate station. Composite reference series are computed as a weighted average of 

data from neighbouring stations by using some measure of statistical similarity (usually 

the correlation coefficient or an inverse function of the distance) between them. Romero 

et al (1998) proposed a combined use of those measures in order to increase the 

contribution of the records from closer stations, both in spatial and correlation terms. 

Alexandersson and Moberg (1997) proposed the construction of ratio (difference) 

reference series, which are generally used in precipitation (temperature) studies. 

The most usual approach to obtain adjustment factors is to calculate separate averages 

on the difference or ratio series for the two sections defined by a breakpoint (Aguilar et 

al 2003). When abrupt changes are identified in the time series, the obtained means are 

compared by calculating their ratio or difference and the obtained factor is applied to the 

inhomogeneous part. When dealing with gradual trends or breakpoints superimposed on 

trends, the inhomogeneous section is de-trended using the slope calculated on the 

difference or ratio time series. 

3. Review on homogenization procedures 

The approaches underlying the homogenization techniques are quite different and 

typically depend on the type of element (temperature, precipitation, pressure, 

evaporation, etc.), the temporal resolution of the observations (annual, seasonal, 

monthly or sub-monthly), the availability of metadata (station history information) and 

the monitoring station network density (spatial resolution). 
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Several widely used techniques for inhomogeneities detection and homogenization will 

be summarized. A few descriptions and references were obtained from Aguilar et al 

(2003) and Peterson et al (1998). Comparisons between procedures are provided by 

Ducré-Robitaille et al (2003) and Reeves et al (2007). The listing of methods is 

presented in alphabetical order, without distinguishing between absolute and relative 

procedures, since absolute tests can also be used in relative approaches by applying the 

test to composite reference series. 

Subjective methods, such as the double-mass analysis (Kohler 1949), will not be 

presented, because they should only be used for exploratory analysis. Other common 

homogenization procedures referred in the literature, but not described here, are the 

Craddock test (Craddock 1979), the Potter’s method (Potter 1981), and the well known 

Wilcoxon-Mann-Whitney test (Mann and Whitney 1947; Wilcoxon, 1945). The 

procedures summarized subsequently are intended to illustrate the variety of approaches 

that are commonly used. The literature is replete with techniques, but most of them are 

similar or variations of the methodologies described here. 

3.1. Buishand range test 

The Buishand range test (Buishand 1982) is a parametric test and supposes, under the 

null hypothesis, that the values of the testing variable are independent and identically 

normally distributed. Under the alternative hypothesis, it assumes that a step-wise shift 

in the mean (a break) is present. This test is capable of locating the period (month or 

year) where a break is likely, but it is more sensitive to breaks in the middle of a time 

series (Wijngaard et al 2003). 
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3.2. Kruskal-Wallis test 

The Kruskal-Wallis test (Kruskal 1952; Kruskal and Wallis 1952) is a well known 

nonparametric (or distribution free) test used to compare two or more independent 

groups of sampled data. This test is an alternative to the independent group ANOVA F 

test (which compares the means of several groups), when the assumption of normality is 

not met. One of the assumptions of the Kruskal-Wallis test is that the observations are 

drawn randomly and independently from their respective populations. For a two-tailed 

test, the alternative hypothesis is that not all of the samples come from identical 

populations. If all of the population distributions have the same shape (normal or not), 

these hypotheses are also sometimes written as testing the equality of the central 

tendency of the populations (i.e. testing whether all the independent samples have been 

drawn from populations possessing equal medians). The Kruskal-Wallis test gives little 

information about the probable date for a shift in the median and no information about 

the magnitude of the break. 

3.3. Mann-Kendall test 

An assumption of trend tests is that trends are consistently increasing or decreasing, 

otherwise known as monotonic changes. The nonparametric Mann-Kendall test is 

traditionally used to test randomness against (monotonic) trend. Since the first proposals 

of the test by Mann (1945) and Kendall (1975), the test was extended in order to include 

seasonality (Hirsch et al 1982; Hirsch and Slack 1984), multiple time series 

(Lettenmaier 1988) and covariates (Libiseller and Grimvall 2002). Yue and Wang 

(2004) discuss several approaches that use the effective sample size to modify the test 

statistic in order to eliminate the effect of serial correlation. 



 8 

3.4. Multiple analysis of series for homogenisation (MASH) 

The MASH method was developed in the Hungarian Meteorological Service 

(Szentimrey 1994, 1999), and it is a relative homogeneity test procedure that does not 

assume that the reference series are homogeneous. Possible break points and shifts can 

be detected and adjusted through mutual comparisons of series within the same climatic 

area. The role of series (candidate or reference series) changes step by step in the course 

of the procedure. MASH is a multiple break points detection technique that takes into 

account the significance and the efficiency of the test. Moreover, it provides not only 

estimated break points and shift values, but the corresponding confidence intervals as 

well, and hence the series can be adjusted by using the point and interval estimates. 

Another feature of MASH is that an additive or a cumulative model can be used 

depending on the climate elements (e.g. temperature, precipitation). An interesting 

feature of the software developed for this method (MASH system) is that the probable 

dates of break points provided by metadata information can be used automatically. In 

case of having monthly series for all the 12 months, the MASH system also allows the 

monthly, seasonal and annual series to be homogenized together. More recently, 

Szentimrey (2003) introduced in the MASH system a new procedure to evaluate the 

homogenization results. The verification procedure evaluates the quality of the 

homogenized series by the joint comparative mathematical examination of the original 

and the homogenized series systems. 

3.5. Pettit test 

Pettit (1979) developed a nonparametric test that is capable of locating the period 

(month or year) where a break is likely. The null hypothesis is that the data are 

independent, identically distributed random quantities and the alternative is that a step-

wise shift in the mean is present. The test statistic is related to the Mann-Whitney 
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statistic. Like other tests, the Pettit test is more sensitive to breaks in the middle of a 

time series (Wijngaard et al 2003). 

3.6. Regression-based methods 

This section reviews several regression-based techniques that have been proposed for 

the homogenization of climate time series. A two-phase regression technique for 

detecting a change point in the trend of a time series is described by Solow (1987). In 

this method, the regression lines before and after the year that is being tested are 

constrained to meet at that point. Easterling and Peterson (1995) developed a variation 

on this technique in which the regression lines are not constrained to meet, and where a 

linear regression is fitted to the part of the reference series before the year being tested 

and another one after the year being tested. This test is repeated for all years of the time 

series (with a minimum of 5 years in each section), and the year with the lowest residual 

sum of the squares is considered the year of a potential discontinuity. The time series is 

then divided into two, at that year, and both sub-series are similarly tested. This 

subdividing process continues until no significant breaks are found or the time series are 

too short to test. Reeves et al (2007) discuss a number of variants of the two-phase 

regression technique. 

Allen et al (1998) describe a procedure named ellipse test, or accumulated residual 

method, which uses the cumulative residuals from the linear regression between the 

candidate series (dependent variable) and data from a neighbouring station (independent 

variable), or the average observations of several surrounding stations inside the same 

climatic region. The candidate series can be considered homogeneous if the cumulative 

residuals are not biased. The bias hypothesis can be tested using an ellipse defining the 

confidence limits. Plotting the cumulative residuals against time, using the time scale 
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(interval) of the variable under analysis, the accumulated residual curve is obtained. If 

all the cumulative residuals lie inside the ellipse then the hypothesis of homogeneity is 

not rejected for the significance level considered. This test is capable of locating the 

period (year) where a break is likely to occur. Costa and Soares (2006) proposed an 

extension of this method that takes into account the contemporaneous relationship 

between several candidate series from the same climatic area. Instead of using the 

residuals from a linear regression model, the proposed technique uses the residuals from 

a seemingly unrelated regression equations (SUR) model, thus named SUR+Ellipse test. 

Vincent (1998) proposed a multiple linear regression approach based on the application 

of four regression models to determine whether the tested series is homogeneous, has a 

trend, a single step, or trends before and/or after a step. The dependent variable is the 

series of the candidate station and the independent variables are the series of a number 

of surrounding stations. The first model determines whether the candidate series is 

homogeneous (in this case, the remaining models are not used). The data series is 

considered homogeneous if the residuals from the regression are independent normal 

variables with zero mean and constant variance. If there is significant autocorrelation in 

the residuals (assessed by generalized Durbin-Watson tests and by the correlogram), 

then a second regression is calculated in which a linear trend is included. If 

autocorrelation in the residuals of this second model exist, then the model is discarded 

and a third model is examined. The third regression is calculated for sequential 

increases in the time at which a step can occur. The minimum residual sum of squares 

from these regressions identifies the time of a break. If autocorrelations exist in the 

residuals from the regression with the step, a fourth model is considered. The last 

regression accounts for trends before and after the identified step. The existence of trend 

provides an indication of multiple inhomogeneities in the candidate series. In this case, 



 11 

the series is subdivided at the position in time of the identified step and each segment is 

tested separately starting with the first model. The estimated parameters corresponding 

to steps and trends provide the magnitude of each inhomogeneity. Adjustments are then 

applied to bring each segment into agreement with the most recent homogeneous part of 

the series. The method proposed by Vincent (1998) has been recently improved by 

Reeves et al (2007). 

3.7. Standard normal homogeneity test (SNHT) 

The standard normal homogeneity test (Alexandersson 1986) is one of the most widely 

used homogeneity tests. The null hypothesis is that the data are independent, identically 

normally distributed random quantities and the alternative is that a step-wise shift in the 

mean (a break) is present. The SNHT is a likelihood ratio test that is usually performed 

on composite reference series. There are now variations of this test to account for more 

than one discontinuity, testing for inhomogeneous trends rather than just breaks, and 

inclusion of change invariance (Alexandersson and Moberg 1997). The SNHT for a 

single break is capable of locating the period (month or year) where a break is likely, 

and detects breaks near the beginning and the end of a series relatively easily (Ducré-

Robitaille et al 2003; Wijngaard et al 2003). 

3.8. Von Neumann ratio test 

Von Neumann (1941) proposed a nonparametric test where the statistic is defined as the 

ratio of the mean square successive (year-to-year) difference to the variance. The null 

hypothesis is that the data are independent, identically distributed random quantities and 

the alternative is that the time series is not randomly distributed. Under the null 

hypothesis of a constant mean, the expected value of the test statistic is equal to two 
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(Buishand, 1982). The Von Neumann ratio test is not location specific, which means 

that it gives no information about the date of the break. 

3.9. Wald-Wolfowitz runs test 

The Wald-Wolfowitz runs test (Wald and Wolfowitz 1943) is a well-known 

nonparametric test for randomness. The null hypothesis is that the process that generates 

the set of numerical data is random (with respect to the median) over time. For the two-

tailed test, the alternative hypothesis is that the data set is not randomly distributed. For 

one of the one-tailed tests, the alternative hypothesis is that a trend effect is present in 

the data, whereas for the other one the alternative hypothesis is that a systematic or 

periodic effect is present in the data. This test is sensitive to shifts and trend, but gives 

little information about the probable dates for breaks (Tayanç et al 1998). 

4. Geostatistical simulation approach 

A geostatistical approach, using direct sequential simulation (DSS), was proposed by 

Costa et al (2008) for inhomogeneities detection. The DSS algorithm (Soares 2001) is 

used to calculate the local probability density function (pdf) at a candidate station's 

location, using spatial and temporal observations only from nearby reference stations, 

without taking into account the candidate's data. Afterwards, the local pdf from each 

instant in time (e.g., year) is used to verify the existence of irregularities: a breakpoint is 

identified whenever the interval of a specified probability p (e.g. 0.95), centred in the 

local pdf, does not contain the observed (real) value of the candidate station. In practice, 

the local pdfs are provided by the histograms of simulated maps, thus this rule implies 

that if the observed (real) value lies below or above the pre-defined percentiles of the 

histogram of a given instant in time then it is not considered as homogeneous. If 
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irregularities are detected in a candidate series, the time series can be adjusted by 

replacing the inhomogeneous records with the mean, or median, of the pdf(s) calculated 

at the candidate station's location for the inhomogeneous period(s). The methodology of 

the geostatistical simulation approach can be summarized as follows. 

4.1. Methodological framework 

Let {z(u, ti): =0, 1,…,n−1; i=1,…,T} be the set of climate data measured at n 

locations u and in ti time instants (e.g., years). The n monitoring stations do not have to 

be all informed at the same T time instants (i.e., a number of z-values can be missing). 

Let {z(u0, ti): i=1,…,T} denote the candidate time series. The set of climate 

observations correspond to outcome values (realizations) of a spatiotemporal random 

variable Z(u, t) that can take a series of values at any location in space u and instant in 

time t according to a probability distribution. 

Using the set of time series corresponding to the reference stations, {z(u, ti): 

=1,…,n−1; i=1,…,T}, the DSS algorithm is applied in order to obtain a set of m 

equally probable realizations of Z(u, t) at the candidate station's location and all instants 

in time: {zk(u0, ti): l=1,…,m; i=1,…,T}. For a given instant in time t0, the set of 

simulated values {zk(u0, t0): k=1,…,m} defines the local histogram of the candidate 

station at location u0 for that instant t0. The corresponding empirical cumulative 

distribution function gives the estimated probability that the variable Z at location u0 in 

space and instant t0 in time is no greater than any given threshold z: 

F*(u0, t0; z)=Prob*{Z(u0, t0) ≤ z}. 
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An inhomogeneous record z(u0, t0) is identified if the interval of a specified probability 

p (e.g. 0.95), centred in the estimated local pdf of the candidate station for the instant t0, 

does not contain the observed z(u0, t0) value: 

   
2

p1
1)t,u(z)t,u(Z*obPror

2

p1
)t,u(z)t,u(Z*obPr 00000000

−
−

−
  (1) 

The proposed algorithm assumes that the global pdf used to generate realizations of 

zk(u0, ti) by DSS, is representative of all monitoring stations – the candidate and the 

neighbours. In those situations where a candidate monitoring station has a pdf clearly 

different from the global pdf – local trends induced by topography or proximity to coast 

– then direct sequential simulation can be implemented with local distributions. 

4.2. Direct co-simulation with local distributions 

Among the sequential algorithms of stochastic simulation, one advantage of direct 

sequential simulation and co-simulation is precisely the use of original variables instead 

of the transformed Gaussian (sequential Gaussian simulation) or indicator (sequential 

indicator simulation). Direct sequential simulation and co-simulation have been applied 

in several soil and air quality characterization studies (e.g., Carvalho et al 2006; Horta 

and Soares 2008). The use of original (non-transformed) variables and the generation of 

a simulated value by re-sampling the global pdf, did open the door to new ways of this 

re-sampling approach. 

Carvalho et al (2006) propose to re-sample local distributions, taken from a secondary 

image, instead of the global pdf, in an application of data fusion of satellite images. 

Horta and Soares (2008) propose the re-sampling of joint distributions for co-simulation 

of a set of variables of a contaminated site. In this case, the first covariate Z1(u) is 

simulated by direct sequential simulation at the location u. Based on previously 



 15 

simulated values z1
k(u0), the conditional pdf Fz[Z2(u) | Z1(u)=z1

k(u0)] are calculated 

from the bi-distribution Fz1,z2
[Z1(u), Z2(u)]. After estimating the local mean and 

variance, at each location u0, identified with the estimated simple collocated co-kriging 

and corresponding estimation variance: [z2(u0)]sck  and σ2
sck(u0), the simulated value 

z2
k(u0) is re-sampled from the conditional pdf Fz[Z2(u) | Z1(u)=z1

k(u0)] as in the usual 

direct sequential procedure (Soares 2001). 

In this study, to obtain a set of m equally probable realizations of Z(u, t) at the 

candidate station's location u0 at a time period t0, one suggest to re-sample the local pdf 

F(u0; z) = Prob{Z(u0)≤z}, rather than the global pdf. Hence, this new version of DSS 

with local distributions can be summarized as follows: 

i) For each time period ti, estimate the local cumulative distributions 

F(u0; z) = Prob{Z(u0)≤z}, at each candidate stations location u0, from past 

experimental data z(u0, tj; j<i) and/or from experimental data z(uα, t0) from a 

local neighborhood. 

ii) At the location u0 and time period t0, estimate the local mean and variance, 

identified with simple kriging and corresponding estimation variance 

conditioned to other experimental data z(uα, t0) ≠ z(u0, t0) and previous 

simulated values zk(u0, t0). 

iii) The simulated value zk(uα, ti) is re-sampled from the local pdf F(uα, z) as in the 

usual direct sequential procedure (Soares 2001). 
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5. Case study results 

The inhomogeneities detection procedures used in the case study followed the hybrid 

approach proposed by Wijngaard et al (2003) for the European Climate Assessment 

(ECA) dataset, and used as testing variable the number of wet days per year, where a 

wet day is defined as a day with at least 1 mm of precipitation. For illustration purposes, 

the geostatistical simulation approach was applied to the testing variable data from 4 

candidate stations using data from 62 surrounding stations (reference stations) located in 

the southern region of Portugal (Fig. 1). The daily precipitation series were compiled 

from the ECA dataset and the National System of Water Resources Information 

(SNIRH – Sistema Nacional de Informação de Recursos Hídricos) database, and are 

available through free downloads from the ECA website (http://eca.knmi.nl) and the 

SNIRH website (http://snirh.inag.pt), respectively. 

Some authors run the relative tests once, relying that the reference series are 

homogeneous, while others engage in an iterative procedure in which all the stations in 

the data set are seen consecutively as candidates and references (Aguilar et al 2003). 

Following the later methodology, the local pdfs of each year of the candidate series, 

derived from 50 simulated maps in 1 km × 1 km grid cells, were computed using data 

not only from the 62 references but also from the other 3 candidate stations. The 

analysed period was 1980-2001. The geostatistical simulations used a spherical 

semivariogram model fitted to the testing variable data from the complete set of 66 

monitoring stations: the spatial dimension was modelled using an isotropic 

semivariogram with a range of 72 km, and the temporal one with the range equal to 1.8 

years. 
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The results from the geostatistical simulation procedure are compared with the results 

from three well-established homogeneity tests that used two reference series for each 

candidate and the full length of the series. The SNHT, Pettit and Buishand range tests 

were applied to composite (ratio) reference series (Alexandersson and Moberg 1997), 

which were derived from the testing variable data. Further methodological details and 

additional results from this approach are described by Costa and Soares (2006). 

The geostatistical approach allowed identifying several inhomogeneities by comparing 

the observed (real) values of the candidate series, for each year, with the 2.5% and the 

97.5% percentiles of the corresponding histograms of 50 simulated maps (p=0.95 in Eq. 

1). This methodology identified not only the same break years (or within one-year 

range) as the other three testing procedures, but also revealed inhomogeneities in other 

years that were not detected by any of the three statistical tests at a 5% significance 

level. 

For Aljezur (SNIRH 30E.01) station, the four approaches considered the series as 

homogeneous. The series from Beja (ECA 666) was considered as homogeneous by the 

three statistical tests, whereas the geostatistical approach identified a break in 1991. For 

Alferce (SNIRH 30G.01) station, the SNHT concluded the series as homogeneous, but 

the Buishand and Pettit tests detected a break in 1984. Similarly, the geostatistical 

approach identified a breakpoint in 1983. In fact, at Alferce, the minimum simulated 

realization of the annual wet day count in 1983 was equal to approximately 33 days, 

whereas the observed value for this series was 30 days, thus a breakpoint was detected 

in this year. 

The candidate series from Santiago do Escoural (SNIRH 22H.02) was considered as 

inhomogeneous by all techniques: the SNHT detected a break in 1989, the Buishand 
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and Pettit tests identified a breakpoint in 1988, and the geostatistical technique detected 

breaks in 1987, 1988 (Fig. 2a) and 1996 (Fig. 2b). At Santiago do Escoural, the 

maximum simulated realization of the annual wet day count in 1987 was equal to 89 

days, whereas the observed value was 91 days, so a break was detected in 1987 by the 

geostatistical simulation approach. 

All break years identified by the three well established statistical tests considered were 

also detected by the new technique. Moreover, the geostatistical technique allowed for 

the identification of breaks near the end of the series that were not detected by the other 

methods. These promising results indicate the geostatistical simulation approach as a 

valuable tool for inhomogeneities detection in climate time series. 

6. Discussion and perspectives 

More than one undocumented inhomogeneity may be present in a climate time series. In 

the ideal case, all possible breakpoints should be identified jointly before their mean 

shift magnitudes are estimated (Reeves et al 2007). However, the number of multiple 

breakpoints detection procedures is limited, thus this is an active current area of 

statistical research (Reeves et al 2007). Consequently, the tests for single break 

detection are some times used iteratively by systematically dividing the tested series 

into smaller segments when a break is detected, and then performing the test on those 

segments. Techniques that use series from surrounding stations, some times run the test 

once, relying the reference to be homogeneous, or engage in an iterative procedure in 

which all stations in the data set are seen consecutively as candidates and references 

(Aguilar et al 2003; Auer et al 2005). Procedures based on test iteration such as those 

are powerful but computationally intensive, and thus can be time consuming and 

exacting work. 
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The multiple analysis of series for homogenisation (MASH) method seems to be one of 

the most comprehensive procedures for homogenization, although the MASH system 

may not be readily available for many researchers. Wijngaard et al (2003) state that, 

generally, a combination of statistical methods and methods relying on metadata 

information is considered to be most effective to track down inhomogeneities. Menne 

and Williams (2005) evaluated three hypothesis test statistics to ascertain whether 

multiple tests can be combined to improve overall confidence in undocumented 

inhomogeneities detection. These authors also evaluated different composite reference 

series formulations. Using Monte Carlo case studies, Menne and Williams (2005) 

concluded that for reasonably well correlated time series and provided that the 

references are homogeneous, the choice of reference series formulation has relatively 

little impact on candidate series inhomogeneities detection skill and, consequently, the 

choice of the test statistic has a greater impact. However, Menne and Williams (2005) 

argue that those circumstances are probably rare in practice, thus the choice of reference 

series formulation has implications that are more important in breakpoints detection 

than the choice of the test statistic. 

In fact, the common period of observations between the candidate series and time series 

from neighbouring stations might be too short to properly select and weight the 

individual series, and thus construct a reliable composite reference series. Moreover, if 

too many distant (or less correlated) neighbouring stations are used, the resulting 

reference may not reflect properly the true climatic signal of the candidate station 

(Boissonnade et al 2002). These difficulties may increase dramatically with the increase 

in spatial variability of the data caused by the inherent variability of the element (e.g. 

precipitation), the time series resolution (e.g. monthly data) or the network location (e.g. 

Mediterranean region). 
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Nonparametric tests are not as efficient or powerful as the equivalent parametric 

procedures, provided the underlying assumptions are satisfied, because they have less 

information to use to determine significance. For this reason, the Normal assumption is 

usually relaxed for annual climatic data and parametric tests, such as the SNHT, are 

sometimes preferred. Most of the statistical procedures, including nonparametric tests, 

require serially independent data. When sample data are serially correlated, the presence 

of serial correlation in time series will affect the ability of the tests to correctly assess 

the significance of inhomogeneities detection. However, it is a standard procedure to 

relax this hypothesis for annual data. The autocorrelation assumption, while acceptable 

for some annual climate series, is not realistic for daily or monthly series, where there is 

much empirical evidence of autocorrelation (Reeves et al 2007). 

Both parametric and nonparametric tests, described before, look at one or a few of the 

characteristics of a frequency distribution. These characteristics do not include 

nonlinear effects nor do they consider non-climatic influences that affect data in a 

nonuniform manner, such as only during certain weather events, seasons, etc. The daily 

data may reflect more of a mixture of populations, and are more likely to be affected by 

nonlinear and nonuniform weather events than data that are averaged over a longer time 

interval. In order to overcome these difficulties, the homogenization of high temporal 

resolution climate databases is usually performed by using traditional procedures with 

monthly or annual totals, or other variables derived from the daily series (e.g., 

Wijngaard et al 2003; Feng et al 2004). 

As stated before, further investigation is required to develop procedures for the 

homogenization of sub-monthly climate data. The geostatistical simulation approach 

seems to be a very promising procedure for this research field, as kriging techniques 

have proven to succeed in the estimation of missing daily precipitation records (e.g., 
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Kyriakidis et al 2004; Teegavarapu and Chandramouli 2005). Moreover, multivariate 

simulation algorithms might be used for the homogenization of highly variable 

elements, such as precipitation, making use of information from explanatory 

physiographic variables (e.g. elevation). Further research on this subject is clearly 

required. 

The geostatistical simulation approach has also a number of potential advantages over 

the traditional approaches used for the homogenization of data with lower temporal 

resolution. Geostatistical techniques allow dealing with the problem of missing values 

and varying availability of stations through time, by using different sets of neighbouring 

stations at different time periods (years, months, etc.), and by including shorter and non-

complete records. Additionally, the geostatistical approach avoids the iterative 

construction of composite reference series because it increases the contribution of 

records from closer stations, both in spatial and correlation terms, by accounting for the 

joint spatial and temporal dependence between observations. Multiple breaks can be 

detected simultaneously, thus this method might be less time consuming than other 

testing techniques that are used iteratively. Another advantage is that the geostatistical 

approach seems to be able to identify breakpoints near the start and end of the time 

series, while traditional approaches have less power in detecting them (Aguilar et al 

2003). 

The inherently high (temporal and spatial) variability of precipitation makes homogenization of 

precipitation records more difficult to accomplish than other elements (e.g. temperature). 

Therefore, it is reasonably intuitive that the number of simulated realizations, used by the 

geostatistical approach to infer the local probability density functions (pdfs), should be 

higher for precipitation data than for temperature records. But how many simulated 

realizations should be used to accurately infer the local pdfs? This and other issues 
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require further investigation and open new perspectives on the homogenization of 

climate data. 
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Figures’ captions 

Figure 1 Locations of the 66 monitoring stations in the southern region of Portugal; 

candidate stations are marked with pentagons 

Figure 2 Histograms of the 50 simulated realizations of the annual wet day count at 

Santiago do Escoural location for 1988 (a) and 1996 (b), computed without data from 

Santiago do Escoural (the real values are 86 days in 1988, and 96 days in 1996) 

 


