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Resumo 

O envelhecimento é o principal fator de risco para o desenvolvimento da doença de Parkinson (DP), 

que se caracteriza pela degeneração progressiva dos neurónios dopaminérgicos da substantia nigra 

pars compacta que projetam para o estriado, levando à depleção da dopamina estriatal e, 

consequentemente, às disfunções motoras tipicamente observadas. A patogénese da DP não é 

totalmente compreendida, mas a neuroinflamação mediada pela microglia parece contribuir para a 

degeneração dopaminérgica. A Klotho é uma proteína antienvelhecimento que prolonga o tempo de 

vida, protege os neurónios do hipocampo e aumenta a cognição. Ela possui propriedades anti-

inflamatórias nos rins; porém não existem dados relativos a esse efeito no sistema nervoso central, 

mais propriamente na via nigrostriatal. Assim, obtivemos culturas primárias de microglia do 

mesencéfalo ventral e avaliámos o efeito da Klotho na reatividade microglial induzida pelo 

lipopolissacarídeo (LPS). Os resultados demonstraram que a Klotho inibe a expressão de iNOS, 

libertação de NO e atividade fagocítica induzidas pela exposição a LPS. Os recetores que poderão 

mediar este efeito anti-inflamatório não são conhecidos e foram alvo de estudo preliminar neste 

trabalho. Finalmente, no sentido de avaliar a relevância deste efeito anti-inflamatório da Klotho na 

neuroprotecção dopaminérgica exercida por esta proteína, procedemos à depleção da microglia numa 

cultura mista de neurónios-glia do mesencéfalo ventral. No entanto, tal depleção não foi eficiente não 

nos permitindo, por isso, inferir se o efeito anti-inflamatório da Klotho contribui para o seu papel 

neuroprotetor. 

Os resultados apresentados neste trabalho mostram, pela primeira vez, que a Klotho é capaz de 

modular a reatividade microglial no mesencéfalo ventral podendo ser um potencial alvo terapêutico para 

o controlo da neuroinflamação associada à DP. 
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Abstract 

Ageing is the primary risk factor for the development of Parkinson’s disease (PD), which is characterised 

by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta 

projecting to the striatum, leading to the depletion of striatal dopamine and, consequently, to the motor 

dysfunction typically observed. PD pathogenesis is not fully understood, but microglia-mediated 

neuroinflammation seems to contribute to dopaminergic neurodegeneration. Klotho is an anti-ageing 

protein that extends lifespan, protects hippocampal neurons and enhances cognition. It has anti-

inflammatory properties in the kidney; however, there are no reports regarding this effect in the central 

nervous system, namely in the nigrostriatal pathway. Therefore, we obtained primary microglia cultures 

from the ventral midbrain and evaluated the effect of Klotho on LPS-induced microglial reactivity. The 

results showed that Klotho inhibits the LPS-induced iNOS expression, NO release and phagocytic 

activity. The receptors that may mediate Klotho’s anti-inflammatory effect are unknown and were further 

explored in this work. Finally, in order to evaluate the contribution of Klotho’s anti-inflammatory effect in 

its ability to protect dopaminergic neurons, we intended to eliminate microglia from a ventral midbrain 

neuron-glia mixed culture. However, microglia depletion was not effective which did not allow us to infer 

if Klotho’s anti-inflammatory effect contributes for its neuroprotective role. 

The results presented in this work show, for the first time, that Klotho is able to modulate microglial 

reactivity in the ventral midbrain, suggesting that it could be a potential therapeutic target for the control 

of neuroinflammation associated with PD. 
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1. Introduction 

1.1. Parkinson's disease 

Neurodegenerative diseases (NDD) are a heterogeneous group of chronic and progressive diseases 

characterized by a slow and gradual loss of neurons in discrete areas of the central nervous system 

(CNS), leading to disruption and progressive loss of specific functions associated with the affected CNS 

region, such as motor coordination, mobility, memory and cognition [1]. Due to genetic, environmental 

and endogenous factors, several processes, such as abnormal protein degradation and aggregation, 

oxidative stress, bioenergetic and mitochondrial dysfunctions, fragmentation of the neuronal Golgi 

apparatus, axonal transport disruption, alterations of molecular chaperones, dysfunction of 

neurotrophins, neuroinflammation, among others, can lead to neuronal loss in these diseases [2]. NDD 

such as Alzheimer's disease, Parkinson's disease (PD) and amyotrophic lateral sclerosis occur mainly 

in the later stages of life, with ageing being the major risk factor for the development of these 

diseases [3]. 

PD’s prevalence has been increasing and is currently the second most prevalent neurodegenerative 

disease, right after Alzheimer's disease, being the most common movement disorder [4, 5]. In 

epidemiological terms, PD has a prevalence of approximately 0.2% of the general population, reaching 

about 1% in people over 60 years of age, and increasing to about 4% in the highest age groups [5]. 

Gender also seems to influence, with several studies reporting higher incidence in male subjects at a 

ratio of 2:1 [6], possibly due to the neuroprotective effects of estrogens [7]. 

James Parkinson was the first to clinically characterize the pathology by several motor changes, in the 

19th century, being later deepened by Jean-Martin Charcot [8]. The main motor symptoms are tremor at 

rest, muscle stiffness, bradykinesia and postural instability, and usually occur asymmetrically [9]. 

Although PD is considered a movement disorder, and motor symptoms dominate the clinical picture, a 

variety of non-motor symptoms, which are undervalued and can anticipate motor symptoms, are also 

seen in patients, such as autonomic dysfunctions, cognitive and sensory deficits, psychiatric disorders, 

abnormal fatigue and sleep disturbances [10]. 

This pathology has an incidence of 10 to 20 cases per 100,000 people per year [5]. However, the existing 

treatment is merely symptomatic and ineffective at stopping the neurodegenerative process. Since the 

1960’s, the focus of the therapy at PD’s early stages has been the use of drugs such as dopamine 

replacement or supplementation and direct stimulation of its receptors [11]. Even so, anticholinergics 

and enzyme inhibitors, such as dihydroxyphenylalanine (DOPA) decarboxylase, monoamine oxidase B 

(MAO-B) and catechol-ortho-methyl transferase (COMT), have proven to be an effective alternative in 

improving motor symptoms [7, 12]. Among all the pharmacological alternatives, L-3,4-

dihydroxyphenylalanine (L-DOPA or levodopa) is the most frequently used. However, its prolonged use 

is often accompanied by motor complications, which include motor fluctuations and L-DOPA-induced 

dyskinesia, being required a posterior dosage adjustment or combination with other dopaminergic 

agonists, such as apomorphine, in order to control adverse symptoms [13]. However, although some 

PD’s motor dysfunctions such as tremors and dyskinesia can be alleviated recurring to this therapy, 

postural instability and non-motor symptoms, namely neuropsychiatric disorders, are less sensitive and 

require other approaches. Recent research is focusing on addressing different non-pharmacological 
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strategies, recurring to deep brain stimulation, repetitive transcranial magnetic stimulation, gene therapy 

and cell replacement. Even more, neurotrophic and anti-inflammatory approaches have been suggested 

as neuroprotective therapies [14-16]. 

 

1.1.1. Neuropathology of Parkinson's disease 

Neuropathologically, PD is characterized by the progressive loss of dopaminergic (DA) neurons of the 

substantia nigra (SN) pars compacta of the midbrain. These DA neurons project their axons mainly into 

the striatum (caudate-putamen), forming the nigrostriatal pathway. It is in the striatum that the depletion 

of dopamine occurs as a consequence of the degeneration of DA terminals, giving rise to the previously 

mentioned motor symptoms. First symptoms appear when the dopamine levels in the striatum are 

reduced by 80% or when 60% of the nigrostriatal DA neurons are lost [17]. Since the nigrostriatal 

pathway contains large amounts of neuromelanin, the accentuated loss of these neurons induces 

depigmentation of the SN pars compacta, which is characteristic of this disease [18] (Figure 1.1). 

Figure 1.1 Neuropathological characteristics of PD. Schematic representation of normal nigrostriatal pathway (A) 
and characteristic of PD (B). The photographs show a pigmentation of the SN pars compacta (SNpc) in a healthy 
subject, resulting from the presence of neuromelanin in DA neurons, and a depigmentation in a PD patient. Adapted 

from Dauer and Przedborski [17]. 
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In addition to DA neurons of the nigrostriatal pathway, other neurotransmitter systems, such as 

cholinergic, adrenergic and serotonergic, are also affected and cell loss is seen in other nuclei of the 

brainstem and cortex, being a major cause of non-motor symptoms [19]. 

This pathology is also characterized by the presence of neuronal eosinophilic cytoplasmic inclusions, 

called Lewy bodies (LBs), as consequence of an abnormal accumulation of a wide variety of proteins, 

mainly α-synuclein, a small protein widely expressed in the brain. However, the presence of these bodies 

alone does not present an explanation to the onset and progression of PD [20]. 

Pathologically, it has been suggested that both selective loss of DA neurons and accumulation of α-

synuclein are influenced by several factors, including dysfunctions in the ubiquitin-proteasome system, 

mitochondrial dysfunctions, disorders of calcium homeostasis, neuroinflammation, and changes in 

protection mechanisms against oxidative stress and apoptosis [21-24]. 

 

1.1.2. Etiology of Parkinson's disease 

Age represents the major predisposing factor for PD, possibly due to failures in normal biochemical 

cellular processes, through accumulation of mitochondrial DNA mutations and production of reactive 

oxygen species (ROS) which occur with ageing and render DA neurons more vulnerable to toxic 

aggressions [3]. Most cases of PD are idiopathic, yet there is evidence supporting that 

neurodegeneration is also related with a large variety of factors, including genetic, environmental and 

immunological factors [14].  

Genetic factors appear to contribute in approximately 10% of PD cases. Mutations in the genes encoding 

α-synuclein, parkin, UCH-L1 (Ubiquitin C-terminal Hydrolase L1), PINK1 (PTEN-INduced putative 

Kinase 1) and LRRK2 (Leucine-Rich Repeat Kinase 2) have already been identified in familiar forms of 

PD where LBs are also identified, and may lead to malfunctions in the handling of proteins and 

consequently to degeneration [25]. The environmental factors that have been associated to PD are 

several, among them exposure to pesticides and use of β-blockers. Farming and well water exposure 

have also been associated, although that is most likely due to exposure to pesticides and other 

toxins [26]. On the other hand, there are several endogenous mechanisms that together can contribute 

to the pathogenesis, among them oxidative stress, mitochondrial dysfunctions, abnormal folding of 

proteins, cytoplasmic inclusions of proteins, excitotoxicity and loss of neurotrophic factors (glial cell line-

derived neurotrophic factor (GDNF), neurturin, etc.) [27]. Recent studies point to a possible role of 

autoimmune mechanisms in the development of the disease. A significant increase in cytokine levels of 

innate immunity, including interleukin (IL)-1, IL-2, IL-6, and tumour necrosis factor (TNF) in SN and 

cerebrospinal fluid (CSF) have been observed in PD patients [14]. 

Despite all the processes that trigger PD, a prominent feature of several neurodegenerative diseases 

yet to be referred to, but rather important and increasingly pointed as a cause is neuroinflammation, in 

which chronic immune activation occurs, particularly microglia activation [28]. 

 

1.1.3. Neuroinflammation 

Increasing evidence has emerged that progressive neurodegeneration that occurs over several years is 

also closely associated with chronic inflammation. The concept of inflammation, more particularly 
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neuroinflammation, has undergone a major transformation in recent years and is defined as the brain's 

response to injury, infection or disease. Neuroinflammatory mechanisms include the responses of 

microglia cells (reactive microgliosis), to a lesser degree by astrocytes (astrogliosis) and leukocytes. 

However, these changes are not PD specific and these processes may contribute to various 

neurodegenerative diseases [19]. 

 

1.1.3.1. Evidence on Parkinson's disease 

Neuroinflammation is an obvious feature of this pathology, yet it has not been determined whether this 

neuroinflammation protects or promotes neurodegeneration. The first evidence of the involvement of 

neuroinflammation in PD appeared in 1988. By immunohistochemistry reactive microglia in the SN pars 

compacta was identified in post-mortem brains of PD patients [29]. Later, through the same approach, 

further studies also allowed to observe that this microglial activation was not limited to the SN, but was 

also extended to the putamen, hippocampus, transentorhinal cortex, cingulate cortex and temporal 

cortex [30]. Since then, several evidences support and increasingly confirm the idea of inflammatory 

responses mediated by microglia contributing significantly to the degeneration process. Changes in 

microglial activation that correspond to the loss of DA terminals in the nigrostriatal pathway at the onset 

of the disease [31] and increased concentrations of proinflammatory cytokines such as TNF-α, IL-1β, 

interferon γ (IFN-γ) in the nigrostriatal pathway, CSF and serum of PD patients [32], are examples of 

some findings. In fact, some studies have induced lower expression of these cytokines in the SN which 

resulted, as expected, in a delay of the progressive DA neurons degeneration and arise of motor 

symptoms [33]. 

Astrocytic reactivity is another known neuropathological characteristic of SN in PD. Although Mirza and 

his collaborators were unable to identify reactive astrocytes in the SN and in the striatum of post-mortem 

tissues of PD patients [34], further studies revealed an active astrogliosis that could maintain the 

degeneration of DA neurons, being reported that astrocytes even exacerbated microglia’s effect 

regarding DA neurons degeneration [35]. Even so, in many cases of patients with PD it is observed a 

slight increase in the number of reactive astrocytes expressing the glial fibrillary acidic protein (GFAP), 

which additionally inversely correlates with DA neurons degeneration [36]. 

 

1.1.3.2. Role of glial cells: microglia and astrocytes 

Microglia cells are CNS resident macrophages and one of the main types of cells that modulates 

inflammatory responses. The CNS environment is generally immunosuppressive, causing microglia to 

be maintained in a resting state, with a branched morphology, in relation to the other tissue 

macrophages. However, after their activation they acquire an ameboid morphology which facilitates 

migration to the lesion site, where it can perform important beneficial actions but, on the other hand, can 

also perform harmful actions [37]. 

Specifically in response to injury, activated microglia has the ability to surround damaged neurons and 

participate in their repair and development process by releasing neuroprotective factors, namely brain-

derived neurotrophic factor (BDNF) and GDNF [38, 39]. In addition, these cells may contribute to the 

secretion of anti-inflammatory factors and also stimulate astrocytes to remove glutamate during an 
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inflammatory response. However, its persistent activation, such as in response to neuronal damage or 

environmental toxins, can amplify the progressive damage on surrounding neurons through the 

production of neurotoxic factors, such as glutamate, arachidonic acid metabolites, histamine and 

proinflammatory cytokines which induce the expression of inducible nitric oxide synthase (iNOS) or 

cyclooxygenase 2 (COX2), and ROS-producing enzymes [38, 40, 41]. 

Evidence indicates that microglia can acquire two distinct activation phenotypes, the M1 

(proinflammatory) and M2 (anti-inflammatory) phenotypes. The M1 phenotype leads to the production 

of ROS, NO, chemokines, proinflammatory cytokines, such as TNF-α, IL-1β, IL-6 and IL-1, and 

excitotoxins, in particular the previously mentioned glutamate, while the M2 phenotype leads to the 

release of anti-inflammatory cytokines, such as IL-4, IL -13, IL-10 and the transforming growth factor-β 

(TGF-β). Exposure to lipopolysaccharide (LPS)/IFN-γ has been reported to induce the M1 phenotype, 

whereas IL-4/IL-13 treatment induces the M2 phenotype [42]. Evidence from PD patients indicates that 

microglial proliferation occurs at the early stage of the disease and that it remains relatively static [43]. 

However, dopaminergic degeneration during disease progression has been associated with an 

increased production of proinflammatory cytokines, once again evidencing that microglia has the 

capacity to shift through distinct phenotypes throughout disease progression, being characterized by 

different amounts of cytokines secreted. However, to date, there have been few studies investigating 

therapeutic strategies aiming at changing microglial phenotype as a mean of reducing disease 

progression [44]. 

Astrocytes are present in all regions of the brain and play a crucial role in the homeostatic control of the 

extracellular environment in the CNS and, similarly to microglia, are also involved in neuroinflammatory 

processes. In response to pathological conditions, such as neuronal damage, toxic aggressions and 

ischemia, these cells become activated and have the capacity to proliferate and migrate to the lesion 

site [45]. This reactive astrogliosis has been verified in several animal models and is characterized by 

hypertrophic morphological alterations and by the overexpression of GFAP and the protein 

Connexin 43 [46]. 

Indeed, as with microglia, astrocytes also respond to inflammatory stimuli, including IL-1β and TNF-α, 

supporting the hypothesis that these cytokines may lead to astrocytic activation following CNS 

injury [39]. That is, the release of pro-inflammatory mediators by activated microglia itself, also 

contributes to reactive astrogliosis [35]. In addition, it is also reported that, at the same time, astrocytes 

secrete molecules with neurotoxic potential, such as NO, reactive sulphur species and various 

proinflammatory cytokines, both in vitro and in vivo, thus contributing to neuronal degeneration and 

neuroinflammation [35, 47]. On the other hand, a neuroprotective role is also attributed to astrocytes, 

since they additionally secrete anti-inflammatory cytokines and multiple neural protection agents, such 

as neurotrophic factors, including nerve growth factor (NGF), neurotrophin-3, GDNF, BDNF, among 

others, which are essential in neuronal protection and appear to be involved in the control of microglial 

activation [39, 48], thus guaranteeing the survival and correct functioning of neurons. In addition, 

astrocytes may further reduce oxidative stress and prevent NO production by a glutathione-dependent 

mechanism [39]. As so, an increase in reactive astrocytes in the SN of PD patients may indicate an 

attempt of neuroprotection in response to oxidative damage [49]. 
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Therefore, uncontrolled neuroinflammation caused by the synergistic activation of microglia and 

astrocytes contributes in part to neurodegeneration of DA neurons in SN pars compacta (Figure 1.2). 

However, all these studies do not imply that neurodegeneration is merely a consequence of 

neuroinflammation. Other lines of evidence also suggest that neuronal degeneration may be the cause 

of inflammatory processes [37]. 

 

Figure 1.2 Representation of inflammatory mechanisms involved in PD pathogenesis. M1 phenotype is induced in 
PD under pathological conditions such as protein aggregation, gene mutations, environmental factors and cytokines 
release. M1 microglia activate astrocytes, by releasing pro-inflammatory mediators, leading to elevated production 
of proinflammatory factors, nitric oxide and superoxide radical, thus contributing to the degeneration of DA neurons. 
Damaged DA neurons can cause further activation of glia and enhance the inflammatory response. On the other 
hand, M2 phenotype can release anti-inflammatory factors, including TGF-β, preventing exacerbated reactivity and 

exerting a neuroprotective effect in PD [42]. 

 

1.1.3.3. Experimental model - LPS, a potent inducer of inflammation 

LPS is a central component of the outer membrane of Gram-negative bacteria and frequently acts as 

an active endotoxin, being responsible for initiating a cascade of events during bacterial infections 

leading to the production of cytokines and other inflammatory mediators and increased levels of 

oxidative stress, which are also present in PD. It is reported that there are several LPS binding sites to 

the membrane, and some soluble proteins with the ability to bind to LPS have also been identified. The 

LPS-binding protein, the CD14 protein and the toll-like receptor (TLR) family appear to be among the 
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most important [50]. Microglial cells were recognized as the main brain cells responsive to LPS [35]. 

Therefore, upon LPS exposure, microglia become activated and release several cytokines (such as IL-

1β, IL-6, TNF-α and nuclear factor kappa B (NF-kB)), increase the expression of iNOS (with consequent 

increase in NO production and release), prostaglandins and increase ROS release by NADPH oxidase, 

factors that together contribute to neuronal death [38, 50, 51]. 

Over the past years, studies have shown that LPS-induced inflammation can effectively replicate some 

of the features present in PD both in vivo and in vitro, including extensive microglial activation and 

progressive degeneration of the dopaminergic system [52]. On the other hand, in vitro studies from 

mouse mesencephalic cultures allowed researchers to conclude that there is a differential susceptibility 

of the brain regions to LPS. Although it appears to have an impact on midbrain neurons in general, there 

is a positive correlation between the region's microglial abundance and LPS-induced neurotoxicity [53]. 

As so, the LPS model is a useful tool in the study of mechanisms involved in microglial reactivity as well 

as in the study of mechanisms by which microglial reactivity can cause dopaminergic degeneration and 

ways to prevent it. 

 

1.2. Klotho anti-ageing protein 

Klotho (KL) is a protein whose gene was originally identified in 1997 when a spontaneous mutation in 

the promoter region in a strain of mice originated several ageing-like phenotypes in an autosomal 

recessive manner [54]. These phenotypes were not visible until 3-4 weeks of age, from where KL 

deficiency started to present symptoms such as growth retardation, atherosclerosis, cutaneous and 

gonadal atrophy, infertility, hypoglycaemia, osteoporosis, pulmonary emphysema, cognitive deficits, 

motor neurons degeneration, and premature death between 2 and 3 months of age [54]. On the other 

hand, it was seen in transgenic mice that when KL is overexpressed those animals exhibit an enhanced 

cognitive performance and oxidative stress resistance, as well as an increased lifespan between 20% 

to 30%. These findings suggested that reduction in KL levels is harmful to the whole organism and 

supported the idea that it plays an important role in the ageing process [55, 56]. 

The human KL gene is located on chromosome 13q12 and is highly conserved among species, having 

98% homology between humans and mice. As so, human data are very consistent with those reported 

in experimental animals [57, 58]. In humans, KL serum levels decrease with age after 40 years [59-61], 

and this decrease can be observed in individuals with several age-related diseases such as 

cardiovascular and kidney disease [62, 63]. Thus, it has been recently suggested that serum levels of 

KL may serve as a biomarker of ageing [64]. However, only one case of human KL mutation has been 

described to date, but several single nucleotide polymorphisms have been detected in the gene of this 

protein and associated with human ageing [65]. Notably, some of these polymorphisms are associated 

with shorter lifetimes [66] and the increased risk of multiple age-related disorders such as coronary 

artery disease, osteoporosis and stroke [67]. 

 

1.2.1. Structure and expression of Klotho 

In mice and humans, the KL gene is composed of five exons and encodes a 130 kDa type 1 

transmembrane glycoprotein with 1014 and 1012 amino acids in length, respectively [54]. The 
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intracellular domain is very short with no known functional domains, and the extracellular domain is 

composed of two internal repeats (KL1 and KL2) with an amino acid sequence similar to the family of 

glycosidases I, which hydrolyse the β-glycosidic bonds in saccharides, glycoproteins and glycolipids. 

Three types of KL proteins have already been described, being transmembrane (m-KL), secreted (s-

KL), both arising from alternative splicing, and proteolyzed/cleaved (p-KL) (Figure 1.3). These three 

proteins have already been detected in both humans and mice [57, 68, 69].  

The linker region between the two replicates of the extracellular domain contains four basic amino acids 

(Lys-Lys-Arg-Lys), which represent a suitable site for proteolytic cleavage. As so, the extracellular 

domain of m-KL can be cleaved by membrane proteases, such as ADAM10, ADAM17 (also called TACE 

- tumor necrosis factor-α-converting enzyme) and BACE1, and be released into the extracellular space, 

giving rise to a 130 kDa or 70 kDa p-KL, if cleaved in the transmembrane segment or in the linker region, 

respectively [68] (Figure 1.3). In addition, p-KL has already been detected in the systemic circulation, 

urine and CSF, and can function as an autocrine and paracrine hormone in multiple tissues and 

organs [70]. Even more, it was also found that the KL gene encodes two other proteins, β-Klotho and γ-

Klotho, which share homology with KL, both with a single transmembrane segment [67]. 

 

Figure 1.3 Schematic representation of Klotho isoforms. By alternative splicing two transcripts can occur. One of 
the transcripts encodes de transmembrane form (m-KL), which contains both KL1 and KL2 domains, while the 
second transcript encodes the secreted form (s-KL), which only contains the KL1 domain. The m-KL isoform may 
be cleaved by ADAM10 and ADAM17 α-secretases to produce the proteolyzed form (p-KL) that may be composed 
of both KL1 and KL2 or one single domain (either KL1 or KL2). Adapted from Massó et al. [68]. 
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Currently, KL is known to be expressed in various tissues and cell types in mice, rats and humans, being 

predominantly expressed in the kidneys and brain [54, 71]. In addition, lower expression is detected in 

the pituitary gland, parathyroid gland, pancreas, ovary, testis, placenta, skeletal muscle, bladder, colon 

and breast epithelial cells [72]. Recently, this protein was also found to be locally expressed in the 

adventitial area of the aorta [73]. Particularly in the brain, in 2013, a study of the localization of KL mRNA 

in rat brains demonstrated that the choroid plexus is where it has greater expression [74]. Still, KL mRNA 

was also detected in other regions of the brain, such as the midbrain (with higher levels in the SN) and 

the striatum [74] (Figure 1.4). In addition, at the cellular level, it is in neurons, especially in the 

hippocampus and pituitary, and in Purkinje cells of the cerebellum that there is a greater expression of 

KL [54, 75, 76], while microglia and astrocytes do not express this protein [74]. 

 

Figure 1.4 Klotho mRNA distribution by in situ hybridization in the adult rat brain. KL mRNA signal was quantified 
in several brain regions of adult rats (n=3–4). KL mRNA was widely expressed throughout the brain, including 
several cortical areas, forebrain structures (including the caudate-putamen (Cpu)), hypothalamus (Hyp), 
thalamus, hippocampus (HPC), amygdala, and midbrain/brain stem (MB/BS, including the SN). Adapted from 
Clinton et al. [74]. 

 

According to the analysis of several tissues, the main gene transcript of this protein is s-KL [57]. 

Recently, a study has shown for the first time that the soluble domain released by cleavage generates 

a stable protein and, in contrast to m-KL, is ten times more expressed in the brain than in the kidney  

[74], which suggests that these two Klotho forms may have different functions. In addition, a strong 

correlation between the levels of isoform expression and the health status of the animals under study 

was also observed [68]. 

As so, although the KL gene is only expressed in some tissues, it has been observed that the deficit of 

this protein leads to ageing phenotypes in almost all tissues and organs, confirming that it functions as 

a hormone and acts on tissues other than those where it is expressed. However, molecular mechanisms 

and their exact biological functions are not yet fully understood. 

 

1.2.2. Functions of Klotho 

The three possible forms of this protein can perform different functions. On one hand, m-KL forms 

complexes with various fibroblast growth factor (FGF) receptors (FGFRs) in humans, namely FGFR1c, 

FGFR3c and FGFR4, thereby selectively increasing affinity for the factor FGF23, a hormone that inhibits 
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phosphate reabsorption and vitamin D biosynthesis in the kidney, negatively regulating calcium 

homeostasis [69, 77]. Thus, the deficit in KL leads to increased production of 1,25(OH)2D3, an active 

metabolite of vitamin D that plays an important role in calcium metabolism [54] and increased oxidative 

stress [55]. Overproduction of 1,25(OH)2D3 may be the main responsible for development of ageing 

phenotypes such as hyperphosphatemia and hypercalcaemia, similar in KL-deficient mice [54]. Thus, 

without KL, the function of the FGF23 hormone is literally nullified. 

On the other hand, p-KL functions as a hormone, independent of FGFRs, with different activities in 

several target cells. However, it has been reported that p-KL can still interact with FGFRs being an 

impactful factor in FGF23 signalling [78]. Firstly, this isoform negatively regulates the signalling pathway 

of insulin-like growth factor-1 (IGF-1)/insulin [55]. One study revealed that moderate inhibition of the 

IGF-1/insulin signalling pathway is one of the most evolutionarily conserved mechanisms to suppress 

ageing and extend life span [79]. It has been suggested that KL can bind with high affinity to receptors 

expressed on the surface of cells, although yet unidentified, and consequently activate the IGF-1/insulin 

signalling pathway. Although the exact mechanism has not yet been determined, it is thought that it may 

involve resistance to oxidative stress levels in mammals by reducing ROS production [80]. On the other 

hand, p-KL also has a role in ion homeostasis, through the regulation of ion channels and transporters, 

namely the transient receptor potential cation channel subfamily V member 5 (TRPV5), emphasizing 

once again with an antioxidant role. In addition, TRPV5 plays a role in the maintenance of calcium 

homeostasis through its reabsorption of intracellular space. In particular, β-glucuronidase activity of KL 

plays an important role in the activation of this ion channel [81]. Even more, this protein also has the 

ability to regulate NO production since studies have shown that levels of NO metabolites in urine, such 

as NO2
- and NO3

-, were significantly reduced in KL-deficient mice. However, the mechanism of KL-

mediated NO synthesis is still unknown [82]. 

Concerning the s-KL, it has been shown that in some tissues, such as the kidneys and the choroid 

plexus, it interacts with the Na+-K+ ATPase pump in intracellular organelles, but not in the plasma 

membrane, and stimulates its expression and activity, thus facilitating Ca2+ transport [83]. It is also 

reported that the s-KL isoform can interact with the retinoic acid-inducible gene-I (RIG-I) and inhibit the 

expression of inflammatory cytokines such as IL-6 and IL-8 in human umbilical vein endothelial cells 

(HUVECs) and fibroblasts. In addition to these, the expression of other cytokines is also inhibited by KL, 

such as TNF-β and IFN-γ [67, 84]. This data supports the idea that Klotho may function as an intracellular 

anti-inflammatory and anti-ageing factor. 

Finally, recent studies have shown that KL may influence other signalling pathways, such as the p21/p53 

signalling pathway, regulating several genes involved in the cell cycle, the cyclic adenosine 

monophosphate (cAMP) pathway and the protein kinase C (PKC) and Wnt pathway in HUVECs and 

fibroblasts [69]. 

The biological function of KL protein and the mechanism by which its absence contributes to 

neurodegenerative diseases are still unknown. However, of all the above-mentioned functions, it is 

important to note that the anti-ageing properties attributed to KL seem to be closely associated with 

increased resistance to oxidative stress and its anti-inflammatory role, although the anti-inflammatory 

effect is widely unexplored in the CNS, namely in the ventral midbrain. 
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1.2.3. Evidence of Klotho's action on neuroprotection 

It is important to note that neuronal KL may play an important role in ageing phenotypes and protect 

against the development of age-related neurodegenerative diseases. However, contrary to the kidney, 

where the function of KL protein has been further studied, there is currently no consensus on its role in 

the brain, especially in the susceptibility of the dopaminergic system in PD. Even more, the majority of 

the evidence correlating KL with the CNS comes from studies in knockout animals, deficient or with 

overexpression of KL. 

When performing knockout mouse assays for KL, it was reported the presence of neuronal degeneration 

in some regions of the CNS, essentially in the hippocampus, and fewer Purkinje cells in the cerebellum 

[54, 85]. Reduced levels of anti-apoptotic proteins, glial filaments as well as GFAP in astrocytes were 

also some of the observations, which are curiously similar in elderly animals and humans [86]. 

Furthermore, other studies in the brains of these knockout mice have further demonstrated that in 

addition to neurodegeneration, there is a reduction in synaptic protein expression, axonal transport 

disorders [76, 87] and increased markers of apoptosis and oxidative stress [88]. 

More recently, TNF has been shown to negatively regulate KL expression via NF-κB and interestingly, 

studies have shown that, like other inflammatory diseases, this regulation remains in patients with 

chronic inflammation of the hippocampus [89]. Analysis of the antioxidant role of KL, when added to 

cultures of hippocampal neurons, revealed that KL significantly increases the expression of the 

thioredoxin/peroxiredoxin (Trx/Prx) system through the induction of peroxiredoxins (Prx-2 and Prx-3) 

and of thioredoxin reductase 1 (Trxrd-1), antioxidant enzymes that together reduce ROS, and leads to 

protection of hippocampal neurons from glutamate-induced death. Thus, Prx-2 may be a key modulator 

of the neuroprotective antioxidant role of KL [90]. 

Other behavioural studies performed on knockout mice reported memory deficits, probably due to an 

increase in brain oxidative stress and changes in cholinergic function [88]. Using Alzheimer's disease 

models, it was confirmed that in the affected areas the expression of KL decreased significantly 

compared to healthy animals of the same litter. In addition, the practice of moderate continuous exercise 

in adulthood prevented the decrease of both forms of KL, m-KL and s-KL [68]. 

It is also reported that, specifically in the white matter of monkey, rat and mouse brains, a decrease in 

KL with ageing is observed, probably due to the loss of myelin that occurs with age [91, 92]. In addition, 

it has been shown in cell cultures that KL enhances the maturation and differentiation of 

oligodendrocytes and myelination, while KL knockout mice brains express lower levels of mRNA and 

myelin proteins [76, 93]. Interestingly, studies tried limiting KL expression to the brain and testis and 

reported phenotype improvements compared to the knockouts, thus suggesting the importance of KL 

expression in the brain for the CNS ageing [54]. 

A study published in 2011 showed that KL mutant mice had a decrease in the number of DA neurons in 

SN and levels of dopamine in the striatum, which is possibly related to KL-mediated regulation of vitamin 

D, where an exposure to vitamin D would be the cause of the observed phenotype. In addition, they 

found that dopamine levels in the striatum significantly decreased with ageing in these animals [85]. 

Recently, it was shown that overexpression of KL, in vivo, significantly protected DA neurons against 
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oxidative damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in part through the 

modulation of p38 MAPK activation, an important pathway in the regulation of oxidative stress [94]. 

Given this, and considering all observations, it is found that the absence of KL has a great impact on 

the morphology and functioning of some cells, such as neurons and oligodendrocytes, and consequently 

health. 

 

1.2.4. Evidence of Klotho in inflammation 

Inflammation is one key factor associated with ageing and, as so, KL started being hypothesized as an 

anti-inflammatory protein as well. The first reports of KL having anti-inflammatory properties came from 

the kidney, one of the organs were KL is mainly expressed [54], where it was reported to negatively 

regulate the production of NF-kB–linked inflammatory proteins [95], which has also been recently 

reported for cardiomyocytes [96]. In the last years a limited number of articles have been suggesting KL 

as possible therapeutic target for neuroinflammation with a recent work reporting that KL could not only 

be involved in the modulation of microglial reactivity in the hippocampus, but also impacting the 

peripheral macrophages infiltration in the choroid plexus [97]. Still, there is an enormous lack of 

information regarding KL’s anti-inflammatory properties in the CNS and, specifically, in the nigrostriatal 

pathway, even more if we take into account that microglia are regionally distinct. 
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2. Objectives 

Reports have been describing KL’s neuroprotective role as well as anti-inflammatory properties, with 

KL-deficient mice revealing greater DA degeneration while protecting DA neurons against oxidative 

damage when overexpressed. These results suggest that KL may play an important role in protection 

of DA neurons by modulating the inflammatory response and release of NO. 

As so, this work’s main objective is to evaluate if exogenously administered KL is able to modulate 

microglial reactivity in vitro, in primary cultures obtained from the ventral midbrain, and may be 

suggested as a new therapeutic target for PD. For that, the present work is guided by three specific 

objectives: 

1) Evaluate if exogenously administered KL is able to modulate ventral midbrain microglial 

reactivity; 

2) Explore possible receptors mediating KL’s ability to modulate microglial reactivity; 

3) Determine if the anti-inflammatory effect exerted by KL is relevant for its neuroprotective effect 

towards DA neurons. 
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3. Materials and Methods 

 

3.1. Animals for cell culture preparation 

 All animals used in the preparation of the cell cultures were treated accordingly to the protocols 

approved and ethical requirements for animal research and the European convention for the protection 

of vertebrate animals for experimental or other scientific purposes (Directive 2010/63/EU). 

 

3.2. Primary microglia cultures from ventral midbrain 

 For each cell culture preparation postnatal day 2 to 4 Wistar rat pups were used. Inside a laminar 

flow chamber, to provide a sterile environment, the animals were sacrificed and the region 

corresponding to the ventral midbrain, comprised by the substantia nigra (SN) and ventral tegmental 

area (VTA) as seen in Figure 3.1, was dissected. Meninges were carefully removed, and the tissue was 

then minced with the scalpel and transferred to cold Phosphate Buffered Saline (PBS; 140 mM NaCl, 

81 mM Na2HPO4, pH 7.4). Afterwards, the tissue was enzymatically digested in a papain solution (4 

mg/mL papain, H&B solution (116 mM NaCl, 5.4 mM KCl, 26 mM NaHCO3, 12 mM NaH2PO4.H2O, 1 

mM MgSO4.7H2O, 0.5 mM EDTA, 25 mM glucose, pH 7.3) and 0,5% phenol red in cysteine water (1.9 

mM CaCl2, 1.3 mM cysteine)) at 37 ºC for 4 minutes, shaken each minute, and then mechanically 

dissociated by sequentially passing it through micropipette (P1000) sterile tips with holes sized of 20G, 

23G and 25G. To ensure no cell aggregates were left, the cell suspension was passed through a 70 µm 

mesh, and then centrifuged for 3 minutes at 405 xg (3K18C Bioblock Scientific; Sigma Laboratory 

Centrifuges). Supernatant was discarded and the remaining pellet was resuspended in M10C-G medium 

(2.2 g/L NaHCO3, 0.75% glucose, 0.12% antibiotics (penicillin and streptomycin; Sigma) 0.02% insulin 

(Sigma) and 10% Fetal Bovine Serum (FBS; Biochrom AG) in Minimal Essential Medium (MEM). For 

cell counting the cell suspension was diluted (1:1) in a trypan blue solution (trypan blue 0.4% in NaCl 

0.81% and K2HPO4 0.06%) and viable cells were counted in a Neubauer chamber. For 

immunocytochemistry and phagocytosis assay, cells were plated in 24 multiwell plates containing 13 

mm or 10 mm coverslips previously coated with poly-D-lysine (PDL, 0.1 mg/mL; Sigma), at a density of 

0.069 x 106 cells/cm2, and maintained in culture at 37 ºC in a 5% CO2 and 95% air atmosphere. For 

ROS measurements, cells were plated in 48 multiwell plates, previously coated with PDL 0.1 mg/mL 

(Sigma), at a density of 0.069 x 106 cells/cm2. After 10 to 12 days in culture, when confluence was 

achieved, astrocytes were removed by mild trypsinization for 20 to 30 minutes, approximately, in a 

trypsin solution (0.125 g/L trypsin and 0.05 g/L EDTA in MEM). After this incubation period, detached 

astrocytes were discarded. The adherent microglia were kept in M10C-G medium at 37ºC in a 5% CO2 

and 95% air atmosphere for 5 days, to allow microglia to reach a resting state. 
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Figure 3.1 Coronal section of postnatal day 1 mouse brain stained for tyrosine hydroxylase using horseradish 
peroxidase and diaminobenzidine. Black lines indicate the incisions made during the dissection. (A, aqueduct; 
C, cortex; H, hypothalamus; SN, substantia nigra; VTA, ventral tegmental area). [98] 

 

3.3. Primary neuron-glia cultures from ventral mesencephalon 

 For each cell culture preparation female Wistar rats with 15 or 16 gestation days were used. 

After anaesthesia with isoflurane the abdominal cavity was open, and embryos were removed. 

Afterwards, females were sacrificed via cervical dislocation. Uterine sacs were placed in cold sterile 

PBS. 

 Inside a laminar flow chamber, for a sterile environment, the amniotic membranes were removed 

and the region corresponding to the ventral mesencephalon was dissected, as represented in Figure 

3.2. Meninges were carefully removed, and the resulting tissue was transferred to cold PBS and 

mechanically dissociated as described in section 3.2. The dissociated tissue was then centrifuged for 3 

minutes at 405 xg (3K18C Bioblock Scientific; Sigma Laboratory Centrifuges). The supernatant was 

discarded, and the remaining pellet was resuspended in neurobasal medium (NBM; Gibco) 

supplemented with 2% B27 (Invitrogen), 0.05 µg/mL L-Glutamine (Sigma), 120 µg/mL gentamicin 

(Sigma), 25 µM L-Glutamic acid (Sigma) and 10% heat-inactivated FBS (Biochrom AG). For cell 

counting the cell suspension was diluted (1:1) in the trypan blue solution and viable cells were counted 

in a Neubauer chamber. Lastly, cells were plated at a density of 0.207 x 106 cell/cm2 in 24 multiwell 

plates containing 13 mm or 10 mm coverslips previously coated with PDL 0.1 mg/mL (Sigma) and 

maintained at 37 ºC in a 5% CO2 and 95% air atmosphere for 4 days. 
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Figure 3.2 Ventral mesencephalon dissection from rat embryos with 15-16 days of gestation. (A) Representation 
of the incisions for rat embryo encephalon exposure. (B) Substantia nigra (SN) dissection from ventral 
mesencephalon. Adapted from Dunnet and Björklund [99]. 

 

3.4. Microglia cell culture treatments 

 Twenty-four hours prior to the experiments, primary microglia cell cultures had their culture 

medium changed to fresh M10C-G. Cells were then treated with 0.4 µg/mL of recombinant mouse KL 

(R&D Systems, ref.1819-KL-050) and 0.1 µg/mL or 1 µg/mL of LPS. Cells were exposed to LPS for 24 h 

to assess iNOS expression, NO production and phagocytic activity or 12 h to measure ROS production. 

KL was applied 24 h prior to LPS for iNOS expression, NO production, phagocytic activity and ROS 

measurement, or 1 h prior to LPS for iNOS expression, NO production and ROS measurement, or 1 h 

after LPS for iNOS expression, as indicated in figure legends. 

 To assess possible receptors that may mediate KL’s anti-inflammatory effect three specific 

inhibitors, namely PD166866, Dovitinib and Roblitinib (MedChemExpress), of the receptors FGFR1, 

FGFR3 and FGFR4, respectively, were applied to microglia cell cultures at a concentration of 0.5 µM 

for PD166866 and 1 µM for Dovitinib and Roblitinib. One hour later, KL 0.4 µg/mL was added and 24 h 

later cells were exposed to LPS 0.1 µg/mL for an additional period of 24 h. 

 

3.5. Microglia depletion in neuron-glia cultures 

 At the fourth day in vitro, primary neuron-glia cultures were treated with different concentrations 

(25, 50 or 75 mM) of L-leucine methyl esther (LME; Sigma) for 1h, after which cells were washed once 

with warm PBS to remove dead microglia cells. The remaining cells were then left in cultures for 24 h 

with an appropriate volume of NBM. 

 

3.6. Immunocytochemistry 

For the immunocytochemistry cells attached to coverslips were fixed with paraformaldehyde 

(PFA) 4% for 10 minutes. Afterwards, cells were permeabilized with Triton X-100 1% in PBS for 5 

minutes at room temperature. A blockage for nonspecific interactions was performed with 20% FBS in 

PBS containing 0.1% Tween (PBS-T) for 1 hour at room temperature. After blockage, the cells were 

washed with PBS-T and incubated with the primary antibody (iNOS, mouse, 1:500, BD Biosciences; 
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Iba-1, rabbit, 1:2000, WAKO; TH, mouse, 1:1000, BD Biosciences) diluted in PBS-T containing 1% FBS, 

for either 1 hour at room temperature or overnight at 4 ºC, in accordance to manufacturer instructions. 

After the appropriate incubation time, cells were washed 6 times with PBS-T for 15 minutes. Cells were 

then incubated for 1 hour at room temperature with the secondary antibody (goat anti-mouse IgG 

conjugated to Alexa 488; goat anti-rabbit IgG conjugated to Alexa 546) previously diluted in PBS-T 

containing 1% FBS and washed 6 times with PBS-T for 15 minutes. For nuclear staining, cells were 

lastly incubated for 10 minutes with Hoechst 33342 2 mM (Invitrogen) previously diluted in PBS-T, 

washed 3 times with PBS-T and coverslips were thereafter mounted on microscope slides using DAKO 

mounting medium (Glostrup, Denmark). They were later sealed with varnish, and preparations were 

observed in a Zeiss fluorescence microscope (Axiobserver Z1, Zeiss). For each experience various 

preparations were performed, and 3 coverslips per experimental condition were used for cell 

quantification. For each coverslip, 20 fields (exceptionally 40 fields, in some cases) were analysed using 

a 63x magnification. The ratio between iNOS, Iba-1, TH-positive cells and the total number of cells (as 

estimated by Hoechst 33342 labelling) was calculated and the results expressed as percentage of 

control or LPS 0.1 µg/mL, as described in the figure legends. 

 

3.7. Phagocytosis Assay 

To assess phagocytic activity, microglia cell cultures were incubated with 0.01% fluorescent 

microspheres (L1030-1L, Sigma) in M10C-G for 15 minutes in the incubator at 37 ºC. Cultures were 

then washed twice with MEM, to remove non-engulfed microspheres, and fixed with PFA 4% for 20 

minutes. Lastly, cells were stained with Hoechst 33342 as described above for the 

immunocytochemistry. For each experience various preparations were performed, and 3 coverslips per 

experimental condition were used for cell quantification. For each coverslip, 20 fields were analysed 

using a 63x magnification. Results are presented as average of the ratio of total cells engulfing beads 

and the total number of cells as estimated by Hoechst 33342 labelling. 

 

3.8. Nitric Oxide quantification 

Nitric oxide (NO) production was assessed by quantification of total accumulated nitrite (NO2-) 

in the experimental medium. Nitrite is a stable oxidation product of NO and one of the main products 

released into the medium. When nitrite reacts with sulphanilamide and N-1-naphthyl-ethylenediamine 

(NED), in acidic conditions, a coloured compound is formed. For such, at the end of the experiments, 

50 µL of medium samples were taken and transferred to a 96 multiwell plate. Sulphanilamide solution 

(50 µL; 1% sulphanilamide and 5% H3PO4 in water) was added into the 96 multiwell plate and left 

shacking for 10 minutes, after which NED solution (50 µL; 0.1% N-1-napthylethylenediamine 

dihydrochloride in water) was added. Ten minutes later, absorbance at 550 nm was read in a microplate 

reader (xMark, Bio-Rad). 

 

3.9. Measurement of reactive oxygen species production 

 The production of ROS by microglial cells was assessed using the cell-permeant 2',7'-

dichlorodihydrofluorescein diacetate (H2DCFDA, Sigma) as a ROS indicator. H2DCFDA is a non-
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fluorescent compound that is converted to the highly fluorescent 2’,7’-dichlorofluorescein (DCF) in the 

presence of ROS. For such, one hour before the end of the experiments, cells were incubated with 

100 µM H2DCFDA dissolved in dimethyl sulfoxide (DMSO). Some wells were treated simultaneously 

with 12.5 µM hydrogen peroxide (H2O2) to be used as a positive control. Afterwards, fluorescence 

emitted was measured in a spectrofluorometer (Spectramax, Gemini XS, Molecular Devices LLC) using 

the excitation/emission wavelengths of 485/535 nm. 

 

3.10. Data analysis and statistics 

 Results are shown as percentage of control or LPS 0.1 µg/mL and represent the mean ± S.E.M. 

of at least 4 experiments, as described in the figure legends. Statistical analysis was performed by the 

one-way ANOVA test followed by the Bonferroni Multiple Comparison Test. Values of p < 0.05 were 

considered statistically significant. Statistical analysis was performed using the program GraphPad 

Prism 6 (GraphPad Software, Inc.). 
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4. Results and Discussion 

4.1. Evaluation of Klotho’s effect on LPS-induced microglial reactivity 

As previously mentioned, microglia mediated inflammation is thought to be a major factor in the 

progression of NDD such as PD. In normal physiological conditions NO is an important second 

messenger, having a major role in intracellular signalling in the CNS. However, NO can be cytotoxic at 

high concentrations [100]. NO is produced by iNOS which is expressed by microglia. Under pathological 

situations its expression is augmented, resulting in high levels of NO that may be harmful for neurons 

[101]. Phagocytosis is another way by which microglia represent a hindrance to the DA viability, since 

when phagocyting microglia produce high levels of ROS [102]. As so, the control of microglial reactivity, 

which seems crucial in PD’s development and progression, may prove to be a manner of interrupting 

the amplification of neuronal death [37]. Previous studies already pointed some anti-inflammatory 

properties of KL, such as reduction of pro-inflammatory markers in kidney [67, 84]. However, there are 

still no reports regarding its effects in brain inflammation. 

In this work we aimed at assessing if KL is capable of modulating LPS-induced microglial 

reactivity by evaluating iNOS expression, NO release, phagocytic activity and ROS production. Primary 

microglia cultures were obtained from primary ventral midbrain glia cultures, from which astrocytes were 

removed by mild trypsinization. 

Firstly, the minimal LPS concentration able to induce alterations in microglial reactivity markers 

was assessed. Therefore, microglia cultures were incubated with two different LPS concentrations (0.1 

and 1 µg/mL) for 24 h, 5 days after astrocytes removal by mild trypsinization, and the number of iNOS-

positive cells and NO release were determined and used as microglial reactivity markers in this 

optimization step. 

As seen in Figure 4.1, LPS 0.1 µg/mL was able to induce a significant increase in the number 

of iNOS-immunopositive (iNOS+) cells and NO production, and so we chose this LPS concentration in 

further assays using KL. To note, since iNOS levels in control condition were bellow detection limit, all 

the results were normalized for the LPS 0.1 µg/mL condition instead. 
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Figure 4.1 Optimization of LPS concentration able to induce microglial reactivity. Cells were exposed to 0.1 or 
1 µg/mL LPS for 24 h. A) Representative images of the immunostaining for iNOS (green), in which nuclei were 
stained with Hoechst 33342 (blue). B) Quantification of iNOS-immunopositive cells (iNOS+) for each condition, 
relative to the total number of cells, and expressed as percentage of the LPS 0.1 µg/mL condition. C) Quantification 
of NO released to the extracellular medium, expressed as percentage of the control condition (absence of LPS). 
Results are shown as mean ± S.E.M. of three independent experiences performed in triplicate. Statistical analysis 
was performed using one-way ANOVA test followed by Bonferroni’s Multiple Comparison Test. (**p < 0.01 and 
****p < 0.0001 compared to control; ###p < 0.001 and ####p < 0.0001 compared to LPS 0.1 µg/mL). 

 

4.1.1 Klotho’s effect on LPS-induced iNOS expression and NO release 

Previous work from our group has shown that KL has a protective effect towards DA neurons, 

when aplied prior to 1-methyl-4-phenylpiridinium (MPP+) exposure, which is mediated by the 

presence of glial cells (unpublished results). As so, this work aims at evaluating if KL may have an effect 

on microglial cells’ reactivity. For such, primary microglia cultures from the ventral midbrain were treated 

with KL at a concentration of 0.4 µg/mL for 24 h or 1 h prior, or 1 h after the exposure to LPS 0.1 µg/mL 

for aditional 24 h. Looking at the obtained results (Figure 4.2), we can see that KL is able to significantly 
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prevent both LPS-induced increase in iNOS expression and NO release. However, while NO release is 

maintained at levels close to the control situation by the KL incubation, iNOS expression is still 

significantly different from control levels. This may indicate that, although being expressed, iNOS could 

be inhibited by KL leading to NO release similar to the one obtained under control conditions. As 

opposed to other forms of NOS which regulation is calcium-dependent, iNOS has been described as 

calcium-insensitive [103]. Indeed, iNOS is mainly regulated at the transcriptional level, but also at 

posttranscriptional, translational and postranslational levels through effects on protein stability, 

dimerization, phosphorylation, cofactor binding and availability of substrates (oxygen and L-arginine) 

[104]. In our case, iNOS is likely being regulated at the posttranscriptional level, since there still exist an 

increase in iNOS expression but no increase in NO production. KL treatment 1 h after LPS exposure 

reduced iNOS expression, suggesting that LPS-induced inflammation may be reverted. However, since 

the time gap between the beginning of LPS exposure and the application of KL is relatively short, 

inflammation was most likely not yet established and, as so, larger time gaps between LPS and KL 

application need to be evaluated to allow the establishement of inflammation and trully acess recovery 

from inflammation.  

 

Figure 4.2 Effect of KL on LPS-induced iNOS expression and NO release. Cultures were treated with 0.4 µg/mL 
KL for 24 h or 1 h, and then exposed to LPS 0.1 µg/mL for an additional period of 24 h, or treated with 0.4 µg/mL 
KL after 1 h of LPS application. A) Representative images of the immunostaining for iNOS (green), in which nuclei 
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were stained with Hoechst 33342 (blue). KL+LPS representative images are from a KL preincubation of 24 h. Only 
one condition of KL treatment and LPS exposure is shown as the three KL incubation times showed similar results. 
B) KL’s effect on the LPS-induced increase in the iNOS-immunopositive (iNOS+) cell number, relative to the total 
number of cells, and expressed as a percentage of control (no KL and no LPS). C) Effect of KL preincubation (24 h) 
on LPS-induced NO release. Data are shown as mean ± S.E.M. of 4 independent experiences performed in 
triplicate. Statistical analysis was performed using one-way ANOVA test followed by Bonferroni Multiple 
Comparison Test. (**p < 0.01 and ****p < 0.0001 compared to control (no KL and no LPS); ####p < 0.0001 compared 

to the LPS condition). 

 

4.1.2 Klotho’s effect on LPS-induced phagocytic activity 

To assess microglia’s phagocytic activity, cells were exposed to fluorescent microspheres after 

24 h KL incubation followed by 24 h incubation with LPS. The cells that incorporated the microspheres 

were considered phagocytic (Figure 4.3). We observed that LPS exposure increased microglial 

phagocytic activity by nearly 75%, with KL pre-incubation preventing this LPS-induced phagocytosis and 

maintaining microglial phagocytic activity closer to control values. Although phagocytosis may be 

important for clearance of cellular debris and pathogens it has also been shown that when microglia is 

phagocyting it also produces high levels of ROS which cause neuronal degeneration [102]. As so, it was 

of interest to determine ROS production in our cultures and the results are presented in section 4.1.3. 
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Figure 4.3 Effect of KL on microglial phagocytic activity. Cultures were treated with 0.4 µg/mL KL for 24 h, and then 
exposed for another 24 h to LPS 0.1 µg/mL. A) Representative fluorescence images of ventral midbrain microglial 
cultures exposed to microspheres (green), in which microglia were marked with Iba-1 antibody (red) and nuclei 
stained with Hoechst 33342 (blue) B) Representative fluorescence images of ventral midbrain microgial cultures 
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exposed to fluorescent microspheres (green), in which nuclei were stained with Hoechst 33342 (blue). B) 
Quantification of cells that engulfed the fluorescent microspheres after 24 h incubation with LPS, in the presence 
or in the absence of KL preincubation for 24 h. Results are presented as the number of phagocytic cells, relative to 
the total number of cells, and expressed as a percentage of control (no KL and no LPS). Data are shown as mean 
± S.E.M. of 4 independent experiments performed in triplicate. Statistical analysis was performed using one-way 
ANOVA test followed by Bonferroni Multiple Comparison Test. (**p < 0.01 as compared to control; #p < 0.05 as 
compared to the LPS condition). 

 

4.1.3 Klotho’s effect on LPS-induced ROS production 

Firstly, it was important to find an exposure time with LPS 0.1 µg/mL that would significantly and 

maximally increase ROS production in our microglia cultures. We found that at 12 h of LPS 0.1 µg/mL 

incubation (Figure 4.4) there was a maximum in the production of ROS by microglial cells (increase of 

130%). Therefore, this incubation time was selected to study the effect of KL in LPS-induced ROS 

production, as described below. 

 

Figure 4.4 Optimization of LPS exposure time able to induce maximal ROS production. Microglial cells were 
exposed to 0.1 PS for 3, 6, 9, 12, 18 or 24 h, and incubated with H2DCFDA 1 h before fluorescence readings. 
Control (CTR) cells only received H2DCFDA (no LPS incubation), and some wells received H2O2 as a positive 
control at the same time as H2DCFDA. Data are shown as mean ± S.E.M. of 3 independent experiments performed 
in 6 replicates. Statistical analysis was performed using one-way ANOVA test followed by Bonferroni Multiple 
Comparison Test. (*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001 when compared to control (no LPS); 
##p < 0.01 when compared to 12 h exposure). 

 

Therefore, to assess KL’s effect on LPS-induced ROS production by microglia, cells were pre-

incubated with KL for 24 h or 1 h and later exposed to LPS 0.1 µg/mL for 12 h. Previous work from our 

group (unpublished results) had found that KL was able to reduce MPP+-induced ROS production in 

neuron-glia cultures, being more effective for shorter pre-incubation times (1 h prior to MPP+ exposure). 

Therefore, we evaluated KL’s effect in LPS-induced ROS production with pre-incubation times of 24 h, 

for which we had observed a preventive effect regarding phagocytosis, and 1 h, following previous 

results from our group. 

Surprisingly, and although there was no statistical difference, it seems KL could not prevent the 

LPS-induced increase in total ROS production neither for 24 h nor 1 h pre-incubation times (Figure 4.5), 

even though KL has been widely reported in the literature as an anti-oxidative protein [96, 105]. Even 
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more, as previously stated, a co-link between phagocytosis and ROS production has been reported but 

that was not visible in our case where KL was able to prevent phagocytic activity but unable to prevent 

ROS production. As so, we can conclude that although not being able to modulate all the studied 

parameters, KL pre-incubation is able to modulate microglia reactivity as seen through iNOS expression, 

NO production and phagocytosis prevention which have been pointed as key indicators of microglial 

reactivity [106]. 

 

Figure 4.5 KL pre-incubation had no effect on LPS-induced ROS production. Microglial cells were treated with 
0.4 µg/mL KL for 24 h or 1 h, and then exposed for another 12 h to LPS 0.1 µg/mL. H2DCFDA was applied 1 h 
before the readings, and some wells received H2O2 as positive control at the same time of H2DCFDA. Data are 
shown as mean ± S.E.M. of 3 independent experiences performed in 6 replicates. Statistical analysis was performed 
using one-way ANOVA test followed by Bonferroni Multiple Comparison Test. 

 

4.2 Receptors mediating Klotho’s anti-inflammatory effect 

Another objective of this work was to explore possible receptors mediating KL’s anti-

inflammatory effect. FGFRs had been pointed as possible receptors mediating KL’s effects [78], being 

the isoforms 1, 3 and 4 the ones reported to be present in microglial cells [107]. As so, we used specific 

inhibitors for these receptors and evaluated if its presence would affect KL’s ability to modulate microglia 

reactivity, namely LPS-induced iNOS expression (Figure 4.6). Unfortunately, it was only possible to 

perform one experiment (n=1) for this objective, but the results suggest that the contribution of FGFR3 

should be further explored in order to clarify its involvement for KL’s ability to modulate microglia 

reactivity. When cells were pre-treated with Dovitinib, a selective FGFR3 inhibitor, there were around 

13% iNOS+ cells while when cells were not treated with any inhibitor or were pre-treated with PD166866 

or Roblitinib (respectively FGFR1 and FGFR4 specific inhibitors) there were about 3% iNOS+ cells. 

A previous in vivo study reported that hippocampus microglia was activated by the sole inhibition 

of the FGFRs [108]. However, the same was not true for our experiment, which may possibly be derived 

from the lack of other cell types in the culture or by regional differences in microglia. Still, what is 

presented in this thesis is the result of a single experiment and further experiments should be performed 

regarding this objective so conclusions can be drawn regarding the contribution of FGFRs to the anti-

inflammatory effect of KL in ventral midbrain microglia. 
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Figure 4.6 Effect of FGFRs inhibitors (PD166866, Dovitiniv and Roblitinib) on LPS-induced iNOS expression after 
preincubation with KL for 24 h. Cells were treated with 0.5 µM for PD166866 or 1 µM for Dovitinib and Roblitinib. 
One hour later 0.4 µg/mL KL was applied and 24 h later cells were exposed to 0.1 µg/mL LPS for an additional 
period of 24h. Control cells (CTR) did not receive any treatment. A) Representative images of the immunostaining 
for iNOS (green), in which nuclei were stained with Hoechst 33342 (blue). B) FGFRs inhibitors (PD; PD166866, 
Dov; Dovitinib, Rob; Roblitinib) effect on KL’s anti-inflammatory effect regarding iNOS expression. Data are shown 
as mean ± S.E.M. of 1 experiment performed in triplicate. 
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4.3 Relevance of Klotho’s anti-inflammatory effect on DA neuronal protection 

Determined that KL is able to modulate microglial reactivity, namely by preventing LPS-induced 

iNOS expression, NO production and phagocytosis, the next step was to assess if that would be a 

contributing factor for the ability of KL to protect DA neurons from MPP+-induced toxicity, in neuron-glia 

mixed cultures, as previously shown by our research group (unpublished results). For such, we wanted 

to obtain primary cultures that had both glial cells and neurons, with DA neurons among them, but 

deprived of microglial cells. As so, we obtained primary ventral mesencephalic cultures from Wistar 

embryos, which contained microglia, astrocytes and neurons, and depleted microglia from the cultures. 

Based on the literature, there are several microglia depletion procedures using L-leucine methyl ester 

(LME), a lysosomotropic agent which is converted to a membranolytic compound by dipeptidyl 

peptidase I that selectively kills phagocytic cells, such as microglia [109, 110]. Unfortunately, there is no 

report of LME treatment in our cultures of interest. The available protocols, from other brain regions’ 

cultures had differences regarding both exposure time and concentration of LME, but what was mostly 

reported with success were treatments of 1 h with concentrations ranging between 25 and 75 mM, above 

which it was reported to be toxic to astrocytes [111]. Therefore, our mesencephalic neuron-glia mixed 

cultures were treated with three different concentrations of LME (25, 50 or 75 mM) for 1 h, and then 

washed with PBS 1x in order to remove dead cells. 

Looking at the results, we can see that LME treatment didn’t affect DA neurons viability, even 

for the higher concentration used (75 mM; Figure 4.7). However, microglia depletion was far from what 

was expected and reported for cultures obtained from other brain regions, as well as far from what would 

be desired for the aim of our experiments. We obtained around 50% microglial depletion (Figure 4.7), 

whereas nearly total microglia depletion was reported in the literature for other cell culture models [111]. 

Such a great difference in microglia depletion in our cultures compared to other reports may be due to 

regional differences of microglia [112], which may be granting mesencephalic microglia as more 

resistant to LME exposure. In this work we didn’t evaluate LME effect on astrocytes’ viability since 

previous reports in the literature stated that for the used concentrations no changes in astrocytes viability 

or function was observed [111]. 

Hence, since microglial depletion was not satisfactory in these cultures, another member from 

our group deepened more into this topic and assessed if MPP+ exposure, which selectively decreases 

DA neurons viability, would lead to microglial activation and if KL would be able to modulate its reactivity, 

while protecting DA neurons from MPP+ toxicity. MPP+ uses dopamine transporters and once inside the 

DA neurons it blocks the electron transport chain by inhibiting the mitochondrial complex I, and leading 

to severe energy dysfunctions, ROS production, oxidative damage to the membrane and activation of 

apoptotic cascades [113]. The results indicated that in our mesencephalic neuron-glia mixed cultures, 

MPP+-induced toxicity of DA neurons was not paralleled by an increase in microglial reactivity, 

suggesting that this in vitro model would not allow us to infer about the contribution of KL’s anti-

inflammatory effect on its ability to protect DA neurons. Consequently, a different model that allow us to 

see degeneration of DA neurons and microglial reactivity in the same culture, with microglial reactivity 

being the cause of DA degeneration or exacerbating it as it happens in in vivo models, will be needed 
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in order to assess if microglial modulation by KL would indeed be relevant in preventing the DA 

neurodegeneration process. 

 

Figure 4.7 Dopaminergic viability and microglial depletion with LME treatment. Mesencephalic neuron-glia mixed 
cultures were treated with 25, 50 or 75 mM LME for 1 h and allowed to rest with fresh NBM for 24 h. 
A) Representative images of the immunostaining for TH (DA neuron marker, green) and Iba1 (microglial marker, 
red), in which nuclei were stained with Hoechst 33342 (blue). B) Dopaminergic viability after LME treatment, as 
determined by the TH-immunopositive (TH+) cell number, relative to the total number of cells (Hoechst+), and 
expressed as a percentage of control (absence of LME). C) Microglial viability after LME treatment, as determined 
by the Iba1-immunopositive (Iba-1+) cell number, relative to the total number of cells (Hoechst+), and expressed as 
a percentage of control (absence of LME). Data are shown as mean ± S.E.M. of 3 independent experiments 
performed in triplicate. Statistical analysis was performed using one-way ANOVA test followed by Bonferroni 
Multiple Comparison Test. (**p < 0.01 as compared to control). 
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5. Conclusions 

In this work we assessed that KL is able to modulate microglial reactivity, as seen through iNOS 

expression, NO production and phagocytic activity. We aimed to identify the possibility of FGFRs being 

involved in the anti-inflammatory effect exerted by KL but additional experiments should be performed 

so clear conclusions can be drawn. Even so, among those present in microglia, FGFR3 may be a 

promising receptor mediating KL’s anti-inflammatory effect. It was also of our interest to assess if the 

KL anti-inflammatory effect would be impactful in preservation of DA neurons but were unable to obtain 

a mixed culture deprived of microglia cells. Even more, a colleague verified that in the MPP+ model of 

DA neurons degeneration no microglial reactivity was occurring, and so another model where DA 

neurons degeneration and microglial reactivity are simultaneously present, possibly with microglial 

reactivity being the cause of DA neurons degeneration, will be needed to evaluate the relevance of KL’s 

anti-inflammatory effect for DA neuroprotection also mediated by this anti-ageing protein. 
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