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Resumo 
 

A brucelose humana é uma das zoonoses com maior incidência a nível mundial. Em Portugal, a 

brucelose é uma doença de notificação obrigatória, cuja casuística a coloca entre as três zoonoses com 

maior incidência. Apesar da sua importância, estudos da prevalência de brucelose e a realidade eco-

epidemiológica desta doença em Portugal são escassos.  

Com o presente estudo pretende-se fazer uma avaliação da situação epidemiológica da brucelose 

humana em Portugal e identificar quais as espécies associadas a casos humanos. Pretende-se também 

investigar qual a origem da infeção no Homem, utilizando estudos de tipagem molecular e novas 

metodologias de sequenciação de nova geração. Neste trabalho pretende-se ainda realizar estudos para 

avaliar o polimorfismo genético de vários fatores de virulência em estirpes de Brucella spp.  

Os nossos resultados comprovam que a única espécie de Brucella associada a casos clínicos em 

Portugal é Brucella melitensis e que existe uma forte ligação epidemiológica entre vários casos estudados, 

cujo a análise originou pequenos clusters, podendo mesmo corresponder a pequenos surtos. Verificou-se 

também uma forte proximidade filogenética entre as estirpes isoladas na zona mediterrânica (Espanha, 

Grécia e Itália), devido à proximidade geográfica, cultural e alimentar. Neste trabalho, e utilizando uma 

abordagem inovadora, recorrendo às novas metodologias de sequenciação de nova geração, conseguimos 

validar a utilização MLVA – 16, o gold standard para a tipagem de Brucella spp., utilizando a extração 

dos genótipos in silico. 

Globalmente, os resultados apresentados nesta tese contribuem para a melhor compreensão da 

situação da brucelose em Portugal. Os resultados poderão contribuir para a implementação de uma nova 

ferramenta laboratorial que permita melhorar a vigilância epidemiológica de brucelose, disponibilizando 

informação mais precisa e rápida aos decisores com responsabilidades na área da implementação de 

medidas de prevenção e controlo desta doença no nosso País, tanto na vertente de saúde humana como 

veterinária, em sintonia com a abordagem One Health. 

 
Palavras chave: Brucella spp., B. melitensis, brucelose, sequenciação nova geração, tipagem molecular, 

epidemiologia, filogenia e virulência. 
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Abstract 
 

Human brucellosis is one of the most common zoonosis worldwide. In Portugal, brucellosis is a 

notifiable disease in humans and the casuistic puts it among the three zoonosis with the highest incidence. 

Despite this, studies on prevalence of brucellosis in Portugal are scarce. 

The present study intends to evaluate the epidemiological situation of human brucellosis in 

Portugal and to identify the species associated with human cases. It also intend to investigate the origin 

of infection in humans using molecular typing studies and whole genome sequencing approaches. In this 

work, we propose study the genetic polymorphism of several virulence factors in Brucella spp. 

Our results showed that Brucella melitensis is the main species associated to human brucellosis 

and that there is a strong epidemiological link between many cases studies, whose originated small 

clusters and may even correspond to small outbreaks. In this study, it was possible to verify a strong 

phylogenetic proximity between isolated strains in the Mediterranean area (Spain, Greece and Italy) 

probably due to geographical, cultural and type of food proximity. In this work, using an advanced 

approach, new generation sequencing methodologies, we were able to validate the use of MLVA - 16, the 

gold standard for typing Brucella spp., using in silico extraction. 

Globally, the findings presented in this PhD thesis contribute for better understanding of the 

brucellosis situation in Portugal. The results may contribute to the implementation of a new laboratory 

tool to improve the epidemiological surveillance of brucellosis. Furthermore, is providing more accurate 

and quick information to the decision makers with responsibilities in the area of the implementation of 

measures of prevention and control of this disease in our Country, both in human and veterinary health, 

in line with the One Health approach.  

 

Key-words: Brucella spp., B. melitensis, brucellosis, next generation sequencing, molecular typing, 

epidemiology, phylogeny and virulence.  
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Notes of the author: thesis organization, format and outline 

This thesis is organized into six chapters (listed below) that are presented as individual chapters (I to VI). 

In Chapter I, a general introduction to the subject of the thesis is presented, including the history and 

status of knowledge and the objectives of the work developed in this thesis. Chapters II to V describe 

research studies that were performed to achieve the delineated goals. The last chapter, summarizes all 

major contributions from this PhD project and suggest directions for future research. One of the chapters 

have already been published (the other two have been submitted for publication at the time this thesis was 

completed) in peer reviewed international journals, being presented in this thesis essentially as a 

reproduction of the content that was published.  

The chapters were organized according to a rational taking into account the objectives delineated for this 

PhD work, and in agreement with the association between the scientific subjects addressed in each one, 

as the results obtained during one study influenced the progress of others. Considering the different article 

types and layouts adopted by the journals in which the manuscripts were published or submitted, the 

chapters (II to IV) were formatted in a single style, with all references listed together in the "References" 

section. Finally, annexes relative to each chapter were also compiled in a last section of this PhD 

dissertation in a section denominated "Supplemental material". To facilitate the access, a link to an online 

document is provided for some extensive supplementary data. Numbering of figures and tables is 

presented according to the number of the chapter.  The specific contents of each chapter are enclosed in 

this PhD thesis, as follows: 

 

Chapter I.  Consist of a general introduction that intends to supply the reader with the state of the art in 

the subjects addressed in this doctoral dissertation around the brucellosis infection. On behalf of this, it 

is firstly given a global overview of the major aspects of the Brucella spp. taxonomy, biology, 

molecular epidemiology, pathogenesis and clinical presentation, followed by insights into the genetic 

and phylogenetic analysis. It ends with the description of the main objectives of this Ph.D. project, and 

includes the specific research questions that drove the investigations carried out on behalf of each 

chapter. 

 

Chapter II. Consists of the following published scientific manuscript: Pelerito A, Cordeiro R, Matos R, 

Santos MA, Soeiro S, Santos J, Manita C, Rio C, Santo M, Paixão E, Nunes A, Núncio S. “Human 

brucellosis in Portugal-Retrospective analysis of suspected clinical cases of infection from 2009 to 2016”.  

PLoS One. 2017 Jul 10;12(7):e0179667. doi: 10.1371/journal.pone.0179667 

 

Chapter III.  Consists of the following scientific manuscript submitted for publication: Ana Pelerito, 

Alexandra Nunes, Sofia Núncio, João Paulo Gomes. “Genome-scale genetic relatedness among Brucella 

melitensis strains causing human infections in Portugal”.  
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Chapter IV. Consists of the following scientific manuscript submitted for publication: Ana Pelerito, 

Alexandra Nunes, Joana Isidro, Catarina Silva, Ferreira AC, Valdezate S, Sofia Núncio, Enrico Georgi, 

João Paulo Gomes. “ Evaluation of an in silico approach for Multiple Locus Variable Number Tandem 

Repeat Analysis for genetic characterization of Brucella spp. “ 

 

Chapter V. Consists on an ongoing study entitled: “Genetic diversity of Type IV Brucella spp. effectors 

among B. melitensis strains circulating in Portugal” 

 

Chapter VI.  This chapter includes a global and conclusive overview of the subjects addressed throughout 

the chapters, highlighting the main results and conclusions achieved in this Ph.D. dissertation. New 

research questions raised on the course of this work that can be addressed in the future development of 

these investigations are also presented. 
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 Introduction  

 The Genus Brucella 

In 1886, in Malta, David Bruce (1855-1931), a British army surgeon, isolated a cocco-bacillus 

that he named “Micrococcus melitensis” from the spleen of a man who had died of “Malta Fever” 

(Moreno, 2014; Mantur et al., 2007; Rust et al., 2006). This disease was endemic in this country, but 

could be erroneously mistaken as another disease, especially malaria. Between 1901 and 1906, it 

affected 652 civilian and 605 military, with a death rate of 10.4% and 2.3%, respectively (De Ley et al., 

1987). The human disease was associated with people that either consumed goat’s milk or had close 

contact with goats, and soon the microorganism was isolated from these animals (Tonna and Tonna, 

2005). In 1897 a similar microbe was isolated from the udder of cows, and in 1914 from swine (Murray 

et al., 2005; Carvalho et al., 1995). In about 1920 the genus was renamed Brucella, enrolling the species 

B. melitensis, B. abortus, and B. suis and marking the beginning  of the history of brucellosis, one of the 

most extended bacterial zoonosis at a global level and a complex infection of animals and humans with 

worldwide impact (Wiat, 2013; Araf, 2010). 

Brucella spp. are facultative intracellular, Gram-negative, non-motile, partially acid-fast 

coccobacilli that lack capsules, flagellae, endospores or native plasmids. The bacterium has 0.5-0.7 µm 

of diameter, 0.6 – 1.5 µm of length and is oxidase, catalase and urease positive (Young, 1995).  

Based on 16S rRNA gene sequences, Brucella spp. are categorised as α–2 Proteobacteria and 

have close phylogenetic relationships with Agrobacterium, Rickettsia, Rhizobium and Rhodobacter 

(Bohlin et al., 2010; Whatmore et al., 2009; Scholz et al., 2008).  

The genus Brucella, belongs to the family Brucellaceacae within the order Rhizobiales of the 

class Alphaproteobacteria, which is one of the largest and most diverse groups within the phylum 

Proteobacteria (Scholz et al., 2008). Brucella is currently classified according to differences in 

pathogenicity and host preference in 12 species (Scholz et al., 2008; Scholz et al., 2010; Marzetti, et al., 

2013). 

The most important  Brucella species are B. abortus and B. melitensis (Table 1.1), which have, 

as preferential hosts, cattle and small ruminants (sheep and goats). B. suis was isolated for the first time 

from an aborted pigs fetus in Europe in 1909, and later on in the United States. For many years, it was 

believed that the agent was a highly pathogenic variant of B. abortus but in 1929, B. suis was finally 

considered a separate species. In 1956, Buddle and Boyce (Buddle, 1956) discovered B. ovis, the cause 

of epididymitis in rams. In 1957, Stoenner and Lackman isolated B. neotomae from desert wood rat in 

Utah in USA. In 1968, Carmicheal and Bruner (Lucero et al., 2005) discovered B. canis as the cause of 

an epidemic of abortions in beagles. However, human infections due to B. canis have also been reported 

(Marzetti et al., 2013). Since 2007, more species were included in the genus: B. ceti and B. pinnipedialis, 

which were isolated from marine mammals (Foster, et al., 2007), B. microti from voles (Scholz, et al., 
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2008), B. inopinata from an inflamed breast implant of a 71 year – old patient in USA, and more recently, 

B. papionis, isolated from baboons and B. vulpi, isolated from foxes. The natural reservoir of B. 

inopinata still remains unclear (Scholz, et al., 2010; Scholz, et al., 2016; Eisenberg, et al., 2017). Other 

“atypical” Brucella strains have been isolated from diverse animal sources such as wild rodents, frogs 

and fish, and will likely be proposed as new species in a near future (Eisenberg, et al., 2017; Tiller, et 

al., 2010; Eisenberg, et al., 2012). B. abortus, B. melitensis and B. suis are recognised as the most 

economically significant pathogens of the group.  

 

Table 1.1 – Species of Brucella, preferential hosts and pathogenicity for humans. [Adapted from Al 
Dahouk, 2013] 

 
Brucella species Natural host Pathogenicity for humans 
B. melitensis Sheep, goat and camels High 
B. abortus Cattle Moderate 
B. suis Swine High 
B. neotomae Rodents No 
B. ovis Ram No 
B. canis Dog Moderate 
B. ceti Cetaceans Unknown 
B. pinnipedialis  Pinnipeds Unknown 
B. microti Soil, vole, fox Unknown 
B. inopinata Unknown High 
B. papionis sp. nov. Baboons Unknown 
B. vulpis sp. nov. Foxes Unknown 

 

 Pathogenicity and immune response 

Brucella spp. have the ability to avoid the killing mechanism and proliferate within the 

macrophages. These bacteria quickly translocate across the mucosal epithelium layer in vivo and are 

endocytosed by mucosal macrophages and dendritic cells. To be a successful pathogen Brucella spp. 

requires four major steps during the infectious process, namely, adherence, invasion, establishment, and 

dissemination within the host. In the macrophages, Brucella spp. cells survive and multiply, inhibiting 

phagosome–lysososme fusion and the accumulated bacteria are disseminated to other host cells 

(McDermott et al., 2013; Figueiredo et al., 2015) 

During infection, the host has evolved mechanisms to recognize the presence of bacteria through 

an innate immune surveillance system, which is able to distinguish conserved “pathogen–associated 

molecular patterns” (PAMPs) through pathogen recognition receptors. These host receptors can be 

found in cell membranes (toll-like receptors, TLRs) or in the cytosol (NOD–like receptors, NLRs) and 

have the ability to detect bacterial products, such as the lipopolysaccharide (LPS), lipoteichoic acids, 

lipoproteins and flagelin, leading to the activation of the initial proinflammatory response. As a chronic 
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pathogen, Brucella has developed passive and active mechanisms to evade detection by both TLRs and 

NLRs in order to persist and cause long-lasting infection (Smith, 2018).  

The mechanism involved in Brucella spp. entry into host cells still remain to be characterized 

(Gorvel, 2014), but its ability to successfully survive and replicate within different hosts cells explains 

their pathogenicity. In fact, extensive replication of Brucella spp. in placental treophoblasts is associated 

with abortion in their preferential hosts, and persistence in macrophages leads to chronic infections that 

are a hallmark of brucellosis in both animals and humans (Kim, 2015; Gorvel, 2014; Grilló et al., 2012; 

Roop et al., 2009).  

In vitro studies were used as models to understand adhesion, internalization, intracellular 

trafficking, survival and replication of Brucella in susceptible hosts. After attachment to the surface of 

mucosal epithelial cells, Brucella induces a zipper–like mechanism for internalization. Binding 

promotes activation of small GTPases that trigger a signaling cascade that reorganizes the actin 

cytosqueleton to induce a host cell membrane rearrangement along the surface of the pathogen, which 

enhances invasion. Entry occurs within a few minutes after interaction, which requires full activation of 

a mitogen–activated protein kinase-signaling pathway (Rosseti, 2012). Brucella survive and replicate 

inside nonprofessional phagocytic cells up to 72 hours in vitro and move across the epithelium in vivo 

by subverting the mucosal epithelial barrier function to facilitate Brucella transepithelial migration 

(Rosseti et al., 2012). Simultaneously, this interaction initiates a minimal innate immune response with 

weak proinflamatory activity (Rosseti et al., 2012; Barquero-Calvo et al., 2007). Inside mononuclear 

phagocytic cells, Brucella reside in a special vacuole (Brucella – containing vacuole, BCV), modify 

intracellular trafficking, and transform the vacuole into a replicative compartment (Ruiz – Ranwez et 

al., 2015; Gomez et al., 2013; Lamontagne et al., 2010).  

In the course of infection, invading Brucella spp. surviving the adaptation period gradually 

recover the expression of key genes involved in metabolic processes, and initiate replication 

concurrently with the resumption of expression of multiple virulence genes. Among the early 

transcription changes that contribute to adaptation, this bacterium has several clever strategies to 

establish and maintain a chronic infection, including inhibition of apoptosis of infected mononuclear 

cells and preventing maturation of dendritic cells (Wattam et al., 2014). 

The Brucella outer membrane constitutes an important barrier for survival in hostile 

environments and is an accessible target for the interaction with the host and defense mechanisms of the 

immune system (Vizcaíno and Cloeckaert, 2012). Structurally, it is an asymmetrical lipid bilayer 

composed of LPS and other haptenic polysaccharides, such as hapten native (NH), proteins and 

phospholipids (PL), with the LPS molecules and PL located in the outer and inner leaflet, respectively.  

Like other Gram-negative bacteria, Brucella have LPS as a major component of their outer membrane 

and an important virulence factor (Smith, 2018). The Brucella spp. LPS possess unusual immunological 

properties such as low toxicity, high resistance to macrophage degradation and protection against 

immune responses, being a major virulence factor in Brucella (Lapaque et al, 2005; Supriya et al., 2019). 
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Since LPS is the most relevant antigen during infection and vaccination, LPS and LPS–related molecules 

are extensively used in immunological studies and in the diagnosis of brucellosis. Among Gram-

negative bacteria, the genus Brucella is the unique in which some species express the smooth (S) – type 

LPS (B. abortus, B. melitensis, B. suis, B. microti, B. neotome, B. ceti, B. pinnipedialis, B. inopinata and 

B. papionis) and others have naturally rough (R) – type LPS (B. canis and B. ovis). The S-LPS and R-

LPS differ mostly in the most external LPS moiety (the O-polysaccharide), which is not synthetized in 

rough Brucella species (Moreno and Myrion, 2006; Lapaque et al.2005). Colony morphology is termed 

“smooth” or “rough” dependending on the LPS structure (Moreno and Myrion, 2006).  

Numerous outer and inner membranes, cytoplasmic and periplasmic protein antigens have also 

been characterized. Some are recognized by the immune system during infection and are potentially 

useful in diagnostic tests. Omp 25 is an outer membrane structural protein that is highly conserved in all 

Brucella species. It is associated with lipopolysaccharide components and is involved in protection 

against challenge with Brucella via both antibody and cell mediated responses. (Lapaque et al., 2005).  

In recent years, various virulence factors besides LPS have been identified as essential for 

infection, including the -cyclic glucan, the BvR/BvS, two component systems (TCS), some OMPs and 

the VirB type IV secretion system (T4SS) (Sellem et al.,  2008, Martim-Martim et al., 2011). Quorum 

sensing (QS) is also known to be involved in the regulation of Brucella spp. virulence determinants 

mostly linked to the cell surface (T4SS, flagellum, Omps and exopolysaccharide) contributing to the 

adaptation of the metabolic network during the nutrient shift faced by Brucella spp. along its intracellular 

trafficking (Gorvel, 2014; Weeks et al.,  2010; Rambow-Larsen et al., 2009; Letesson et al., 2002). 

 Epidemiology 

Brucella spp. can be traced back in 2.8 million years by presumptive evidence of pathologic 

changes in a late Pliocene homini skeleton (D’Anastasio, R et al., 2009). Additionally, molecular tests 

demonstrated the presence of B. melitensis DNA in a 700 – year- old skeleton from medieval Italy (Kay 

et al., 2014). 

Brucellosis is the most common bacterial zoonosis worldwide in terrestrial and marine 

environments. In addition to the hundreds of thousands of new infections reported annually, the disease 

is characterized by progression, in a significant percentage of patients, to residual pathology and 

chronicity. Annually, more than 500.000 new human cases de brucellosis are reported worldwide, but 

ranks as one of the seven most neglected diseases, according to the World Health Organization (Hull 

and Schumaker, 2018). During the last two decades, the epidemiology of brucellosis has changed 

significantly, with the emergence of new global outbreaks in association with major political/historical 

events, successful control of the disease in many parts of the Mediterranean, and the referral of 

epidemiological data from countries where brucellosis was endemic but in an unknown proportion 

(Pappas et al., 2006; Pappas et al., 2010). The majority of brucellosis cases are registered in 
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Mediterranean countries, South and Central America, Africa, Asia, Indian subcontinent, Eastern Europe 

and the Middle East (Pappas et al., 2006). Successful implementation of an animal vaccination program, 

in addition to testing and slaughter of animals which are suspected of (or test positive for) the disease 

has conferred “officially bovine brucellosis free” and/or “officially ovine and caprine (Brucella 

melitensis) free” status on a number of countries (Shevtsova et al., 2016). Control in humans is critical 

for prevention of spread to humans indeed, the majority of human cases in brucellosis – free regions are 

due to import by people who have travelled to endemic regions, as they may have had contact with wild 

animals or with imported products. 

The geographical distribution of brucellosis is constantly changing, with the emergence and re-

emergence of new outbreaks around the world. Reflecting the social, cultural, and economic policies 

that describe a changing global society, this pathology has been replicating this dynamics, making its 

control and eradication a constant challenge. 

 

 

 
 
 

                    
 
 
 
 

                      

Figure 1.1 – Reported cases by European Centre for Disease Prevention and Control (ECDC - 2018) 

The distribution of the Brucella species. B. abortus, B. melitensis and biovars 1-3 of B. suis have been 

virtually eliminated from livestock in many developed countries. However, some of these organisms are 

common in parts of Middle East, Asia and Latin America (Godfroid et al., 2010). Feral pigs or wild 

boar continue to maintain B. suis biovars 1, 2 or 3 in many areas where B. suis is virtually absent from 

commercial swine, and a few foci of wildlife reservoirs for B. abortus or B. melitensis have been 

identified in limited areas. The distribution of some organisms including B. microti, B. neotomae, B. 

vulpis, B. papions and B. inopinata, is still poorly understood (Jaý et al., 2018). 

 Transmission, clinical presentation and treatment 

Brucellosis is rarely transmitted from person to person, and transmission reports involve bone 

marrow transplantation, blood transfusion or sexual intercourse. Common sources of human infection 

include contact with animal abortion products, ingestion of unpasteurized dairy products from cows, 

small ruminants or camels, ingestion of undercooked meat, bone marrow or other uncooked meat 

products. Besides being an infectious disease, human brucellosis is also considered an occupational 

disease because it usually occurs during occupational activities that expose workers to Brucella 

     n reported cases  
       0 reported cases  
        no data 
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(Weinstein and Singh, 2009). Populations such as abattoir workers, veterinarians, lab technicians, 

hunters, farmers, and livestock producers are involved in such activities (Weiming et al., 2018). 

Occupational brucellosis is predominantly reported in the animal husbandry, agriculture, meat 

processing and vaccine production industries. In these occupational fields, exposure to Brucella can be 

prevented by maintaining good hygiene and using protective equipment (Weiming et al., 2018). 

Four Brucella species, namely B. abortus, B. melitensis, B. suis and B. canis are classified as 

category B bioterrorism agents according to the Centers for Disease Control and Prevention (CDC), as 

they are moderately easy to disseminate, and they result in moderate morbidity and low mortality rates 

(Centers for Disease C. prevention, 2000). Extensive studies have been done in the past exploring the 

potential of Brucella spp. as biological weapon agents (Franz et al., 1997; Doganay and Doganay, 2013). 

In fact, there are several biological and pathogenic properties of Brucella spp. that make them useful 

agents of biological warfare. The major characteristic is that they are highly infectious via the aerosol 

route, with an infectious dose estimated at approximately 10-100 organisms (Mense et al., 2004). The 

mechanisms of transmission, through aerosols or food chains, makes them easily transmissible to both 

humans and animals. It has been estimated that the release of 50 kg of B. suis from a plane along a 2-10 

km line upwind of a population center of 500,000 people would result in 500 deaths and 125,000 people 

being incapacitated (Doganay and Doganay, 2013).   

Brucella spp. can entry into the human host by several ways: via inhalation, ingestion, contact 

with mucosa or puncture wounds such as needle sticks (Franco et al., 2007). This is followed by an 

incubation of 10-21 days (but can take as long as 12 months), a brief bacteraemia, and localization to 

the mononuclear phagocyte system (Brucellosis, 2009). The disease has several clinical presentations, 

depending on the species, the mode of transmission and the host immune response (Baldi and 

Giambartolomei, 2013). Asymptomatic infections are common. In symptomatic cases, the disease is 

extremely variable and the clinical symptoms may appear insidiously or abruptly. Typically, brucellosis 

begins as an acute febrile illness with nonspecific flu-like signs such as fever, headache, malaise, back 

pain, myalgia and generalized aches. Drenching sweats can occur, particularly at night (Pappas et al., 

2005). Splenomegaly, hepatomegaly, coughing and pleuritic chest pain are sometimes seen. 

Gastrointestinal signs including anorexia, nausea, vomiting, diarrhea and constipation occur frequently 

in adults but less often in children. Acute and chronic brucellosis can lead to complications in multiple 

organ systems. The most common complications are arthritis, spondylithis, epididymoorchitis and 

chronic fatigue. Neurological signs occur in up to 5% of cases (Dean et al., 2012). They may include 

personality changes, meningitides, encephalitis and peripheral neuropathy. Endocarditis is one of the 

most serious complication, and is often the cause of death in fatal cases.  

Depending on the timing of treatment and severity of illness, recovery may take a few weeks to 

several months. Some forms of localized disease, such as endocarditis, may require surgery. Death from 

brucellosis is rare, occurring in only about 2% of all cases (Franco et al., 2007). The choice of a regimen 

and duration of antimicrobial therapy should be based on the site of the infection and the underlying 
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conditions of the patient (Solera, 2010). Treatment of brucellosis should involve antibiotics that can 

penetrate macrophages and can act in acidic intracellular environment, as Brucella is an intracellular 

pathogen. Also treatment with duration of less than 4 weeks have a high risk for relapse (Pappas et al., 

2005). So, combination of two antibiotics for longer duration of therapy for at least six weeks is 

recommended. According to WHO guidelines, the recommended combination of treatment for human 

brucellosis is doxycycline along with either rifampicin or streptomycin, a recommendation that has been 

in place for more than a decade (Pappas et al., 2005). 

Isolation of resistant Brucella strains highlights new difficulties for managing antibiotic therapy. 

It may actually mean we could have to give up the use of easily administered low cost oral antibiotics, 

which can be prescribed to children and pregnant women. Both dual therapy (doxycycline and 

rifampicin) and triple therapy (doxycycline, rifampicin, and gentamicin) have been already administered 

(Skalsky et al., 2018), and the rationale behind the use of the combination of three antibiotics is the 

possibility of reducing the risk of brucellosis recurrence (Yousefi-Nooraie et al., 2012). Time to 

diagnosis is crucial to choose the best therapy regimen and to avoid complications that lengthen the 

hospitalization, increasing the expenses for the national healthcare system. It is believed that, in a future 

scenario, where Brucella becomes more frequently resistant to antibiotics, the management of an already 

subtle disease will become more difficult, where setting up therapeutic regimens with multiple 

antibiotics could eventually reduce the risk of disease recurrence (Skalsky et al., 2018).  

 Diagnostics and typing of brucellosis  

The laboratory investigation for brucellosis is usually done by isolation of the bacteria or 

detection of anti-Brucella antibodies. Although isolation of the bacteria is the “gold standard”, it requires 

long incubation periods and is seldom successful (Jama’ayah et al., 2011; Rich et al., 2000; Robichand 

et al., 2004). Therefore, although culture has a definitive diagnostic value, serologic tests have a major 

role in brucellosis diagnosis.  

Several serological tests have been used for the diagnosis of human brucellosis (Avijgan M, et 

al, 2019).  The serum agglutination test (SAT) for brucellosis, developed by Wright et al in 1897 (Wright 

et al., 1997), is still the reference method to which other tests are compared. Other methods that have 

been developed since then include the Rose Bengal test, the complement fixation test, the indirect 

Coombs test, enzyme immunoassays (ELISA) (Gad El-Rab et al., 1998), and an immunocapture-

agglutination test (Brucellacapt) (Orduña et al., 2000; Rubio et al., 2001). Usually, the sensitivity of the 

serological tests range from 65 to 95%, but the specificity in areas where brucellosis is endemic are low 

because a large part of the population has contact with infected animals or products of animal origin and 

develop and maintain antibodies against Brucella even without the occurrence of active infection.  

Moreover, most serological tests can produce cross-reactions with other bacteria and also exhibit 

important limitations with samples taken in the early phases of the disease, from persons exposed 



CHAPTER I 
__________________________________________________________________________________ 

__________________________________________________________________________________ 
 

professionally, from patients with a recent history of brucellosis, and from patients who relapse (Queipo 

– Ortuno, et al, 1997). 

The routine identification and differentiation of Brucella species is typically based on 

phenotypic traits. However, it is a lengthy process that requires experience technicians, and is associated 

with a high risk of laboratory–acquired infection (Hinic et al., 2008). In order to overcome these 

difficulties, and in spite of the high degrees of genetic similarity among different species, several 

conventional and real time PCR assays have been established. The conventional polymerase chain 

reaction (PCR) and multiplex PCR typing are capable of identifying Brucella up to species level. On 

this regard, a multiplex PCR assay, AMOS PCR (AMOS is acronym from “abortus, melitensis, ovis, 

suis”), is able to identify B. abortus, B. melitensis, B. ovis, and B. suis, including the discrimination at 

biovar level, using a combination of different PCR primers. This PCR assay had successfully identified 

B. abortus biovars 5, 6, and 9 and some field strains of biovar 3 B. abortus (Hinic et al., 2008). However, 

this method needs at least 5–6 h to be completed and required post-amplification handling of PCR 

products, which may yield contaminations. For the rapid, sensitive and accurate detection of Brucella 

spp. the multiple insertion element IS711, which is stable in both number and position in the Brucella 

chromossomes, has been choosen as a target (Hinic et al., 2008). Also, a non-multiplex PCR for species 

differentiation has been developed, which is based on unique genetic loci of B. melitensis, B. abortus, 

B. suis, B. ovis, B. canis and B. neotonae. Nevertheless, the simple identification of genus and, in some 

cases, species by PCR assays, is adequate for purposes of diagnosis of human/animal disease or 

identification of food contamination but not for the tracing of outbreaks or bioterrorism attacks. To 

achieve these goals, whole-genome sequencing-based approaches are required, due to their higher 

discriminatory power (Santis, et al). 

Identification and typing of B. melitensis are still traditionally performed with the use of 

biotyping techniques. This methodology, however, suffers from inconsistencies and requires handling 

of the live bacteria. For this reasons, PCR-based typing is now commonly used as an alternative to the 

culture dependent typing methods. The results of the classical biotyping schemes categorize B. 

melitensis into three biovars that are of limited epidemiological value, as they do not provide sufficient 

resolution between the isolates. In fact, B. melitensis is considered a monomorphic pathogen, which 

renders its differentiation at the strain level very difficult. To fulfill the objective of sub-species 

discrimination, Variable Number Tandem Repeats (VNTR) have been investigated in Multi-locus 

VNTR Analysis (MLVA) by various scientific groups since 2003 (Le Fleche et al., 2006; Mambres, et 

al., 2017; Sun et al., 2017). This Brucella typing scheme, using VNTRs based on 16 loci (“MLVA-16”), 

has been proven to have the ability to differentiate Brucella species, biovar and even the isolates. More 

importantly, there is an online database of MLVA-16 profiles available to all researchers allowing the 

comparison of Brucella strains at the worldwide scale (Le fleche et al., 2006; Sun et al., 2017; Mambres 

et al., 2017). Although MLVA has become a major molecular typing method to characterize several 
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pathogenic bacterial species, this methodology is laborious, time consuming and frequently the 

amplification of all loci cannot be achieved.  

Overall, efficient and reliable surveillance programs are essential for detection and control of 

outbreaks and largely depend on collection and access to epidemiological data. Currently, 

epidemiological investigations rely on the availability of standardized and effective molecular typing 

methods and analysis tools that allow the public health laboratories to identify and trace an outbreak 

back to its source. 

 Comparative Genomics and phylogenetic analysis 

Brucella species are characterized by extremely high levels of nucleotide similarity despite the 

notorious differences in host tropisms, microbial and disease phenotypes and pathogenicity. For many 

years molecular studies and the development of molecular typing tools were hampered by this lack of 

diversity. However, gradual progress was made in identifying useful markers and tools and this progress 

has been greatly accelerated in recent years by the availability of genome sequence (Parkhill and Wren, 

2011; Bohlin et al., 2010 ). 

Distinguishing individual bacterial lineages within a species, initially by phenotypic and 

subsequently by genotypic typing techniques, has been the cornerstone of infectious disease 

epidemiology, allowing the identification and tracking of the organisms responsible for infection and 

disease [Parkhill and Wren, 2011]. During the past decade, the understanding of evolution at the 

genomic level has been shaken to its core by many reports showing that genomes from closely related 

species can vary in terms of gene content [Williams et al., 2011]. 

 

 

 

Figure 1. 2 – Circular view of the two chromosomes of Brucella melitensis displaying some of the major 
genetic features loci. (Georgi E et al., 2017) 
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In 2002, the first Brucella genomes became available with the publication of the B. melitensis 

16M (DelVecchio et al., 2002) genome, followed a few months later by B. suis 1330 (Paulsen et al., 

2002) and B. abortus biovar 1 strain 9-941 (Halling et al., 2005). The Brucella genome is composed of 

two circular chromosomes of approximately 2.1 and 1.2 Mb (Figure 1.2). Both chromosomes share 

similar GC content, a similar proportion of coding regions and equivalent housekeeping gene 

distribution (Sankarasubramanian, et al., 2017). The existence of numerous transposons, insertion 

elements and phage remnants suggest a vigorous contribution of these mobile genetic elements to 

evolution. Despite an evolutionary divergence and/or host specific adaptation, orthologous 

characteristics relevant to virulence do not appear to have undergone substantial change within genus. 

Although there are several examples of phage – mediated and other insertion/deletion events that may 

account for differences in virulence and host specificity, their contribution through small sequence 

changes (single nucleotide polymorphisms) in orthologous functions remains the primary potential 

source of distinction (Ficht, 2010). 

To date, genome sequences from more than 770 different Brucella strains, representing all 

species, have been published either as complete genomes or as draft assemblies. The overriding 

conclusion derived from comparative genomics studies was that the genomes are all highly conserved, 

but with a variety of indels and recombination events. The major difference in chromosome I was 

previously identified in B. suis biovar 2 strain Thomsen (ATCC23445), where a 210kb segment of 

chromosome I has been translocated to chromosome II (Wattam et al., 2009). In contrast, chromosome 

II was found to be somewhat more variable as more internal rearrangements, including the 700 kb 

inversion in B. abortus genomes, have been described.  

The comparison of the genomes of B. melitensis 16M, B. suis 1330 and B. abortus biovar 1 

strain 9-941 confirmed just how closely related the three species are. Their genomes revealed extensive 

gene similarity and syntonic with the majority of genes (>90%) sharing 98-100% identity (Verger et al., 

1985). More variable genes (<95% identity) were confined to genes encoding hypothetical genes and 

probable surface exposed proteins such as outer membrane proteins, membrane transporters, putative 

invasion and ShdA-like adhesins (Paulsen et al., 2002). Considering these early findings much research 

over subsequent years focused on the identification of molecular markers and suitable experimental 

approaches to discriminate between members of the genus. While in many cases simple identification 

as a member of the genus is adequate for practical purposes (e.g. diagnosis of human disease or 

identification of food contamination), in other cases, identification to species or subspecies level is 

needed. For example, most government sponsored eradication programs include regulations stipulating 

a species-specific response and sub-typing is essential to facilitate any degree of epidemiological trace 

back. As such, the simple identification of genus and, in some cases, species by PCR assays is adequate 

for purposes of diagnosis of human/animal disease or identification of food contamination but not for 

the tracing of outbreaks or bioterrorism attacks (Santis et al., 2011; Whatmore et al., 2007). It is 
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unequivocal that the advent of next generation sequencing has been a technological revolution that fulfils 

these requirements, as full bacterial genome sequencing has become highly accessible (Foster et al., 

2009; Liu et al., 2012; Wattam et al.,  2009). Unlike the taxonomically informative or canonical single 

nucleotide polymorphims (SNP) – based approaches, whole genome sequencing serves as a robust an 

unbiased method to resolve intraspecies relationships for closely related species such as Brucella spp. 

In this regard, Tan et al (Tan et al., 2015) draw a map of the global genetic diversity of B. melitensis 

strains isolated in different continents. In their study, B. melitensis isolates are represented by five 

genotypes: Mediterrean strains are identified as genotype I, Asian strains are classified as genotype II, 

genotype III is represented by strains of African descendent. The genotypes IV and V are assigned 

respectively to the European and American lines. (Tan et al., 2015).  

In recent years, the typing methods have shifted towards genome-based approaches that finally allowed 

an accurate differentiation between Brucella isolates and establishment of a common consensus for the 

subtyping schemes of this pathogen. Rather than constructing phylogenetic inferences from a small 

portion of the genome (like MLST, MLVA) entire genomes can now be compared. Recent 

implementation of whole-genome single nucleotide polymorphism (SNP)-based typing has led to 

substantial improvements of both molecular subtyping and phylogenetic analyses in microbiology. The 

development of core- and whole-genome MLST schemes has been focused on a restrict number of 

bacterial pathogens, including Brucella spp. but their application may be tricky (Tan et al., 2015 

Janowicz et al., 2018; Sankarasubramanian et al., 2018). Also, whole genome comparisons and 

phylogenetic analysis of Brucella have only been done on a limited scale. With the technological 

advances and decreased cost of Whole Genome Sequencing, new methods of pathogen typing, including 

gene-by-gene comparison using core genome multilocus sequence typing (cgMLST), as well as single-

nucleotide polymorphism (SNP) calling based on a reference sequence analysis, are considered to be a 

suitable and more informative replacement of the gold standard typing schemes (Sankarasubramanian 

et al., 2019). Recently, two cgMLST schemas were developed for Brucella: one genus-specific 

(Sankarasubramanian  et al., 2019) and the other exclusively for B. melitensis (Janowicz et al., 2018; 

Sankarasubramanian et al, 2019). However, despite the former is incorporated on a freely web Brucella 

platform (http:// www.dbtbrucellosis.in/brucellabase.html), it is based on a very small panel of 164 loci. 

On the other hand, the latter contains a wider core gene set of 2704 targets but is available on a pay-per-

use platform. 

Overall, genomic studies have already contributed substantially to our understanding of the 

biology of Brucella and have facilitated the development of new tools to identify and characterize 

members of the group. As we move into an era of availability of multiple genomes within individual 

species, progress should accelerate in a number of areas where genomic analysis offer huge promise. 

This provides the direct understanding of relationships between isolates and a framework for the 

generation of hypotheses for further biological investigation. Exploitation of existing and forthcoming 
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genome sequences will potentiate our understanding across multiple areas of Brucella biology, such as 

virulence and pathogenic processes associated with Brucella that remain relatively poorly understood. 

 Aim of the thesis  

According to the described background, the major aims of this thesis can be pointed out as follows: 

- contribute to a more accurate evaluation of the epidemiological situation of human brucellosis in 

Portugal; 

- identify potential outbreaks and transmission links the brucellosis infection through the 

implementation of a whole genome sequencing (WGS) approach to give a step forward in the Brucella 

spp. surveillance in Portugal; 

- evaluate the agreement between experimental (i.e., wet lab based) and the developed in silico 

determination of MLVA for strains comprising several Brucella species in order to check the validity 

of such technological transition underlying the genetic characterization of Brucella; 

- evaluate the genetic polymorphism of several virulence factors of B. melitensis strains. 
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2 Human Brucellosis in Portugal – Retrospective analysis of suspected clinical cases of 

infection from 2009 to 2016 

 Abstract 

Brucellosis is a zoonosis that is emerging in some regions of the world. Although brucellosis is 

a disease of obligatory declaration and is not eradicated in Portugal, no prevalence data is available in 

this country.  In this study, we retrospectively analyzed the data available at the Reference Laboratory 

at the Portuguese National Institute of Health during the past 7 years (2009-2016) in order to get insight 

into the epidemiological scenario of brucellosis in Portugal. A total of 2313 biological samples from 

patients with clinical suspicion of brucellosis were subjected to immunological techniques for laboratory 

diagnosis. From 2010 to 2015, a subset of 259 samples was subjected to molecular methods.  According 

to the available data, 167 out of 2313 (7.2%) samples had positive serology for Brucella spp. and 43 out 

of 259 samples (16.6%) were positive for B. melitensis by real time PCR, being classified as biovar 1 

and 3. This study draws attention to the importance of integrating clinical and laboratory data of human 

cases in order to increase the efficacy of the response measures in case of outbreaks. 

 Introduction 

Brucellosis is a worldwide zoonosis caused by the intracellular facultative bacteria of the 

Brucella genus (Young, 2005; Seleem et al., 2010). The later currently encloses 12 species, five of 

which (B. abortus, B. suis, B. melitensis, B. ovis and rarely B. canis) are the ones more commonly 

associated with human disease (Whatmore et al., 2014; Scholz et al., 2016). B. melitensis is the most 

virulent and has the largest public health impact in the EU due to its predominance in small ruminant 

populations (Young, 2005). Human brucellosis, also known as Malta fever, Undulating, Mediterranean, 

Gibraltar or Bang Disease, affects the well-being of people, not only as a disease in man and animals, 

but due to its economic impact, since it implies heavy losses in livestock farms. It also influences 

people´s life quality, especially those who live in rural areas, where contact with animals and the 

consumption of food and milk from homebred animal origin is more frequent and less controlled 

(Whatmore et al., 2009). The two most common ways of human infection are through the contact with 

infected animals or the ingestion of unpasteurized dairy products. Risk groups for this disease include 

individuals that work with unvaccinated infected animals, farmers, slaughterhouse workers and 

veterinarians. They get infected through direct contact or inhalation of aerosols produced by the infected 

animal tissue. This situation is frequently found in areas where brucellosis is endemic in ovine and 

bovine cattle, and it is usually associated with infection by B. melitensis (Moreno, 2014). Human 

brucellosis is a systemic disease that may affect any organ or system, in subacute, acute or chronic form. 

The disease has several clinical presentations, depending on the species, the mode of transmission and 
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also the host immune response (Baldi et al., 2013). The incubation period is difficult to determine in 

humans, ranging from one week to more than two months (usually 2-4 weeks) 

(referênciahttp://www.who.int/zoonoses/diseases/Brucellosissurveillance.pdf). Fever, night sweats, 

severe headache and body aches and other non-specific symptoms may occur. Acute and chronic 

brucellosis can lead to complications in multiple organ systems. The musculoskeletal system, central 

nervous system, respiratory tract, the liver, heart, gastrointestinal and genitourinary tracts can all be 

affected. Untreated brucellosis has a fatality rate of 5% (Franco et al., 2007). 

The inclusion of Brucella spp. in the list of agents with the potential to be used as a biological 

weapon increased the concern of the authorities responsible for human and animal health (CDC, 1999; 

Jacobs et al., 2004) and made reference laboratories ensure constant improvement and update their 

laboratory methods for diagnosis and early detection of the pathogen in both environmental, food and 

biological samples (Araj, 2010; Pappas et al., 2006; Tzaneva et al., 2007). On this regard, it is also 

important to have the complete information regarding phenotype and genotype of the strains that are 

most prevalent in each geographic region. 

The laboratory diagnosis is based on the use of direct methods, such as the isolation of the 

causative agent for culture analysis and detection of nucleic acids by molecular methods, as well as 

indirect methods such as the detection of specific antibodies. However, the immunological diagnosis of 

human brucellosis does not differentiate the species of the genus Brucella spp. (Araj, 2010). Recently, 

several molecular methods were developed, including real time PCR, which reveals great potential for 

direct and rapid identification of species of the genus Brucella spp. (Gopaul et al., 2008). 

In Portugal, brucellosis is a notifiable disease, and one of the three most frequent zoonosis.  

Human cases are reported in all regions of continental Portugal, as shown in the 2011-2014 report of the 

General Directorate of Health (DGS) [Doenças de Declaração Obrigatória 2009-2012). Nevertheless, 

there is no published study with data on the prevalence and incidence of human brucellosis in Portugal, 

so the real prevalence of brucellosis in Portugal is unknown. Moreover, for the vast majority of the 

reported cases it has not been possible to identify which Brucella species caused the infection. 

This is not done and this lack of information may have serious impact in the identification of 

the sources of infection, impairs the identification of the most important reservoir hosts and also the 

implementation of timely and adequate measures that could promote the prevention and/or mitigation 

of the impact of this infection in the population. 

The aim of this study was to contribute to a more accurate evaluation of the epidemiological 

situation of human brucellosis in Portugal, through the analysis of data available at the Department of 

Infectious Diseases at the Portuguese National Institute of Health (NIH), gathered between 2009 and 

2016. 
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 Methods 

  Between 2009 and 2016, 2571 samples from patients with clinical suspicion of brucellosis were 

received at the Reference Laboratory at the Portuguese National Institute of Health (NIH) for diagnostic 

purposes. Samples were analyzed by immunological techniques, except for a subset of 259 samples 

(collected between 2010 and 2016) that were instead analyzed by a combination of molecular methods 

in agreement with the clinicians’ request. In the present study, we conducted a retrospective analysis of 

all data collected on those samples. No informed consent was obtained from each participant as, besides 

the information regarding gender and age, no further information was available to the laboratory and no 

tests besides the ones requested by the clinicians were performed. This procedure is in agreement with 

the Portuguese law No. 12/2005 of 26 January). The ethical commission of National Institute of Health 

also approved this study and the anonymity of the patients was maintained.  

The immunological diagnosis of brucellosis infection was made using serological methods for 

antibodies’ detection based on agglutination techniques (Rose Bengal (Vircell, Granada, Spain), Wright, 

2-mercaptoethanol (Fortness, Diagnostic, UK),  Coombs test, indirect immunofluorescence (IFI) and 

immunoenzymatic assays (Brucella Elisa Igm/IgG Testkit, Virotech, Russelsheim, Germany)). All 

samples of sera and/or cerebrospinal fluid (CSF) were analyzed at least by two of the mentioned above 

immunological techniques. According to the Reference Laboratory at the Portuguese NIH guidelines, 

we considered a positive serological result when we observed a simultaneously positive result for one 

agglutination technique and one IFI or ELISA. No bacteriological cultures or PCR techniques were 

attempted in the serologically positive cases. 

The molecular methods of brucellosis infection were performed in a tandem fashion. First, an 

“in house” real time PCR using hydrolysis probes was used to detect and identify the species of Brucella 

genus from blood samples, CSF, biopsies and strains isolated from blood cultures. For the rapid, 

sensitive and accurate detection of Brucella spp., the multiple IS711insertion elements were chosen as 

they are conserved in both number and position in the Brucella chromosomes (Hiníc et al., 2008). For 

species differentiation, primers and Taqman probes were designed within the following ORFs: 

BMEII0466 gene for B. melitensis, BruAb2_0168 gene for B. abortus (Hinic et al., 2008).  

Finally to distinguish Brucella biovars, a molecular characterization of the rpoB gene was also 

performed.  In contrast to the 16S rRNA locus, which lacks sufficient sequence variability for 

differentiation of Brucella spp, the rpoB gene shows sufficient polymorphism to differentiate all 

Brucella species and their biovars; the exceptions are B. abortus biovars 1 and 4 and B. abortus biovars 

5, 6 and 9, which show the same rpoB sequence (Marianelli et al., 2006). 

Brucella strains were subjected to whole-genome sequencing on a MiSeq Illumina platform 

(Illumina) for other purposes than the ones of the present study, but allowing us to perform the in silico 

extraction of the rpoB . All 4134 bp rpoB gene sequences were retrieved from each draft genome and 

were compared with that of the published B. melitensis 16M genome (Marianelli et al., 2006). B. 
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melitensis strains are classified in three rpo types (biovar 1, biovar 2 and biovar 3) according to the 

presence or absence of mutations in rpo gene targeting the specific codon residues 629, 985, 1249 and 

1309. Basically, a strain was classified as phenotypically belong to biovar 1, if rpoB is 100% identical 

to that of the B. melitensis 16M genome. The presence of nucleotide substitutions GCG to GTG at codon 

629, GCC to GTC at codon position 985 and CTG to CTA at codon position 1309 underlies the 

classification as biovar 2. The existence of the nucleotide substitution ATG to ATA at codon position 

1249 leads to the classification as biovar 3 (Marianelli et al., 2006).  

Statistical analysis was performed using descriptive analysis and associations were tested using 

Chi-squared test. It was considered a 5% significance level to reject the null hypothesis of the tests. 

Statistical analyses were computed using software R version 3.3.2.  

As this study constitutes a retrospective analysis, some of its methodological limitations regard 

to the lack of information that would allow a more complete analysis of risk factors (such as occupation 

and residence area of the patients). Also, as the analyzed samples had been sent to the lab with the 

clinician request for a specific diagnostic method, we respected such request hampering the use of a 

single method for all samples. 

 Results 

Between January 2009 and December 2016, 2313 biological samples from patients with clinical 

suspicion of brucellosis were analyzed by immunological techniques and 7.2% (167/2313) had positive 

serology for Brucella spp. The distribution of infection rate by year ranged from 5% (2012) to 10.7% 

(2009) for the 2313 samples analyzed by immunological methods, (Fig. 2.1 and  S2.1 Table). 

 

 
Figure. 2.1 Brucellosis infection rate between 2009 and 2016. Distribution of Brucellosis cases 
identified in the Portuguese National Institute of Health in the period between 2009 and 2016, by 
immunological techniques (blue bars) and molecular biology (red bars). The “n” above each bar 
corresponds to the number of positive samples. Infection rate per year was defined as the number of 
positive cases / total number of patients. 
 

Of the 167 patients that yielded positive serology for Brucella spp, 61.7% (103/167) were male and 

38.3% (64/167) were female (p=0.014) (data not shown). The age was known for 98.8% (165/167) of 

the cases, of which half (57.7%, 95/165) are between 26-65 years. Although the distribution by age 
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groups showed an irregular pattern, we found that 5.4% of the positive cases belong to children <5 

years (Fig. 2.2 and S2.1 Table). 

 

 
Figure.2.2 - Brucellosis infection rate by age groups. Distribution of Brucellosis infection rate by age 
groups performed by immunological techniques (blue bars) and molecular biology (red bars). 
 

Between the years 2010 and 2016, 259 samples were tested by real time PCR methods, and 

16.6% (43/259) were positive for Brucella spp., being Brucella melitensis the only species identified in 

the analyzed cases (Fig.2.1). The distribution of infection rate by year ranged from 3.7% (2014) to 22.9% 

(2013).   

Concerning this subset of samples, a higher prevalence of positive samples for Brucella spp. 

was observed in males (p=0.007), similar to the scenario observed for the immunological methods. 

Regarding age distributions, in average, the age of the infected patients was 48.5 years (ranging between 

6 and 91 years) (p<0.001) (Fig. 2.2).  

The wild-type strains were classified by analyzing the B. melitensis rpoB types. The strain 

frequencies for these types were 14,3% for rpoB biovar 1 and 85,7%, for biovar 3. None of the strains 

belonged to biovar 2. 

 

 Discussion and Conclusions 

 
In the present study, we intended to shed some light on the still unveiled prevalence scenario of 

human brucellosis in Portugal, by conducting a retrospective study on about 2700 samples received at 

the Portuguese NIH over a 7-year period.  Overall, serological diagnostic identified 167 (7.2%) positive 

cases of human brucellosis, of which 61.7% were male and half of the cases were in the age groups 

between 26-65 years. Preview studies show that in industrialized countries the disease mainly affects 

men aged between 20 and 45 years, and suggests that the distribution by gender is connected to 

occupational factor (Corbel, 2006). In fact the people who work with farm animals, especially with 

cattle, sheep, goats and pigs (e.g., farmers, farm laborers, animal attendants, stockmen, shepherds, sheep 

shearers, goatherds, pig keepers, veterinarians and inseminators) are at risk through direct contact with 

infected animals or through exposure to a heavily contaminated environment.  Although we found an 
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irregular pattern of distribution of brucellosis by age groups, the infection rates calculated by molecular 

techniques revealed that the age groups between 46 and 65 years old are among the ones with the highest 

rates. This falls within the range of the one described in the ECDC “Annual epidemiological report - 

Food-and waterborne diseases and zoonose in 2014”, in the European Union (EU), reflecting a higher 

number of cases registered in the age group 45 to 64 years old (Annual epidemiological report, Food-

and waterborne diseases and zoonoses. 2014). We also observed a low infection rate in children (5.4%), 

which is in agreement with data from the European Food Safety Authority, reporting that the vast 

majority (80%) of the European cases of brucellosis were adults over 25 years. This lower infection rate 

in children when compared with the one observed in adults likely relies on the low contact of children 

with the common infection sources, such as infected animals and animal products.  

Although the molecular diagnostic was only applied to a subset of samples from 2010 to 2016, 

from the 259 analyzed samples, 43 (16.6%) were positive for B. melitensis. The higher infection rates 

obtained when using real time PCR when compared with immunological methods are likely due not 

only to a probable higher sensitivity of the former technique, but also because, according to our 

experience, PCR is usually requested when the clinician has a strong suspicion of brucellosis (e.g., 

patients revealing complications associated with the disease). The majority of the PCR positive cases 

belonged to biovar 3, pointing it as clearly the most common species/biovar involved in the human 

disease in Portugal. Like other countries, Portugal, applies specific regulations and measures to eradicate 

the disease, however, regardless of the huge efforts to eliminate it, brucellosis has continued to be an 

endemic disease where B.melitensis biovars 1 and 3 amd B. abortus biovars 1 and 3 are the prevailing 

animals species (Ferreira et al., 2013). This is in agreement with the data available for Europe. In fact, 

species information was provided for 99 of the 332 confirmed cases reported in the EU and Norway 

between 2008-2012, where 83.8% were reported to be B. melitensis (Annual epidemiological report, 

Food-and waterborne diseases and zoonoses. 2014).  Although all clinical cases in Portugal were caused 

by B. melitensis, other Brucella species pathogenic to humans have been identified in animals, namely 

B. abortus and B. suis (Cristina et al., 2015). This underlines the importance to perform the early 

detection and identification at species’ level of the Brucella strains obtained from clinical samples 

(human and animals), which is a critical information to prevent or control the occurrence of outbreaks. 

For this reason, molecular techniques, such as the real time PCR, particularly when applied to patients 

with compatible clinical symptoms and negative serological findings, are the most useful approach for 

laboratory diagnosis due to the rapid and precise identification of the Brucella sp. strain present in the 

clinical sample.  

The geographical distribution of brucellosis is constantly changing, with the emergence and 

reemergence of new outbreaks around the world. Reflecting the social, cultural, and economic policies 

that describe a changing global society, this pathology has been reflecting this dynamics, making its 

control and eradication a constant challenge.  



CHAPTER II 
__________________________________________________________________________________ 

__________________________________________________________________________________ 
23 

In conclusion, despite the control and prevention measures implemented by the national 

authorities, brucellosis remains a problem in Portugal, with impact in public health and in the economy. 

This study draws attention to the importance of integrating clinical and laboratory data of human cases 

in order to increase the efficacy of the response measures, essentially in case of outbreaks. Furthermore, 

our findings reinforce the need to maintain an active epidemiological surveillance, enabling the early 

detection of all cases of infection and underlie the need to have a good communication flow between 

the human and animal Health Ministries, according to the One Health concept, the only valid way to 

improve the assessment of the actual epidemiological situation of brucellosis and other zoonosis in 

Portugal.  
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3 Genome-scale genetic relatedness among Brucella melitensis strains causing human 
infections in Portugal 

Abstract 

Brucellosis is an important zoonotic disease that affects both humans and animals. In Portugal, it is an 

endemic and notifiable disease although brucellosis cases are clearly underreported. To date, laboratory 

surveillance is based on the traditional MLVA-16 methodology and the associated epidemiological 

information is scarce. Our goal was to give a step forward in the Brucella spp. surveillance in Portugal 

through the implementation of a whole genome sequencing (WGS) approach. We created a curated 

species-specific wgMLST scheme enrolling a panel of 2656 targets and used it to perform a retrospective 

analysis of the genetic relatedness among B. melitensis strains causing human infection in Portugal from 

2010 to 2018. The strains showed a phylogenetic clustering within genotype II (25 out of 36) and IV (4 

out of 36), and shared clades with strains isolated from countries with which Portugal has privileged 

food trading, tourism and shares eating habits, such as Spain, Italy and Greece. Our results point to the 

identification of strong associations between B. melitensis strains, likely underlying missed “outbreaks” 

as 22 out of the 36 strains showed one or multiple genetic linkage with each other’s. In fact, the applied 

gene-by-gene approach grouped these strains into six genetic clusters, each one enrolling putative 

epidemiological links. Nevertheless, more studies will be mandatory in order to define the appropriate 

range of cut-offs (probable non-static cut-offs) that best illustrate the association between genetic 

linkage and epidemiological information and may serve as alerts for the health authorities. Finally, this 

study constitutes a mark of technological transition for laboratorial surveillance of brucellosis in 

Portugal, and will unequivocally facilitate the assessment of ongoing and future outbreaks, in order to 

prevent the transmission spread. 

 
 

 Introduction  

Brucellosis, a disease caused by Brucella spp., is one of the world’s most widespread zoonoses, 

with estimated 500 000 new cases annually, and it is the leading cause of economic losses in the 

production of domestic ruminants (Pappas et al., 2006). The frequent sources of human infections are 

farm animals such as cattle, sheep, goats and pigs but Brucella can also infect marine mammals such as 

dolphins, porpoises, and seals. Humans can contract the disease by contact with infected animals or their 

products, with unpasteurized milk being the most common source of brucellosis in urban populations 

(Moreno, 2014). Brucella is a gram negative unsporulated and uncapsulated short bacillus that behaves 

as a facultative intracellular pathogen (Corbel and Brinley, 1984). The genus Brucella encloses 12 
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species, designated based on differences in pathogenicity and host preference such as B. melitensis 

(goats and sheeps), B. abortus (cattle and bison), and B. suis (swine, hares). B. melitensis is the most 

frequent agent of brucellosis in humans, and it leads to the most severe manifestations of the disease 

such as undulant fever, joint pain arthritis, endocarditis and meningitis (Whatmore et al., 2014; Scholz 

et al., 2010; Scholz et al., 2016). The Brucella genome contains  two circular chromosomes of 

approximately 2.1 and 1.2Mb, and both share similar GC content, a similar proportion of coding regions 

and equivalent housekeeping gene distribution (Sankarasubramanian et al., 2017; DelVecchio et al., 

2002). Also, three way genome comparisons of B. suis, B.melitensis and B. abortus sequences, revealed 

that the majority (>90%) of annotated genes shared 98-100% sequence identity and fewer than 100 

genes were identified in only one or two of the three genomes (Ratusha et al., 2006). Although prophages 

and insertion sequences have been reported (Abou Zaki et al., 2017; Azam  et al., 2016; Hammerl et al., 

2016; Kaden et al., 2014), species from Brucella genus are considered monomorphic pathogens 

(Wattam et al., 2014).  

Once limited genome diversity exists among different Brucella species, the analysis of full 

genome sequences of the different species (and biovars) is of crucial importance, not only to disclose 

the genetic basis of host preference and virulence differences (as these features must stem from the 

limited genome diversity), but also for molecular surveillance purposes. Nevertheless, whole genome 

comparisons and phylogenetic analysis of Brucella were only done on a limited scale. Efficient and 

reliable surveillance programs are essential for detection and control of outbreaks and largely depend 

on the timely collection and access to epidemiological data and the need of cooperation between 

different health sectors (i.e., human and veterinary) through the exchange of microbiological and 

associated metadata. In addition, complete epidemiological investigations rely on the availability of 

standardized and effective molecular typing methods and analysis tools that allow the public health 

laboratories to identify and trace an outbreak back to its source. Molecular epidemiological studies 

provide information about genetic grounds and origin of bacterial isolates, but such trace back studies 

in Brucella species can be challenging as they are generally quite conserved. With the technological 

advances and decreased cost of whole genome sequencing, new methods of pathogen typing, including 

gene-by-gene comparison using core genome multilocus sequence typing (cgMLST), as well as single-

nucleotide polymorphism (SNP) calling based on a reference sequence analysis, are considered to be a 

suitable and more informative replacement of the gold standard typing schemes (Sankarasubramanian 

et al., 2017). Although the SNP-based analysis may constitute a better option for phylogenetic analyses 

of conserved genomes (because this approach covers the entire genome, including the intergenic regions 

(Georgi et al., 2017), very recently, efforts to develop cgMLST schemes for Brucella have been done 

(Sankarasubramanian et al., 2019; Janowicz et al., 2018). One of these schemes involves 2704 genes 

and is based on a pay-per-use platform (Janowicz et al., 2018), whereas the other involves a strikingly 

lower number of genes (n=164) for differentiating purposes (Sankarasubramanian et al., 2019).  
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In Portugal, human brucellosis is a reportable disease and is among the three most frequent 

zoonosis (DDO, 2015). This country has a herding tradition, with a high number of people keeping 

animals at little farmhouses and with a huge tradition of cheese production. Despite both Portuguese 

reference institutes for human and veterinary diagnosis of brucellosis use the MLVA-16 (i.e., Multiple-

Locus Variable number tandem repeat Analysis based on 16 loci) methodology as a typing technique in 

epidemiological studies, there is a lack of communication between human and animal health authorities 

and the epidemiological link is rarely established. Considering this and the need for a technological 

transition for surveillance purposes, we developed a wgMLST schema to perform a retrospective 

analysis of the genetic relatedness among B. melitensis strains causing human infections in Portugal. 

Ultimately, we aimed at identifying potential transmission links that have been missed with the currently 

implemented surveillance system. This study was based on the collection of B. melitensis strains held 

by the reference laboratory for human Brucellosis at the Portuguese National Institute of Health, which 

receives all human isolates of B. melitensis. 

 Materials and Methods 

3.2.1 Samples 

This study enrolled, all B. melitensis strains that were sent to the reference laboratory for human 

Brucellosis at the Portuguese National Institute of Health during the last nine years, comprehending 37 

isolates. Genotyping and demographic data are summarized in Table 3.1. For genomic comparative 

purposes, it also included 18 strains isolated in Spain, Germany, Hungary and Belgium, which were 

kindly provided to our lab and that were subjected to all laboratory procedures and analysis (described 

below). For bioinformatics analysis, all B. melitensis genome sequences available at NCBI until January 

2019 (n=217) were also included.   

All samples were handled in a BLS-3 biocontainment laboratory at the Portuguese National 

Institute of Health. Brucella isolates were cultured on blood agar for 3 to 5 days at 37º C under 5% CO2 

and total DNA was extracted from fresh cultures on the NucliSens easyMAG platform (Biomerieux), 

according to the manufacturer’s instructions. All isolates had previously been confirmed as Brucella 

spp. by real time PCR detecting the Brucella specific gene IS711, BME and Brab (Pelerito et al., 2017). 

Table 3.1 - Brucella melitensis strains, data of origin, host and year. 

Strain Geographic Region Host Year 
1P 

35P 
36P 
38P 
40P 
41P 
43P 
44P 
66P 
147P 

Unknown 
Vila Real 
Vila Real 

Maia 
Vila Real 
Vila Real 

Vila Nova de Gaia 
Unknown 

Torres Novas 
Cabeceira de Basto 

Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 

2010 
2012 
2012 
2012 
2012 
2012 
2012 
2012 
2012 
2013 
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153P 
166P 
167P 
168P 
169P 
177P 
179P 
180P 
184P 
194P 
198P 
199P 
200P 
209P 
228P 
237P 
258P 
261P 
20Pa 

357Pa 
782Pa 
804Pa 
463Pa 
47Pa 

770Pa 
918Pa 

 

Cabeceira de Basto 
Seixo de Ansiães 

Vila Franca de Xira 
Lourosa 

Unknown 
Unknown 

Baião 
Baião 
Baião 
Lisboa 
Lisboa 
Loures 

Pontinha 
Évora 

Caldas da Rainha 
Coimbra 

Vila Nova de Gaia 
Unknown 

Frei Rodrigo 
Mafra 

Caldas da Rainha 
Fundão 

Vila Viçosa 
Penamacor 

Vila do Conde 
Unknown 

 

Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Human 
Goat 
Sheep 
Goat 

Bovine 
Sheep 
Sheep 
Sheep 
Goat 

 

2014 
2011 
2011 
2011 
2014 
2014 
2014 
2014 
2014 
2015 
2015 
2015 
2015 
2015 
2016 
2016 
2016 
2016 
2002 
2004 
2007 
2008 
2005 
2001 
2007 
2011 

3.2.2 Antimicrobial susceptibility  

All isolates were tested for antibiotic resistance to rifampicin (RIF), doxycycline (DOX), 

streptomycin (STR), gentamicin (GEN), by E- test® (biomerieux, Portugal) according to Clinical and 

Laboratory Standards Institute (CLSI) guidelines for potential agents of bioterrorism. Briefly, a 

suspension of bacteria adjusted to 0.5 McFarland units was inoculated on Mueller – Hinton plates 

supplemented with 5% sheep blood and the gradient strips applied. The plates were incubated at 35 

°C±2 °C with 5% CO2 for 48 h before reading. MIC values were interpreted in accordance with the 

CLSI guidelines (CLSI, The following breakpoints for susceptibilities were used: GEN≤4, STR≤16, 

DOX≤1. For RIF, CLSI interpretation of Haemophilus infuenzae (fastidious bacteria) was used: S≤1, 

I=2, R≥4. Quality control assays were performed with Escherichia coli ATCC #25922 and 

Streptococcus pneumoniae ATCC #49619.  

3.2.3 Whole genome sequencing (WGS) 

For WGS, high-quality DNA samples (quantified using Qubit, ThermoFisher) were subjected 

to dual-indexed Nextera XT Illumina library preparation, prior to cluster generation and paired-end 

sequencing (2×250bp) on a MiSeq Illumina platform (Illumina Inc.) available at the Portuguese NIH, 

according to the manufacturer’s instructions ). All genomes were de novo assembled using the INNUca 

v3.1 pipeline (https://github.com/B-UMMI/INNUca), which consists of several integrated modules for 

reads QA/QC, de novo assembly and post-assembly optimization steps. Briefly, after reads’ quality 

analysis (FastQC v0.11.5 - http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and cleaning 

(Trimmomatic v0.36) (Bolger et al., 2014), genomes were assembled with SPAdes 3.10 (Bankevich et 
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al., 2012) and subsequently improved using Pilon v1.18 (Walker et al., 2014). Draft genome sizes, mean 

depth of coverage, number of contigs, and accession numbers are described in Supplementary Table S1. 

3.2.4 Implementation of a wgMLST schema for B. melitensis 

We created a wgMLST schema for B. melitensis with chewBBACA v2.0.11 suite 

(https://github.com/B-UMMI/chewBBACA) (Silva et al., 2018) (CreateSchema module; default 

settings), using all complete genomes of B. melitensis available at NCBI (until January 2019) and a 

training file generated by Prodigal v2.6.3 from the B. melitensis M16 reference genome (RefSeq 

Accession NC_003317 and NC_003318). To curate the schema, allele calling was performed on all 

complete genomes with default parameters using a BLAST Score Ratio (BSR) threshold of 0.6 in order 

to remove paralog loci. A cgMLST schema was also extracted and allele calling was performed for all 

genomes of B. melitensis available at NCBI until January 2019 (that include 60 complete and 157 draft 

genomes) as well as for the 55 assemblies (that include sequences of 37 PT strains) performed in our 

lab, in order to discard genomes yielding less than 95% of called loci. To validate the wgMLST schema, 

allele calling was performed for the remaining assemblies. The impact of genome quality on allele call 

was evaluated (Test Genome Quality module) using a maximum number of interactions (-n) of 13 and 

exclusion thresholds from 0 to a maximum (-t) of 300 with increasing -s values of 5. Considering that 

the number of present loci varied with the inclusion or exclusion of specific genomes, a threshold of 25 

was used to select genomes that allow a good discriminatory power for the wgMLST schema creation. 

The quality of the loci panel composing the wgMLST have been assessed using the Schema Evaluation 

module with default parameters. Basically, loci with high length variability, and annotated as “non-

informative paralogous hit (NIPH/NIPHEM)” or “Allele larger/Smaller than length mode (ALM/ASM)” 

by the chewBBACA Alelle Calling engine in more than 1% of the B. melitensis genomes were removed 

in order to curate the wgMLST schema. Finally, exact and inferred matches were used to construct an 

allelic profile matrix, where the other allelic classifications were assumed as “missing” loci. 

3.2.5 Study of genetic relatedness among B. melitensis strains isolated in Portugal 

Minimum spanning trees (MST) were constructed taking advantage of goeBURST algorithm 

(Francisco et al., 2009) implemented in the PHYLOViZ online web-based tool (Ribeiro-Gonçalves et 

al., 2016), based on 100% shared loci between all strains (i.e., shared-genome MLST). A hierarchical 

clustering tree were also generated using PHYLOViZ desktop 2.0 (http://www.phyloviz.net/) with 

distances among strains estimated with Hamming Distance metrics via the single-linkage method. In 

order to increase the resolution power for cluster analysis within the Portuguese strains, we used 

PHYLOViZ online 2.0 Beta version (http://online2.phyloviz.net/), which allows maximizing the shared 

genome in a dynamic manner, i.e., for each sub-set of strains under comparison, the maximum number 

of shared loci between them is automatically used for tree construction. All allelic distance thresholds 

used during cluster investigation were expressed as percentages of allele differences (AD), expressed as 
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the number of allelic differences over the total number of shared loci under comparison. To explore 

strain sub-sets among our 37 PT strains, a conservative step-by-step approach was performed by 

applying allelic distance cut-offs ranging from 1 to 0.1% to the initial MST, based on previously 

described data for cluster investigation in gene-by-gene based surveillance (Llarena et al., 2018). 

 Data availability 

All raw sequence reads used in the present study were deposited in the European Nucleotide 

Archive under the run accession numbers ERR2938642-ERR2938706. 

 Results 

All Brucella isolates were identified as B. melitensis by real time PCR. The obtained MIC values 

for all tested antibiotics are show in Supplementary Table S3.2.  All isolates were susceptible to 

doxycycline, streptomycin and gentamicin. However, the MIC values for rifampicin ranged from 0.38-

32 µg/ml, and according to CLSI breakpoints for slow-growing bacteria (Haemophilus sp.), reduced 

susceptibility (MIC 2-3 µg/ml) in five isolates and probable resistance (MICs≥4 µg/ml) in three strains 

were demonstrated (CLSI Guideline, 2016).  We analyzed the mutational profile of rpoB to disclose the 

genetic basis of resistance to rifampicin but none of the identified SNPs have been linked to this 

phenotype. 

3.4.1 wgMLST to evaluate B. melitensis phylogenetic diversity 

By using the set of 272 B. melitensis genome sequences, we were able to generate a curated 

species-specific wgMLST scheme that enrolls a panel of 2656 targets (and 17472 alleles) based on the 

B. melitensis 16M reference genome (RefSeq Accession NC_003317 and NC_003318). This wgMLST 

schema was then applied to investigate phylogenetic relationships between genomes of the 36 PT strains 

(one was removed from the analysis due to bad quality), to put them in the frame of the worldwide 

phylogenetic scenario and to disclose potential epidemiological links. 

In a first approach, we analyzed the phylogenetic position of PT B. melitensis strains in a global 

tree constructed with WGS data from strains collected worldwide (Supplementary Figure S3.1). As 

expected, phylogenetic analysis revealed spatial clustering, with five major genotypes being identified 

(Tan et al., 2015). While genotype I comprises strains from the Western Mediterranean Region and 

Egypt, the broader genotype II harbors strains from the Eastern Mediterranean Region and the Middle 

and Far East, and genotype III strains from the African continent. On the other hand, genotypes IV and 

V, which emerged from the same common ancestral derived from genotype III, are assigned to strains 

from Malta, Portugal and the American Continent. Curiously, despite a few strains cluster in genotype 

IV clade, the vast majority of the strains isolated in Portugal (25 out of 36) shows up in the clade of 

genotype II, in particular within sub-genotype IIi (Pisarenko et al., 2018). Considering the huge allelic 
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diversity exhibited by all 271 analyzed strains, a genetic relatedness cut-off of 3% was applied to the 

hierarchical clustering tree to evaluate potentially linked strain clusters, especially those enrolling the 

36 PT strains (Supplementary Figure S3.1). While PT strains from genotype IV do not seem to present 

any apparent genetic relatedness with strains isolated in other geographic regions around the world, a 

different scenario was observed for genotype II. Indeed, the 25 PT strains assigned as belonging to 

genotype II seemed to exhibit a genetic proximity to strains isolated in Spain, Turkey and to two others 

isolates from Germany (corresponding to two imported cases with unknown origin). 

3.4.2 Analysis of genetic relatedness among B. melitensis strains isolated 

in Portugal 

In a second approach, a global MST was generated solely for all 36 PT strains (Figure 3.1).  

Based on the allelic diversity found among the 2191 shared loci, we were able to zoom-in the scenario 

of genotype classification described above. It can be observed that strains within each genotype display 

considerable fewer allelic differences (between one and 21 for genotype II and between two and 109 for 

genotype IV) than the ones obtained between genotypes or when compared with strains with unassigned 

genotype, where distances of more than 1000 allelic differences are observed. For comparative purposes, 

in parallel we also run the 36 PT strains with the freely available genus-specific cgMLST schema 

(Sankarasubramanian et al., 2019) that uses 164 loci (comprising about ~6% of the loci panel used in 

this study). However, although similar genotype associations were achieved, it revealed less strain 

discriminatory power, especially within genotype II, with several unrelated strains clustering together 

(Supplementary Figure S3.2). 
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Figure 3.1 – Phylogeny of PT B. melitensis strains based on a dynamic gene-by-gene approach using a wgMLST 
schema with 2656 loci. The Minimum spanning tree (MST) was constructed using the goeBURST algorithm 
implemented in the PHYLOViZ Online platform, and is based on the allelic diversity found among the 2191 genes 
shared by 100% of the 36 PT strains. Filled small circles (nodes) represent unique allelic profiles, and are colored 
based on the assigned genotype according to Tan et al (Tan et al, 2015).The numbers in grey on the connecting 
lines represent the allele differences (AD) between strains. 
 

To explore strain sub-sets among our 36PT strains, two additional MST were generated, one for 

each genotype. Considering that in Brucella spp. there is no defined threshold to identify clusters of 

genetically related strains with high epidemiology congruence, a conservative step-by-step approach 

was performed by applying allelic distance cut-offs ranging from 1 to 0.1% to the initial MSTs generated 

for (i) all 36 (ii) genotype II and (iii) genotype IV strains. We firstly selected a threshold of 0.4% (that 

corresponds to ≤11AD) since it allowed to maximize the number of strain sub-sets identified within 

each genotype (Figure 3.2). Indeed, after the application of this cut-off to both genotype MSTs, we were 

able to highlight six genetically related sub-sets of strains, which may theoretically harbor a higher 

probability to have an epidemiological link. In particular, genotype II strains exhibiting ≤10AD were 

kept interconnected in four clusters, and strains from genotype IV with ≤11 AD resulted into two 

potential related clusters (Figure 3.3A). Next, for each identified cluster, a sub-MST was generated in 

order to maximize the number of shared loci among the strain sub-set (Figure 3.3B), and consequently, 

to better evaluate the relatedness of strains.  

 
Figure 3.2 – Impact of different allelic distance thresholds on the definition of B. melitensis strains’ clusters. The 
number of clusters are shown for allelic distance cut-offs ranging from 0.1 to 1%. This analysis was done both by 
genotype and by using all strains. For the present dataset of 36PT strains, the cut-off that maximize the number of 
clusters identified within each cluster is highlighted in yellow. 
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Figure 3.3 – Phylogenetic relationship of PT B. melitensis strains by genotype based on a dynamic gene-by-gene 
approach using a wgMLST schema with 2656 loci. (A) For each genotype identified, the initial MST was 
constructed based on the allelic diversity found among the shared genes between strains (indicated near each tree). 
Potential clusters defined for fine-tune analysis are surrounded by colored circles and further detailed in panel B. 
(B) Sub-MST reconstruction based on the maximum number of shared loci (indicated near each tree) between 
strains forming a putative cluster. For both panels, trees were constructed using the goeBURST algorithm 
implemented in the PHYLOViZ Online platform. Each filled small circle (node) contains the strain’s designation 
and represents a unique allelic profile. Nodes are colored according to the geographic region where strains were 
isolated (see Table 1 for details). The numbers in grey on the connecting lines represent the allele differences (AD) 
between strains. Within each cluster, strains exhibiting strong genetic relatedness are highlighted in grey and 
connected by solid lines, while strains with borderline genetic relatedness are connected by dashed lines. 

Regarding both clusters of genotype IV, despite the inexistence of metadata, we cannot discard 

a possible epidemiological link between the enrolled strains. Indeed, while for cluster 4.1, strains were 

isolated from patients of the same northern village with two months of difference (which may be 

associated with the incubation period of the infection), both strains from cluster 4.2 were collected at a 

city in the center of Portugal. The later were isolated with a five year distance period (2011 and 2016), 

where one of them was isolated from a goat whereas the other caused a human infection. Nevertheless, 

considering the high genetic relatedness and the same isolation local, one cannot discard an 

epidemiological link. Moreover, a low allelic diversity from two isolations of the same strain five years 

apart would be congruent with an low evolutionary rate of Brucella spp.. For genotype II, strains within 

the cluster 2.3 are from a confirmed outbreak occurred in 2014 in a small northern region, due to 

consumption of raw cheese sold in local market (Figure 3B). This outbreak was controlled and it was 

possible to identify the infected animals (goats) as the source of the infection. No strain was isolated at 

that time so no genome analysis can be performed. In an opposite scenario, despite both strains from 

cluster 2.2 are genetically identical (among the loci panel analyzed), they were isolated from patients at 

geographically distant regions from north and center of Portugal (~300km apart) in 2011, suggesting 

that their possible linkage may be related with the ingestion of a product of animal origin. Regarding 
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cluster 2.1, B. melitensis strains were isolated from patients within the Lisbon area between 2014 and 

2015, but a possible link was never confirm. Finally, for cluster 2.4, the largest cluster analyzed, all 

strains but 44P (for which no information is available) were isolated in the north of the country, where 

three of them (35P, 36P, 41P) were from the same city and other three (43P, 168P and 38P) were from 

neighboring small cities (Supplementary Figure S3). With exception of 20Pa, which was collected from 

an animal (goat) in 2002, all strains but 168P (isolated in 2011) were from cases of human brucellosis 

occurred at 2012. No epidemiological information was available, hampering the determination of the 

potential infection source. 

 Discussion 

Brucellosis is a zoonosis that is emerging in some regions of the world; in Portugal, it is an 

endemic and notifiable disease. Although human cases have been reported throughout the country, it is 

recognized by the Portuguese Health Authorities that brucellosis cases are clearly underreported, which 

does not allow consistent analysis of risk factors and the proper evaluation of the impact of this disease 

on public health. Also, the frequent lack of metadata associated with the isolated strains constitutes a 

hurdle to the epidemiological research, frequently hampering the identification of the infectious source.  

The reference laboratory for human Brucellosis at the Portuguese National Institute of Health 

receives from the hospital laboratories all human isolates of B. melitensis, which are typed by MLVA - 

16 methodology. Aiming at giving a step forward in the Brucella spp. surveillance in Portugal, we 

created a curated species-specific wgMLST scheme enrolling a panel of 2656 targets (and 17472 alleles) 

to perform a retrospective analysis of the genetic relatedness among B. melitensis strains causing human 

infection in Portugal. Although  two cgMLST schemas were recently developed for Brucella, one of 

them is based on a very small panel of 164 loci (Sankarasubramanian  et al., 2019), and the other runs 

on a pay-per-use platform (RIDOM SeqSphere) despite enrolling a wider core gene set of 2704 targets 

(Janowicz A et al., 2018).  

According to Tan’s classification (Tan et al., 2015), the isolates from the Portuguese dataset 

(isolated between 2010 and 2018) essentially clustered in two previously described lineages, namely the 

East Mediterranean (EM) clade (genotype II) and the Malta and Portugal clade (genotype IV), with few 

strains falling in unclassified clades (Supplementary Figure S1). The majority of the isolates (25 out of 

the 36 PT strains) clustered in the Genotype II, in particular within sub-genotype Iii (Pisarenko et al., 

2018), and seem to reveal a genetic proximity to strains isolated in Spain and Turkey (the two close 

isolates from Germany are imported cases with unknown origin). Such relatedness with strains from 

Spain is not surprising considering the border free herding, the common traffic of alimentary products 

among these countries as well as the tourism and the free circulation of the population. Other six isolates 

from the present study clustered in the genotype IV, which correlates well with the extremely common 

circulation of people between countries where brucellosis is endemic, such as Portugal, Italy and Greece, 
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also sharing similar heating habits. Therefore, the influx of migrations among European countries comes 

along with raised case counts of an infectious disease. 

The implementation of the wgMLST approach allowed us to identify six clusters, where two 

clusters enroll strains from the genotype IV and four clusters enroll strains from the genotype II. Despite 

the absence of complete epidemiological information for most of the cases, our results point to the 

identification of strong associations between some of them, likely underlying missed “outbreaks”. In 

fact, for instance regarding genotype II strains, in the cluster 2.2 two human isolates are genetically 

“identical”, although they were isolated in different geographical locations. This likely discards the 

contact with an infected animal but suggests a food origin (e.g., cheese) as the highly likely infectious 

source. For the cluster 2.3 the genetic analysis shows the correlation with epidemiological data, 

confirming the outbreak occurred in 2014 in a small northern region that had been identified solely based 

on epidemiological information. Considering the unequivocal close genetic relatedness among all strains 

from the cluster 2.4, their geographic proximity and the existence of an animal contaminated with likely 

the “same clone”, ten years before these cases of human brucellosis, we can speculate that this clone is 

endemic in that region for a long time. Thus, it is reasonable to assume that these cases of human 

brucellosis are likely derived from the consumption of products from contaminated animals of that 

specific region.  

A tricky issue underlying the application of gene-by-gene approaches, such as the wgMLST 

reported here, concerns the choice of cutoffs to identify putative genetic linkages and this challenge 

extends to all microorganisms for which genome-scale approaches are being created. For instance, 

choosing cutoffs that enable zooming-in specific clades of a MST (i.e., enabling a more precise 

evaluation of the genetic relatedness among the already “most related” strains) modifies its sensitivity, 

making the exclusion of putative outliers more robust, but may also exclude from the cluster strains with 

slightly higher genetic differences but with known epi-link. For instance, by applying a threshold of 

0.2% (corresponding to ≤6AD) to each sub-MST (Figure 3.3B), we were able to consolidate the strong 

strains’ genetic link within clusters of genotype II, but placed the strain 38P as borderline in cluster 2.4. 

As no epidemiological information is available for 38P, we cannot assess the accuracy of the chosen 

threshold for this cluster. Thus, considering that gene-by-gene approaches for WGS-based surveillance 

of B. melitensis are still at the beginning, the choice for the appropriate cut-offs for cluster definition 

should be a dynamic process and should always be associated with the existing epidemiological data. 

On this regard, future studies with large datasets and strong epidemiological data will certainly ensure 

this achievement. 

In conclusion, the application of a WGS-based approach for a retrospective evaluation of the 

genetic relatedness of all B. melitensis strains received at the Portuguese reference laboratory between 

2010 and 2018 allowed the identification of several highly probable associated cases of brucellosis, 

where 22 out of the 36 PT strains showed one or multiple genetic linkage with other strains. The 

implementation of a wgMLST scheme in the reference laboratory constitutes a mark of technological 
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transition for laboratorial surveillance of brucellosis in this country, and will unequivocally facilitate the 

assessment of ongoing and future outbreaks in order to prevent the transmission spread. It will allow a 

better understanding of the epidemiology and dynamics of Brucella spp. populations and to gather in 

depth information, which can be used for source tracing in case of outbreaks within animal holdings, 

zoonotic or foodborne infections. 
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4 Evaluation of an in silico approach for Multiple Locus Variable Number Tandem 

Repeat Analysis for genetic characterization of Brucella spp. 

 Abstract 

Brucellosis is an important zoonosis that is emerging in some regions of the world, gaining 

increased relevance with the inclusion of the causing agent Brucella spp in the class B bioterrorism 

group. Until now, Multi-locus VNTR Analysis (MLVA) based on 16 loci has been considered the gold 

standard for Brucella typing. However, although this methodology is laborious, frequently reveals 

amplification failures and is error-prone in the allele identification. With the rampant release of Brucella 

genomes, the transition from the traditional MLVA to whole-genome sequencing-based typing is 

inevitable. Nevertheless, in order to avoid a disruptive transition with the loss of massive genetic data 

obtained throughout decades, it is important to be able to determine in silico the MLVA alleles of the 

nowadays sequenced genomes. On this regard, we aim to evaluate the performance of a Python script 

that had been previously developed for the rapid in silico extraction of the MLVA alleles, by comparing 

it to the wet-lab MLVA procedure over of 83 strains from different Brucella species. The in silico 

approach detected 95.1% of all possible 1328 hits (83 strains x 16 loci) and showed an agreement rate 

with the wet-lab procedure of up to 84.1%, where major discrepancies are likely due to erroneous 

interpretations of the gels’ DNA patterns underlying the latter. According to our dataset we suggest the 

use of a minimal depth of coverage of ~50x and a maximum number of ~200 contigs as guiding 

“boundaries” for the future application of the script. 

In conclusion, the evaluated script seems to be a very useful and robust tool for in silico 

extraction of MLVA types of Brucella strains, allowing retrospective and prospective molecular 

epidemiological studies, which are important for maintaining an active epidemiological surveillance of 

brucellosis. 

 Introduction 

Brucellosis is one of the world’s most important zoonotic diseases causing great damage to 

husbandry industry and public health (Franc et al., 2018).  The brucellosis burden specifically on low-

income countries has led the World health Organization (WHO) to classify it as one of the world’s 

leading neglected zoonotic diseases 

(http://www.who.int/neglected_diseases/zoonoses/other_NZDs/en/). However, given the absence of 

specific signs and symptoms, the disease is commonly under diagnosed (Valdezate et al., 2010).  

Brucellosis is transmitted to humans through consumption of unpasteurized dairy products or 

through direct contact with infected animals, placentas or aborted fetuses (Young, 2005). This bacterial 

disease causes a severely debilitating and disabling illness, with fever, sweating, fatigue, weight loss, 
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headache, and joint pain persisting for weeks to months.  Neurological complications, endocarditis and 

testicular or bone abscess formation can also occur (Dean et al., 2012).  

A renewed scientific interest in human brucellosis has been fueled by its recent re-emergence 

and enhanced surveillance in many areas of the world, and from the inclusion of the causing agent 

Brucella spp. in the group of class B bioterrorism agent (Franco et al., 2007). A low infectious dose of 

10 to 100 organisms is sufficient to cause an infection and the mechanisms of transmission, through 

aerosols or food chains, make them easily transmissible to both humans and animals (Tan et al., 2015).  

Therefore, the discrimination between natural outbreaks and/or intentional release of microorganisms 

may be of crucial importance in the context of the bioterrorism.  

Brucella species are characterized by >80% interspecies homology through DNA-DNA 

hybridization studies and >98% sequence similarity by comparative genomics (Whatmore et al., 2006; 

Kattar et al., 2008). In fact, the sequencing of 16S rRNA gene showed a 100% identity between all of 

the Brucella spp. (Georgi et al., 2017). Human brucellosis can be caused by various Brucella species. 

The genus currently comprises 12 validly published species, which are genetically highly related to each 

other, but Brucella melitensis is by far the most frequently observed causative agent of human infection 

(Young, 2005; Georgi et al., 2017). On this regard, the knowledge on current major Brucella species, 

biovar and genotype, and their geographic distribution is of great value, especially for tracking back 

infectious sources and monitoring transmission routes (Pisarenko et al, 2018). The simple identification 

of genus and, in some cases, species by PCR assays, is adequate for purposes of diagnosis of 

human/animal disease or identification of food contamination but not for the tracing of outbreaks or 

bioterrorism attacks (Santis et al., 2011). 

To fulfill the objective of sub-species discrimination, Variable Number Tandem Repeats 

(VNTR) have been investigated in Multi-locus VNTR Analysis (MLVA) by various scientific groups 

since 2003. This Brucella typing scheme, using 16 VNTRs, has been proven to have the ability to 

differentiate Brucella species, biovar and even the isolates. More importantly, there is an online database 

of MLVA-16 profiles available to all researchers allowing the comparison of Brucella strains at the 

worldwide scale (Le Fleche et al., 2006; Sun et al., 2015; Mambres et al., 2017). MLVA has become a 

major molecular typing method to characterize several pathogenic bacterial species, however, this 

methodology is laborious, time consuming and frequently the amplification of all loci cannot be 

achieved. Recent implementation of whole-genome single nucleotide polymorphism (SNP)-based 

typing has led to substantial improvements of both molecular subtyping and phylogenetic analyses in 

microbiology. The development of core- and whole-genome multilocus sequence typing schemes has 

been focused on a restrict number of bacterial pathogens, including Brucella spp but their application 

may be tricky (Tan et al., 2015; Janowicz et al., 2018; Sankarasubramanian et al., 2019). In fact, the 

creation of universal intra or inter species schemes needs to overcome some genetic hurdles such as the 

existence of paralogous genes, annotation issues, the accessory genome, and nomenclature-associated 

difficulties. Meanwhile, until whole-genome data is fully established and accepted by the scientific 
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community for classification/typing purposes in Brucella, the in silico extraction of the MLVA schemes 

can be of extreme utility. In fact, not only it overcomes the tremendously laborious laboratory-based 

MLVA assessment, but it also allows the dynamic cross-comparison with the typing-associated genetic 

data determined during the last decades. On this regard, a Python script has been recently developed 

focusing on the in silico extraction of Brucella MLVA schemes taking advantage of the increasing 

number of sequenced genomes (Georgi et al., 2017). Nevertheless, as no experimental validation of such 

script was performed, we now aim to evaluate the agreement between experimental (i.e., wet lab based) 

and the developed in silico determination of MLVA for strains comprising several Brucella species in 

order to check the validity of such technological transition underlying the genetic characterization of 

Brucella. 

 Materials and Methods 

4.2.1 Samples 

Eighty-three Brucella isolates isolated in Portugal, Spain, Germany, Hungary and Belgium 

(Supplementary Table 4.1) were used in this study. B. melitensis strain 16M strain (NC_003317 and 

NC_003318) was used as reference strain. 

All samples were handled in a BLS-3 biocontainment laboratory at the Portuguese National Institute of 

Health. Brucella isolates were cultured on blood agar for 3 to 5 days at 37º C under 5% CO2 and total 

DNA was extracted from fresh cultures on the NucliSens easyMAG platform (Biomerieux), according 

to the manufacturer’s instructions. 

All strains were identified as Brucella species by real time PCR, using a previously published 

assay (Pelerito et al., 2017). The molecular methods to identify the infection were performed in a tandem 

fashion. First, an “in house” real time PCR using hydrolysis probes was used to detect and identify the 

species of Brucella genus. Secondly, for species differentiation, primers and Taqman probes were 

designed within the BMEII0466 gene for B. melitensis and BruAb2_0168 gene for B. abortus ((Pelerito 

et al., 2017; Gopaul et al., 2008).  

4.2.2 MLVA-16 Assay  

Single locus amplification of the eight minisatelite loci (panel 1) and eight microsatelite loci 

(panels 2A and 2B), that constitute the MLVA – 16 assay, was performed as describe by Fletcher et 

al(le Fleche, et al., 2006). 

PCR reactions were performed in a total volume of 15µl containing 3ng of DNA, 1X PCR reaction 

buffer, 1U of Taq DNA polymerase (Bioline), 200µM of each dNTP’s and 0.3µM of each flanking 

primers. An initial denaturation step at 96ºC for 5min was followed by 30 cycles of denaturation at 

96ºC for 30s, primer annealing at 60ºC for 30s and elongation at 70ºC for 1min. The final extension 

step was performed at 70ºC for 5min. Amplification products were analysed by 2% (panel 1) and 3% 
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(panel 2) agarose gel electrophoresis with molecular size markers suitable for the identification of 

DNA bands ranging from 79 to 914. The total number of repeats at each locus was determined by the 

correlation with the amplicon size according to the 2013 Brucella allele assignment table (version 3.6 

available at http://mlva.u-psud,fr) ( Le Fleche et al., 2006). The reference strain B. melitensis 16 M, 

for which the expected size is known for each VNTR locus, was used as control for alleles assignment. 

4.2.3  Whole genome sequencing (WGS) 

For each strain, WGS was performed as previously described (Pinto, et al., 2018). Briefly, 

quantification and quality assessment of the purified DNA was performed using the DNA HS Assay Kit 

(Thermo Fisher Scientific) in the Qubit Fluorometer and agarose gel electrophoresis (0,8%), 

respectively. High-quality DNA samples were then used to prepare dual-indexed Nextera XT Illumina 

libraries that were subsequently subjected to cluster generation and paired-end sequencing (2×250bp 

and 2x300bp) on a MiSeq Illumina platform (Illumina Inc.), according to the manufacturer’s 

instructions. 

Reads quality control and bacterial de novo assembly were performed using the INNUca v3.1 

pipeline (https://github.com/B-UMMI/INNUca), which consists of several integrated modules for reads 

QA/QC, de novo assembly and post-assembly optimization steps. Briefly, after reads’ quality analysis 

(FastQC v0.11.5 - http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and cleaning 

(Trimmomatic v0.36), genomes were assembled with SPAdes 3.10 (Bankevich et al., 2012) and 

subsequently improved using Pilon v1.18 (Walker et al., 2014), with genome coverage being monitored 

and reported after each processes. In order to evaluate the impact of the “post-assembly polishment” on 

the assembled genomes and subsequently on the in silico MLVA analyses, the SPAdes assemblies were 

also performed skipping the Pilon step. A final check was also performed.  Considering that the in silico 

extraction of the MLVA loci may be influenced by the quality of the assembled genomes another largely 

used de novo assembler, Velvet (Zerbino and Birney, 2008) was applied through VelvetOptimiser 

v.2.2.5 (https://github.com/tseemann/VelvetOptimiser), for comparative purposes, with and without 

Pilon. The VelvetOptimiser script was run using trimmed reads for odd k-mer values ranging from 31 

to 127 (highest k-mer used in SPAdes), with all program default settings unchanged apart from the 

minimum output contig size, which was the same as used by SPAdes. 

4.2.4  In silico MLVA 

Bacterial draft genomes were subjected to a Python script for in silico extraction of Brucella 

MLVA scheme (with 16 loci) as previously described (Georgi et al., 2017). As determining numbers of 

repeated stretches from WGS data may be error-prone, we carefully checked each locus in respect to the 

expected total length, internal repeat homogeneity or probability to get collapsed VNTRs during the 

assembly. All resulting MLVA-16 genotypes were compared to a public database with 2,215 entries of 
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B. melitensis strains that can be assessed online (http://microbesgenotyping.i2bc.paris-saclay.fr/ ( Grissa 

et al., 2008). 

4.2.5  Evaluation of agreement between in silico and experimental 

MLVA 

To access the accuracy of the in silico MLVA approach, we determined the percentage of 

agreement between experimental genotyping and in silico MLVA by calculating the number of identical 

results (i.e., identical called alleles), divided by the total number of hits that were detected 

simultaneously by both approaches. 

Taking into account the well-known error-prone determination of the correct allele by the 

laboratory approach when some alleles differ by a single repetition (e.g., ~10bp, hardly distinguishable 

on a gel) we also calculated an adjusted agreement. On this regard, whenever a discordant allele 

assignment involved a single repetition this was considered a highly-likely matching result. 

Finally, for all strains, the performance of the bioinformatic script in extracting all 16 MLVA 

loci was also evaluated by taking into account the quality of the draft genome generated by the two 

assemblers (SPAdes and VelvetOptimiser) with and without “post-assembly polishment”. Basically, for 

each condition, both the mean coverage depth and the number of contigs of each draft genome were 

correlated with the number of extracted loci.  Pearson’s coefficients (r) were measured to see potential 

linear associations. Nevertheless, as these final evaluations were done as complements of the major 

strategy, for the sake of clarity, whenever the text refers “in silico approach” it refers to the approach 

that used SPAdes with Pilon. 

 

4.2.6  Data availability 

All raw sequence reads used in the present study were deposited in the European Nucleotide 

Archive under the run accession numbers ERR2938642-ERR2938706 and ERR2993131-ERR2993163 

(detailed in Supplementary Table S4.1). 

 

 Results 

 
Our first approach was to perform the experimental MLVA–16 (panel 1, 2A and 2B) on the 83 

strains in order to use the obtained data as the basis for comparative purposes with the in silico approach. 

As expected, it was neither possible to amplify all loci in all samples, nor to successfully perform the 

full in silico extraction of the 1328 hits (83 strains x 16 loci) (Fig. 4.1.A). We detected 1260 (94.9%) 

hits by experimental MLVA, where the alleles for the complete set of the MLVA-16 loci were detected 
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in 52/83 (62.7%) strains.  One, two and ≥3 loci yielded no results for 16/83 (19.3%), 7/83 (8.4%), and 

8/83 (9.6%) strains, respectively. 

 
Figure 4.1 – Efficiency of the experimental and in silico MLVA approaches in strains’ genotyping. Panel A shows 
the number of MLVA-16 loci detected per strain. In silico results are relative to the MLVA loci extraction using 
draft genomes assembled with the INNUca v3.1 pipeline using Pilon. Panel B displays the number of detected loci 
shared between the two methodologies for each strain as well as those that possess identical alleles. Also, the 
percentage of agreement between both approaches is shown for each strain. A correction in the number of matching 
alleles was performed whenever a discordant allele assignment involved a single repetition (see methods for 
details). The outer circle differentiates the B. melitensis strains (dark grey) from the non B. melitenis strains (white). 
 

Regarding the in silico approach, the alleles for the complete set of 16 loci were detected in 

50/83 (60.3%) strains, whereas one, two and ≥3 loci yielded no results for 20/83 (24.1%), 7/83 (8.4%), 

and 6/83 (7.2%) strains, respectively. Globally, we detected 1263 hits in all 83 strains (95.1%) (Fig. 

4.1.A), meaning a similar success rate (simply measured as the number of the alleles called) between 

the two approaches. However, as shown in panel B of Fig. 4.1, considerable discrepancies were detected, 

namely when we compared both the number of loci shared between the two methodologies for each 

strain and those that possess identical alleles. The average of agreement was as low as 68.1% but 

increased up to 84.2% when the above mentioned adjustment was done (see methods for details). Also, 

15 out of the 83 strains belonged to Brucella species other than B. melitensis and it can be observed that 

the number of the discrepancies was slightly higher within this group (Fig.4.1.B). Such variations are 

likely due to the traditional use of B. melitensis 16M reference strain as a standard in the experimental 

MLVA, even when strains from other species are being analysed, leading to some probable erroneous 

interpretations of the gels’ DNA patterns.  

When the analysis is performed per locus, it can be seen that the discrepancies are more frequent 

in loci that belong to the panel 2A and 2B of the MLVA-16 (Fig. 4.2), which are known to have a higher 

discriminatory power than the ones of panel 1.  
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Among all 83 strains, two specific loci (Bruce07 and Bruce21) appear as the most problematic 

ones in the experimental approach, with amplification failing in 16/83 (19.3%) and 12/83 (14.5%) 

strains, respectively. Considering a high overlap of strains for which both loci failed, we hypothesized 

that the amplification failures could rely on particular sequence characteristics of those loci, such as a 

GC-content higher than the one observed for the remaining loci of the MLVA scheme. However, that 

presumption was not verified and so we have no reasonable explanation for this.  Bruce07 was also the 

locus exhibiting the highest number of mismatches through the in silico MLVA analysis, with a better 

performance being observed for Bruce21 (with in silico extraction only failing in 5/83 (6.02%) strains).  

 

 

Figure 4.2 – Performance of the experimental and in silico MLVA approaches per locus. The upper 
graph represents the number of strains for which it was possible to determine an allele per locus as well 
as the number of strains sharing identical alleles between the two methodologies. The lower graph shows 
the percentage of agreement per locus between both approaches. In both graphs, an adjustment in the 
number of matching alleles was performed whenever a discordant allele assignment involved a single 
repetition (see methods for details). For both graphs, the loci are grouped according to the MLVA-16 
panel they belong to (i.e., Panel 1, Panel 2A and Panel 2B). In silico results are relative to the MLVA 
loci extraction using draft genomes assembled with the INNUca v3.1 pipeline using Pilon. 
 
  Considering the heterogeneous composition of the three loci panels, it was not surprising that 

the agreement rate between the experimental and the in silico approaches was also dependent on the 

panel under consideration. In fact, considering, for instance, the adjusted values, whereas the mean 

agreement rate was 84.1% for all 16 loci, it ranged from 73.3% for loci of panel 2 (A and B together) to 

95.0% for loci of panel 1. 

Taking into account that the Python script for in silico extraction of Brucella MLVA schemes 

is applied after the genome assembly, we also inspected the quality of the draft sequences used as input. 

The influence of the mean depth of coverage and number of contigs on the efficacy of the bioinformatics 

script is illustrated in Fig.4.3. As expected, a negative linear correlation was observed among the 

efficacy of the in silico MLVA extraction and the number of assembled contigs, with less partitioned 
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genomes allowing the detection of a higher number of alleles. On the other hand, higher genome mean 

coverage depth seem to favour the in silico extraction of MLVA loci. 

 

 

Figure 4.3 -  Influence of the mean coverage depth and number of contigs on the efficacy of the in silico MLVA 
extraction. The graphs show the correlation of the efficacy (measured by the number of loci for which an allele 
was called) of the bioinformatics script with the depth of coverage (left panel) after quality improvement, and with 
the number of assembled contigs (right panel). For better visualization purposes, one strain exhibiting 3824 contigs 
was excluded from the graph but not from the calculations. The tendency lines are also shown with the respective 
equations as well as the Pearson coefficient (r). In silico results are relative to the MLVA loci extraction using 
draft genomes assembled with the INNUca v3.1 pipeline using Pilon. 

 

As a final assessment, the performance of the bioinformatics script was also evaluated by using 

as input, draft genome sequences assembled with a different assembler. Curiously, although no 

significant differences were observed regarding the number of loci extracted both with and without 

“post-assembly polishment” (data not shown), for VelvetOptimiser assemblies, the number of detected 

loci show an unequivocal higher drop for mean depth of coverage <50 as well as for high fragmented 

genomes than the one obtained for SPAdes assemblies (Figure 4.4).  
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Figure 4.4 - Influence of the quality of the assembled genomes on the efficacy of the in silico MLVA loci 
extraction. The graphs show the correlation of the efficacy (measured by the number of loci for which an allele 
was called) of the bioinformatic script with the depth of coverage (panel A) and with the number of assembled 
contigs (panel B) after assembly polishment improvement. Two algorithms (SPAdes and VelvetOptimiser) were 
used to de novo assembly trimmed reads of each strain (see methods for details). The Pearson coefficients (r) are 
also shown for both graphs as well as the tendency lines shown with the respective equations (only for panel A). 

 Discussion  

The control of brucellosis requires an accurate surveillance and the use of high discriminatory 

methods to characterize outbreak strains and determine the infection source and transmission routes. For 

many years, multiple typing methods were used for Brucella characterization at both species and biovar 

levels. These relied on host specificity, growth features, biochemical reactions, serotyping and 

bacteriophage typing, but they lacked discriminatory power (Sun et al., 2017). Currently, experimental 

MLVA is the most widely used approach for outbreak investigations and is still considered the gold 

standard for Brucella typing. The sixteen markers are a combination of moderately variable 

(minisatellites, panel 1) and highly discriminatory (microsatellites, panel 2) loci (Al Dahouk et al., 

2007). A MLVA typing assay depends on the selection of markers which individually would not provide 

a relevant clustering. Taken separately, the Tandem Repeat markers are either not informative enough, 

are too variable or show a high level of homoplasy. As such, the combination of well selected 

independent loci may be highly discriminatory as previously show for other species (Le Fleche et al., 

2006). 

The MLVA procedure is expensive, experimentally demanding and reveals some accuracy 

problems regarding the precise determination of the size of the amplified products that are on the basis 

of the allelic determination. Thus, the final allelic profile may also slightly differ depending on the lab 

technician evaluation.  

On behalf of the unavoidable transition from the classical typing to the WGS-based approaches a Python 

script was recently developed for the rapid in silico extraction of the Brucella MLVA alleles (Georgi et 

al., 2017). This will allow that the MLVA types can still be determined in the genomic era, avoiding an 

undesirable loss of genetic information that has been provided throughout decades by using the gold 

standard wet lab MLVA-based typing. Our main goal was to evaluate the performance of the developed 

in silico MLVA approach as no experimental validation of such script had been performed so far. 

Although the general agreement rate (wet-lab versus in silico) was low, this was somehow expected due 

to the well-known gel-associated bias when determining alleles differing by less than 10 bp. When these 

highly problematic alleles were not considered for the comparison, the agreement rate considerably 

increased up to 84.1%. Nevertheless, although it is highly likely that most discrepancies are due to the 

error-prone laboratory-based approach, we cannot discard the existence of some discrepancies due to 

discrete erroneous allele calling through the in silico approach considering the repetitive nature of the 

sequence stretches that enrol these loci. This is visible when analyzing the discrepancies between MLVA 

loci panels where loci from panels 2A and 2B (known to have the highest discriminatory power) yielded 
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more discrepancies than the ones of panel 1. This can be due to the fact that the sequence repetitions 

contained in the former are typically much smaller (from 3 to 8) than the ones observed in the later (from 

12 to 134). Whereas this obviously impacts the proper alleles’ distinction in gel electrophoresis, it may 

also influences the construction of contigs and consequently the in silico extraction of MLVA alleles. 

 Finally, according to the results obtained for the present dataset, we observed that the performance of 

the in silico approach does not seem to be dependent on the post-assembly polishment, but is clearly 

dependent on the depth of coverage and the degree of assembly fragmentation (where SPAdes performed 

better) (Supplementary Figure 4.1). Still, a minimal depth of coverage of ~50x and a maximum number 

of ~200 contigs (a range where both assemblers behaved similarly) seem to constitute guiding 

“boundaries” for the future application of the script. 

In conclusion, the evaluated script seems to be a very useful and robust tool for in silico 

extraction of MLVA types of Brucella strains, dealing with a large number of samples in a short time 

period, and allowing retrospective and prospective molecular epidemiological studies. This allows a 

continuous and non disruptive transition to a new typing era by putting the newly sequenced strains in 

the frame of the genetic characterization obtained for thousands of isolates collected worldwide 

throughout decades. This will certainly be important for public health reference laboratories to maintain 

an active epidemiological surveillance of brucellosis. 
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5 Genetic diversity of type IV Brucella spp. effectors among B. melitensis strains 

circulating in portugal 

 Introduction 

One important feature of Brucella spp. is the ability to survive and multiply within both phagocytic 

and non phagocytyic cells. Brucella spp. does not produce classical virulence factors, such as exotoxins, 

cytolisins, exoenzymes, plasmids, fimbria, and drug resistant forms. Instead, major virulence factors 

include the LPS, the T4SS and the BvrR/BvrS system, which allow interaction with host cell surface, 

formation of an early and late BCV (Brucella containing vacuole) and interaction with endoplasmamtic 

reticulum (ER) when the bacteria multiply (Ke et al.. 2015; Lacerda et al., 2013; Myeni et al., 2013). 

The intracellular lifestyle of Brucella spp. limits the exposure of these bacteria to the host innate and 

adaptive immune responses, sequesters the organism from the effects of some antibiotics, and drives the 

unique features of pathology in infected hosts. Brucella spp., like many other intracellular pathogenic 

bacteria, secretes effector proteins into the host cytoplasm of infected cells in order to circumvent 

essential functions of the host defense, with the final goal of establishing a long lasting chronic infection 

(Byndloss et al., 2016). Therefore, elucidating the mechanisms involved in their intracellular survival 

and their ability to evade host immunity is crucial for understanding the pathogenesis of Brucella spp., 

which are frequently used as model organisms to study intracellular bacterial infections.   

To restrict long-term protective immunity, Brucella spp. first avoid the innate immune response 

by stealthy entry into host cells. From there, the bacteria control aspects of protein secretion, intracellular 

trafficking and bacterial replication, ultimately altering the course of the innate and adaptive immune 

responses (de Barsy et al., 2011). Manipulation of the innate immune response seems to be associated 

to at least three effectors, namely, TcpB/BtpA, BtpB, and VceC (Salcedo et al., 2013; de jong et al., 

2008).  

Other effectors such as the BspB contribute to Brucella replication by redirecting Golgi-derived vesicles 

to the Brucella Containing Vacuoles (Miller et al., 2017). Among the multiple other examples, SepA 

participates in the early stages of intracellular survival (Dohmer et al., 2014), and BspA, BspB and BspF 

impair host protein secretion (Myeni et al., 2013). Putative effector candidates are constantly being 

identified in silico on the basis of several criteria, including shared features with effectors expressed by 

other bacteria, eukaryotic motifs, GC content, and limited distribution across bacterial genera (Esna 

Ashari et al., 2018; Sankarasubramanian et al., 2016, Myeni  et al., 2013) Nevertheless, the effectors’ 

list is likely far from being complete, and their precise role in the Brucella spp biology during the 

infectious process remains to be elucidated.  

In the present ongoing study, we took advantage of the genome sequences of the Brucella spp. strains 

released on the course of the previous chapters, and aimed at evaluating the genetic variability of a set 

of T4SS effectors among the strains circulating in Portugal.  
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 Experimental strategy and ongoing results 

The whole genome sequence from 38 Brucella spp. strains obtained throughout the previous 

chapters was used to extract the individual sequences from each of 16 effectors, including 5 effectors 

recently identified by the Salcedo S. laboratory (BAB1_0296, BAB1_1101, BAB1_1533, BAB1_0277 

and BAB1_1746) and 11 established effectors (RicA, BspA, CstA, BspB, Bep123, BtpA, SepA, BspF, 

VceA, VceC, BtpB,). The effectors enrolled in this study have been chosen either because their functions 

have already been characterized or they have been recently identified using in silico screens and 

confirmed to be translocated into host cells during infection. For example, BtpA and BtpB contain a 

TIR (Toll/interleukin-1 receptor) domain, BAB1_0296, BAB1_1101, BAB1_1533 and BAB1_1746 

have an eukaryotic CAAX motif, BAB1_0277 and BAB2_0691 were detected on the BCV membrane 

are involving in the formation of the Brucella containing vacuole and finally, VceA, Bep123, BspA, 

BspB, BspF, SepA, CstA their all been described to their functions by many research  groups.  

  The evaluation of their genetic diversity was carried out through an assembly-free strategy using 

Snippy v3.1 (https://github.com/tseemann/snippy), where reads of each strain are mapped against the 

respective sequences of B. melitensis 16M reference strain (RefSeq Accession NC_003317 and 

NC_003318). The primary results are illustrated in Figure 5.1. 

The most curious finding was for BAB1_1533 gene, a new T4SS effector, as the sequences obtained 

ranged from 504 to 513 bp, due to the presence of a  cytosine – rich region (C) translating a proline-rich 

region (P), which was variable from 6 to 9 nucleotides, in comparison with the reference strain. In 33,3% 

(13/38)  of the strains this region is present and in some strains a 6 nucleotide deletion (44,7%, 17/38) 

and a 9 nucleotides deletion (20,4%, 7/38) is observed (Figure 5.2). No correlation with the presence 

and absence of this region was observed regarding the geographic origin and pathology of the patients 

and virulence of the strains.  

In contrast, for BAB1_0296, as other new effector, no mutations were observed in all strains’ 

sequences of this study. For the BAB1_1101, the third new effector, a single mutation (synonym 

mutation) was detected in 13% of the strains (5/38). 

Regarding the other effectors study, for simplification purposes these can be divided in two groups based 

on the obtained genetic data.  In a first group we observed genes without mutations among the studied 

strains (BAB1_0678 and BAB1_1279) or solely with synonyms mutations (BAB1_0277, BAB1_1746, 

BAB1_0279, BAB1_1552 and BAB1_0756). The other group contains the genes coding for the other 

effectors that revealed exclusively non-synonymous mutations (except for BAB1_1948, which revealed 

both synonymous and non-synonymous mutations). In general, the observed mutations were random in 

all strains studied and no correlation was observed regarding the geographic origin and pathology of the 

patients.  Although the results are not conclusive at this stage, we highlight the polymorphism observed 

for BAB1_1533 due to the heterogeneous presence of the proline rich region. These regions have been 
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suggested to be associated with the bacterial cell wall being likely required for cell surface expression, 

but their precise role remains unclear (Areschoug et al., 2002). Thus, although in a pure speculative 

basis, we may hypothesize that the observed heterogeneity may underlie BAB1_1533 expression 

differences and ultimately, virulence differences, between the strains. Regarding the effectors for which 

no polymorphism was observed at the protein level (i.e., showing no mutations or only synonymous 

mutations), we could also speculate that this could be justified by the need to maintain an altered protein 

for which any mutation would be detrimental for its structure and/or function. For the effectors for which 

non-synonymous mutations were observed, although the resulting altered proteins may hypothetically 

reveal phenotypic dissimilarities, this hypothesis would be strengthened if the same alterations are 

observed in multiple strains, which is not the case for the current dataset.  

Nevertheless, it is our aim to enlarge this ongoing polymorphism survey by enrolling all 

Brucella spp. genomes available in the public databases, in order to contribute to the characterization of 

the cellular function of these effectors, on behalf of a fruitful collaboration with the group of Dra. Suzana 

Salcedo from CNRS at University of Lyon.  
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Figure 5.1. Identification of the mutations in all effectors used in this study and. In each gene are label the 

position in gene sequence that each mutation occur. 
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Figure 5.2. Alignment of BAB1_1533 amino acid sequences for strains used in this study and B. melitensis 16M 
(BME1216). The alignment was constructed with MEGA - X 
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6  Final overview, concluding remarks and future perspectives 

Brucellosis is an endemic zoonotic disease in low, middle, and high-income countries (including 

Portugal), that causes devastating losses to the livestock industry including small-scale livestock 

holders. It places significant burdens on human healthcare systems and limits the economic potential of 

individuals, communities, and nations where such development is especially important to diminish the 

prevalence of poverty. The implementation of public policy focused on mitigating the socioeconomic 

effects of brucellosis in human and animal populations is desperately needed. In Portugal, although 

brucellosis is not eradicated and is of obligatory, no accurate prevalence data is available.  Human cases 

are reported in all regions of continental Portugal, but only few cases are reported each year, which does 

not allow consistent analysis of risk factors and the impact on public health, despite the existence of a 

national program to eradicate brucellosis since 1953 that has been implemented with limited success. 

According to last data available in 2016 (ECDC, 2016) concerning human disease, Greece had the 

highest incidence, (1.10 per 100 000 persons), followed by Portugal and Italy (0.48 and 0.35 per 100 

000 persons, respectively). These values underline the need to develop further studies that could provide 

new insights, allowing measures to reduce the impact of brucellosis in Portugal, or at least to prevent 

and mitigate it. The interdisciplinary “One Health” nature of the effects that brucellosis has indicate that 

collaboration of veterinary, medical, public health, cultural, economic and social experts is needed to 

perform a change in the disease burden. Furthermore, the access to epidemiological data and the 

cooperation between different health sectors (i.e human, veterinary and food safety) is recognizably 

weak. As such, the real time identification of brucellosis outbreaks is hampered as well as the 

identification of the infectious sources and the interruption of the transmission chains. Moreover, 

molecular surveillance of brucellosis is based on the traditional MLVA -16 procedure, which may lack 

sensitivity as only discrete regions of the genome are analyzed for discriminatory purposes. 

The reference laboratory of brucellosis at INSA collects all isolates from human brucellosis and 

has been performing the traditional MLVA - 16 for the last 10 years. Taking advantage of the collection 

of the Brucella isolates at the reference laboratory and on the existence of Illumina sequencing 

equipment’s at INSA, the major goal of this thesis was to contribute to a better knowledge of brucellosis 

in Portugal through the characterization of the Brucella spp. that circulate in this country, and by 

performing a retrospective analysis of the genetic relatedness among B. melitensis strains causing human 

infection. 

We thus started (chapter II) by performing a molecular epidemiology survey of brucellosis 

infection in Portugal.  This constituted an important step in brucellosis surveillance because, so far, the 

only epidemiological information that could be accomplished was the one taken from the obligatory 

declaration disease reports. Overall, serological diagnosis identified 167 out of 2313 (7.2%) positive 

cases of human brucellosis, of which 61.7% were male and half of the cases were in the age groups 
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between 26-65 years, suggesting that the distribution by gender is associated with the occupational 

factor. Molecular diagnostics was applied to a subset of 259 samples where 43 (16.6%) were positive 

for B. melitensis. The higher infection rates obtained when using real time PCR in comparison with 

immunological methods are likely due not only to a probable higher sensitivity of the former technique, 

but also because, according to our experience, PCR is usually requested when the clinician has a strong 

suspicion of brucellosis (e.g., patients revealing complications associated with the disease). This study 

strengthen the importance of integrating clinical and laboratory data of human cases in order to increase 

the efficacy of the response measures, essentially in the case of outbreaks. Furthermore, our findings 

reinforce the need to maintain an active epidemiological surveillance, enabling the early detection of all 

cases of infection and underlie the need to have a good communication flow between the human and 

animal Health Ministries.  

Following the recommendations of the international Health Authorities to perform the 

surveillance of the infectious disease by using genome-scale approaches, in chapter III, we aimed at 

implementing a wgMLST schema at INSA, for surveillance of brucellosis. Very recently, efforts to 

develop cgMLST schemes for Brucella have been done by other groups (Sankarasubramanian J et al, 

2019; Janowicz A et al, 2018). However, one of them involves a paid platform system and the other 

involves a small number of loci for discrimination purposes. Therefore, to overcome that hurdle, we 

created a curated species-specific wgMLST scheme that enrolls a panel of 2656 targets and used it to 

perform a retrospective analysis of the genetic relatedness among B. melitensis strains causing human 

infection in Portugal. We aimed at identifying potential outbreaks and transmission links that had been 

missed with the currently implemented surveillance system. We observed that strains showed a 

phylogenetic clustering within genotype II (25 out of 36) and IV (4 out of 36), and shared clades with 

strains isolated from countries such as Italy, Spain and Greece, with which Portugal has privileged food 

trading, tourism and similar eating habits. We have also identified several highly probable associated 

cases of brucellosis, where 22 out of the 36 PT strains showed one or multiple genetic linkage with other 

strains. With this approach, it was possible to identify six clusters and despite the absence of complete 

epidemiological information for most of the cases, our results point to the identification of strong 

associations between some of them, likely underlying missed “outbreaks”. This methodology constitutes 

a hallmark of technological transition in the brucellosis surveillance in Portugal and will undoubtedly 

allow a more precise understanding of the epidemiology and dynamics of Brucella spp. populations and 

will unequivocally facilitate the assessment of ongoing and future outbreaks in order to prevent the 

transmission spread.  

Nevertheless, considering that during the last decades the MLVA – 16 procedure has been the 

typing method, generating a massive amount of genomic information, it is important that the 

technological transition is not done in an abruptive manner to avoid missing the past genomic data. On 

this regard, an in house Python script had been developed in order to extract the MLVA schemes directly 

from genome sequences. However, as no experimental testing had been done with this script, in chapter 
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IV we aimed to evaluate the performance of this bioinformatics approach for the rapid in silico extraction 

of the MLVA alleles, by comparing it to the wet-lab MLVA procedure over of 83 strains from different 

Brucella species. Globally, the Python script detected 1263 hits in all 83 strains (95.1%), and showed 

an agreement rate with the wet-lab procedure of up to 84%, where major discrepancies are likely due to 

the error-prone laboratory-based approach. However, we cannot discard the existence of some 

discrepancies due to discrete erroneous allele calling through the in silico approach considering the 

repetitive nature of the sequence stretches that enrol these loci. Overall, this in silico approach to extract 

of MLVA-16 genotypes of Brucella strains seems to constitute a valid tool for surveillance purposes, 

enabling the integration of the new acquired genomic data from Brucella strains into the typing data that 

was collected for decades.  

 The last research study (chapter V) constitutes an ongoing study aimed at using the available 

genomic data obtained in the previous chapters to evaluate the genetic polymorphism of several 

virulence factors of B. melitensis strains circulating in Portugal. If significant genetic differences would 

be observed in some virulence factors for different strains, these data would be used in future studies to 

check the influence of such mutations in the virulence of Brucella spp. We started by analyzing the 

polymorphism of 16 previously identified Type IV effectors within 38 strains, and observed that only 

discrete mutations were found. Although a high degree of conservation of a gene is usually associated 

with an important biological function for which multiple genetic changes may be disadvantageous, these 

constitute preliminary data and larger datasets must be used. 

 Globally, we believe the results of the present PhD thesis constitute a step forward in the 

knowledge of Brucella circulating in Portugal. Among others, the major contribution of this dissertation 

is mainly the development of a new tool that will change the laboratory system applied to the 

surveillance of brucellosis in our country. In fact, the WGS–based approaches (both the wgMLST and 

the bioinformatics script) already implemented in the National Reference Laboratory will be thereafter 

applied for the in-depth genetic characterization of the Brucella isolates in a real time manner. Moreover, 

the implemented wgMLST may be also important for brucellosis surveillance in other countries as the 

existing platforms are either low informative or are not freely available. It will facilitate both the 

surveillance of brucellosis in endemic countries and the investigation of the imported cases in countries 

free for Brucella.  

The data regarding brucellosis that are synthesized in this PhD thesis suggest that, to reduce or 

eradicate it, a “Global One Health” approach is essential. The concept “One Health” assumes that 

human, animal and environmental health are closely intertwined, and that improvement in one of these 

areas is contingent on the interdependence of all three. Thus, collaboration between professionals across 

multiple disciplines and sectors is imperative to reach solutions that lead to the mitigation of infectious 

diseases such as brucellosis. 

In the future, it is our intention to strengthen the collaborations with the National Reference 

Veterinary laboratory and the Food and Economic Security Authority in order to expand the applicability 
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of these WGS approaches as tools that will better identify brucellosis outbreaks, the infectious sources 

and stop transmission chains. Ultimately, the impact in individual and public health as well as in the 

economy will rely on diminishing the morbidity and eventually mortality, and on the reduction of costs 

associated with treatment of infected people and animals. In this regard, we will pursuit one major goal 

in the near future, which consists in performing an epidemiological evaluation of human and ruminant 

brucellosis in areas of infected and vaccinated animals. This will be done essentially in two steps: 

i) Construction of an epidemiological database of B. abortus and B. melitensis infection in humans and 

animals; 

Epidemiological data from the archives and epidemiological questionnaires of the General Directorate 

of Health will be incorporated into a common database, allowing the characterization of the case’s origin 

as foodborne or occupational disease. The Central Veterinary Services (DGAV) have a software (PISA) 

which stores data from the compulsory national eradication programs for ruminant brucellosis in 

Portugal. Epidemiologically relevant data will be also extracted from PISA regarding the surveys made 

on the infected sheep, goat and bovine herds. In addition, prospective data from epidemiological 

investigations and laboratory data will be integrated into the database. The expected output will be a 

database including the last 10 years historical epidemiological and laboratory data on the disease 

outbreaks and cases in humans and animals. 

ii) Analysis of the databases of human and animal brucellosis, as well as the food database, for the 

investigation of clusters of infection; 

Regions with higher infection prevalence and incidence rates in humans and animals will be identified. 

The intersection of these clusters will be evaluated and the overlapping areas will be specifically defined 

as areas of high risk for brucellosis and subjected to a thorough epidemiological study. Mass vaccination 

is an important disease control strategy implemented by the veterinary services in specific 

epidemiological units considered with a higher risk of brucellosis occurrence. Vaccination could result 

in a positive or neutral effect in animal or human health. The crossing of the clusters of herds of 

vaccinated bovine and small ruminants in association with the occurrence of occupational brucellosis in 

humans will also be done. This would allow studying the evolution of the prevalence and incidence of 

animal and human brucellosis regarding the implementation of vaccination programs on the identified 

clusters.  
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Suplementtal Material 

 
Figure S 3.1 - Hierarchical clustering tree, showing the genetic relationship of the 271 B. melitensis 
strains collected worldwide, based on a curated species-specific wgMLST scheme that enrolls a panel 
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of 2656 genes (and 17472 alleles). Distances among strains were estimated with Hamming Distance 
metrics using the single-linkage method. Branch trees representing clusters linked by a genetic 
relatedness cut-off of 3% are shown in bold black lines. The PT strains are highlighted in red, while 
strains genetically related to them appear in different colors (also zoomed in for better visualization), 
concerning the isolation country. The five major genotypes are also displayed above the tree branches. 
 

 

Figure S 3.2 – Phylogeny of PT B. melitensis strains based on a gene-by-gene approach using the genus-
specific cgMLST schema with 164 loci. The Minimum spanning tree (MST) was constructed using the 
goeBURST algorithm implemented in the PHYLOViZ Online platform, and is based on the allelic 
diversity found among the 164 loci panel (Sankarasubramanian J et al, 2019). Filled small circles (nodes) 
represent unique allelic profiles. For comparative purposes with the proposed wgMLST scheme of the 
present study, nodes are colored similarly to Figure 1 and are grouped based on the assigned genotype 
according to Tan et al. (Tan et al, 2015). The numbers in grey on the connecting lines represent the allele 
differences (AD) between strains. 
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Supplementary Figure S 3.3 - Geographic location of the isolated 36 PT B. melitensis strains. For 
simplification purposes, the color scheme used to define the clusters is the same as the one presented in 
Figure 3. Strains belonging to the same putative cluster are connected by the color corresponding to 
each cluster. 
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Supplementary Table 3.1 – strain characterization 

Strain Biosample Run 

20Pa 
47Pa 
357Pa 
463Pa 
770Pa 
782Pa 
804Pa 
918Pa 
1P 
35P 
36P 
38P 
41P 
43P 
147P 
153P 
165P 
169P 
177P 
179P 
180P 
184P 
194P 
198P 
199P 
200P 
209P 
228P 
237P 
258P 
261P 
40P 
44P 
66P 
166P 
167P 
168P 

 

ERS2952753 
ERS2952754 
ERS2952755 
ERS2952756 
ERS2952757 
ERS2952758 
ERS2952759 
ERS2952760 
ERS2952761 
ERS2952762 
ERS2952763 
ERS2952764 
ERS2952765 
ERS2952766 
ERS2952767 
ERS2952768 
ERS2952769 
ERS2952770 
ERS2952771 
ERS2952772 
ERS2952773 
ERS2952774 
ERS2952775 
ERS2952776 
ERS2952777 
ERS2952778 
ERS2952779 
ERS2952780 
ERS2952781 
ERS2952782 
ERS2952783 
ERS2952793 
ERS2952794 
ERS2952795 
ERS2952796 
ERS2952797 
ERS2952798 

 

ERR2938658 
ERR2938668 
ERR2938653 
ERR2938687 
ERR2938669 
ERR2938670 
ERR2938703 
ERR2938695 
ERR2938677 
ERR2938664 
ERR2938682 
ERR2938646 
ERR2938690 
ERR2938702 
ERR2938647 
ERR2938674 
ERR2938679 
ERR2938684 
ERR2938659 
ERR2938663 
ERR2938676 
ERR2938700 
ERR2938706 
ERR2938705 
ERR2938667 
ERR2938696 
ERR2938704 
ERR2938693 
ERR2938654 
ERR2938680 
ERR2938642 
ERR2938685 
ERR2938656 
ERR2938649 
ERR2938689 
ERR2938645 
ERR2938651 
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Supplementary Table S 3.2. -  Results of AST testing of Brucella melitensis. * CLSI breakpoints for slow-

growing bacteria (Haemophilus spp.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Antibiotic agent MICs Range (µg/ml) of the  

B. melitensis PT strains 

CLSI breakpoints for Brucella 

spp. (µg/ml) 

S ≤ I = R≥ 

Rifampicin* 0.38 - 12 1 2 4 

Doxycyclin <0.016-1 1 - - 

Streptomicyn 0.5-4 16 - - 

Gentamicin 0.5-2 4 - - 
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Supplementary Table S 4.1 - Strain characterization 

 
 
 
 
 

Strain Species Isolation Country Collection_date Host Biosample Run

261P Brucella melitensis Portugal 2016 Homo sapiens ERS2952783 ERR2938642
213-03E Brucella melitensis Spain 2003 Homo sapiens ERS2952739 ERR2938643
170-04E Brucella melitensis Spain 2004 Homo sapiens ERS2952736 ERR2938644
167P Brucella melitensis Portugal 2011 Homo sapiens ERS2952797 ERR2938645
38P Brucella melitensis Portugal 2012 Homo sapiens ERS2952764 ERR2938646
147P Brucella melitensis Portugal 2013 Homo sapiens ERS2952767 ERR2938647
146-12RK Brucella melitensis Spain 2012 Unknown ERS2952750 ERR2938648
66P Brucella melitensis Portugal 2012 Homo sapiens ERS2952795 ERR2938649
183Pa Brucella suis Portugal 2009 Boar ERS2952791 ERR2938650
168P Brucella melitensis Portugal 2011 Homo sapiens ERS2952798 ERR2938651
104-13RK Brucella melitensis Germany 2013 Unknown ERS2952748 ERR2938652
357Pa Brucella melitensis Portugal 2004 Sheep ERS2952755 ERR2938653
237P Brucella melitensis Portugal 2016 Homo sapiens ERS2952781 ERR2938654
115Pa Brucella suis Portugal 2008 Boar ERS2952790 ERR2938655
44P Brucella melitensis Portugal 2012 Homo sapiens ERS2952794 ERR2938656
457-06E Brucella melitensis Spain 2006 Homo sapiens ERS2952744 ERR2938657
20Pa Brucella melitensis Portugal 2002 Goat ERS2952753 ERR2938658
177P Brucella melitensis Portugal 2014 Homo sapiens ERS2952771 ERR2938659
183-7RK Brucella ovis Hungary 2007 Unknown ERS2952784 ERR2938660
104-12RK Brucella melitensis Germany 2012 Unknown ERS2952747 ERR2938661
183-6RK Brucella suis Hungary 2006 Unknown ERS2952787 ERR2938662
179P Brucella melitensis Portugal 2014 Homo sapiens ERS2952772 ERR2938663
35P Brucella melitensis Portugal 2012 Homo sapiens ERS2952762 ERR2938664
148-9RK Brucella melitensis Belgium 2009 Unknown ERS2952751 ERR2938665
256Pa Brucella abortus Portugal 2005 Bovine ERS2952786 ERR2938666
199P Brucella melitensis Portugal 2015 Homo sapiens ERS2952777 ERR2938667
47Pa Brucella melitensis Portugal 2001 Sheep ERS2952754 ERR2938668
770Pa Brucella melitensis Portugal 2007 Sheep ERS2952757 ERR2938669
782Pa Brucella melitensis Portugal 2007 Goat ERS2952758 ERR2938670
297-04E Brucella melitensis Spain 2004 Homo sapiens ERS2952742 ERR2938671
120-99E Brucella melitensis Spain 1999 Homo sapiens ERS2952734 ERR2938672
27Pa Brucella suis Portugal 2003 Swine ERS2952789 ERR2938673
153P Brucella melitensis Portugal 2014 Homo sapiens ERS2952768 ERR2938674
194Pa Brucella suis Portugal 2011 Swine ERS2952792 ERR2938675
180P Brucella melitensis Portugal 2014 Homo sapiens ERS2952773 ERR2938676
1P Brucella melitensis Portugal 2010 Homo sapiens ERS2952761 ERR2938677
146-10RK Brucella melitensis Spain 2010 Unknown ERS2952749 ERR2938678
165P Brucella melitensis Portugal 2011 Homo sapiens ERS2952769 ERR2938679
258P Brucella melitensis Portugal 2016 Homo sapiens ERS2952782 ERR2938680
104-11RK Brucella melitensis Germany 2011 Unknown ERS2952746 ERR2938681
36P Brucella melitensis Portugal 2012 Homo sapiens ERS2952763 ERR2938682
44-07E Brucella melitensis Spain 2007 Homo sapiens ERS2952743 ERR2938683
169P Brucella melitensis Portugal 2014 Homo sapiens ERS2952770 ERR2938684
40P Brucella melitensis Portugal 2012 Homo sapiens ERS2952793 ERR2938685
146-11RK Brucella abortus Spain 2011 Unknown ERS2952785 ERR2938686
463Pa Brucella melitensis Portugal 2005 Sheep ERS2952756 ERR2938687
723-07E Brucella melitensis Spain 2007 Homo sapiens ERS2952745 ERR2938688
166P Brucella melitensis Portugal 2011 Homo sapiens ERS2952796 ERR2938689
41P Brucella melitensis Portugal 2012 Homo sapiens ERS2952765 ERR2938690
238-04E Brucella melitensis Spain 2004 Homo sapiens ERS2952741 ERR2938691
204-01E Brucella melitensis Spain 2001 Homo sapiens ERS2952738 ERR2938692
228P Brucella melitensis Portugal 2016 Homo sapiens ERS2952780 ERR2938693
228-03E Brucella melitensis Spain 2003 Homo sapiens ERS2952740 ERR2938694
918Pa Brucella melitensis Portugal 2011 Goat ERS2952760 ERR2938695
200P Brucella melitensis Portugal 2015 Homo sapiens ERS2952778 ERR2938696
4Pa Brucella suis Portugal 2000 Swine ERS2952788 ERR2938697
167-00E Brucella melitensis Spain 2000 Homo sapiens ERS2952735 ERR2938698
194-00E Brucella melitensis Spain 2000 Homo sapiens ERS2952737 ERR2938699
184P Brucella melitensis Portugal 2014 Homo sapiens ERS2952774 ERR2938700
183-4RK Brucella melitensis Hungary 2004 Unknown ERS2952752 ERR2938701
43P Brucella melitensis Portugal 2012 Homo sapiens ERS2952766 ERR2938702
804Pa Brucella melitensis Portugal 2008 Bovine ERS2952759 ERR2938703
209P Brucella melitensis Portugal 2015 Homo sapiens ERS2952779 ERR2938704
198P Brucella melitensis Portugal 2015 Homo sapiens ERS2952776 ERR2938705
194P Brucella melitensis Portugal 2015 Homo sapiens ERS2952775 ERR2938706
MLVA01 Brucella melitensis Germany Unknown Homo sapiens ERS2983828 ERR2993143
MLVA02 Brucella melitensis Germany Unknown Homo sapiens ERS2983829 ERR2993144
MLVA03 Brucella melitensis Germany Unknown Homo sapiens ERS2983830 ERR2993162
MLVA04 Brucella melitensis Germany Unknown Homo sapiens ERS2983831 ERR2993153
MLVA05 Brucella melitensis Germany Unknown Homo sapiens ERS2983832 ERR2993139
MLVA06 Brucella melitensis Germany Unknown Homo sapiens ERS2983833 ERR2993160
MLVA07 Brucella melitensis Germany Unknown Homo sapiens ERS2983834 ERR2993142
MLVA08 Brucella melitensis Germany Unknown Homo sapiens ERS2983835 ERR2993136
MLVA09 Brucella melitensis Germany Unknown Homo sapiens ERS2983836 ERR2993147
MLVA10 Brucella melitensis Germany Unknown Homo sapiens ERS2983837 ERR2993149
MLVA11 Brucella melitensis Germany Unknown Homo sapiens ERS2983838 ERR2993150
MLVA12 Brucella melitensis Germany Unknown Homo sapiens ERS2983839 ERR2993161
MLVA13 Brucella melitensis Germany Unknown Homo sapiens ERS2983840 ERR2993154
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Strain Species Isolation Country Collection_date Host Biosample Run
MLVA14 Brucella melitensis Germany Unknown Homo sapiens ERS2983841 ERR2993133
MLVA16 Brucella melitensis Germany Unknown Homo sapiens ERS2983842 ERR2993159
MLVA17 Brucella melitensis Germany Unknown Homo sapiens ERS2983843 ERR2993141
MLVA18 Brucella melitensis Germany Unknown Homo sapiens ERS2983844 ERR2993132
MLVA19 Brucella melitensis Germany Unknown Homo sapiens ERS2983845 ERR2993146
MLVA20 Brucella melitensis Germany Unknown Homo sapiens ERS2983846 ERR2993135
MLVA22 Brucella spp Germany Unknown Homo sapiens ERS2983847 ERR2993145
MLVA23 Brucella spp Germany Unknown Homo sapiens ERS2983848 ERR2993138
MLVA24 Brucella spp Germany Unknown Homo sapiens ERS2983849 ERR2993152
MLVA25 Brucella spp Germany Unknown Homo sapiens ERS2983850 ERR2993155
MLVA28 Brucella melitensis Germany Unknown Homo sapiens ERS2983851 ERR2993137
MLVA29 Brucella melitensis Germany Unknown Homo sapiens ERS2983852 ERR2993163
MLVA30 Brucella melitensis Germany Unknown Homo sapiens ERS2983853 ERR2993151
MLVA31 Brucella spp Germany Unknown Homo sapiens ERS2983854 ERR2993140
MLVA32 Brucella melitensis Germany Unknown Homo sapiens ERS2983855 ERR2993157
MLVA33 Brucella melitensis Germany Unknown Homo sapiens ERS2983856 ERR2993148
MLVA34 Brucella spp Germany Unknown Homo sapiens ERS2983857 ERR2993158
MLVA35 Brucella melitensis Germany Unknown Homo sapiens ERS2983858 ERR2993134
MLVA36 Brucella melitensis Germany Unknown Homo sapiens ERS2983859 ERR2993156
MLVA37 Brucella melitensis Germany Unknown Homo sapiens ERS2983860 ERR2993131


