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Abstract

The simulation of diameter distributions is an essential aid for a more efficient
planning of the harvesting operations which usually represents a high percentage
in costs associated with production of pulp. In this chapter Johnson’s Sp
probability density function has been used to model diameter distribution of
Eucalyptus globulus Labill. in Portugal.

1 Introduction

Eucalyptus globulus Labill. is one of the most important economic forest species in
Portugal, occupying an area of 875,000%a of a total forest area of 3,346,000ha. It is
a fast-growing species that is mainly used commercially by the pulp industry.

The objective of the research report here is to model the diameter distribution of
eucalyptus plantations in Portugal.

To achieve this objective the following partial objectives were needed: to identify
the probability density function (pdf) that better reproduced the set of observed
frequencies based on the estimates obtained for coefficients of skewness (8;) and
kurtosis (8,) in each plot at each measurement age; to develop a system of equations
that relates stand basal area (G) with the noncentral moments of the distribution in
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Table 1 Characteristics of tree variable used

Tree variable Minimum Mean Maximum
Diameter at breast height (d, cm) 0.1 11.38 45.40

Table 2 Characteristics of stand variables used

Stand variable Minimum Mean Maximum
Basal area (G, m%*ha™") 0.05 16.16 64.55
Number of trees per hectare (N, ha™') 450 1237.34 2811
Productivity (S, m) 10.33 20.20 33.93
Age (t, years) 0.6 9.36 34.70

order to obtain estimates of the pdf. The stand basal area is the sum of squared
diameter multiplied by a factor to express it on area per hectare, and it is related
to the second noncentral moment of the distribution. This variable expresses the
competition between trees as it is the area occupied with tree stems. It has a great
importance because in the growth of trees, the competition reflects itself mainly
by growth in diameter. The algorithm proposed by Parresol [12] was selected as a
starting point for the parameter recovery.

2 Methods
2.1 Data

The data used in this study to model diameter distributions of eucalyptus (Euca-
lyptus globulus Labill.) plantations were collected in Portugal in permanent plots
installed in first rotation stands.

The information concerning all the trees within a plot includes successive mea-
surements, usually annually, of diameter at breast height (d).

The plots used in the present research have drawn on a very large data set
covering stands with different characteristics, namely age (t), stocking (N, number
of trees per hectare), and productivity (S) (see Tables 1 and 2).

2.2 Testing the Performance of Johnson S Distribution

The analysis of the coefficients of skewness (1) and kurtosis () of the distribution
of the diameters could be used to indicate the appropriate pattern followed by a
certain population.

For a first identification of the distribution that better reproduced the set of
observed frequencies, the estimates of the coefficients of skewness (1) and kurtosis
(B2), in each plot at each measurement age, were first analyzed.
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The estimators used were, respectively,
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d; is the diameter at breast height of tree 7, d is the average diameter of the plot,
and #n is the number of trees measured in the plot.

The choice of the Johnson Sp distribution as the null hypothesis for the modeling
of diameter distributions of eucalyptus has been based on its flexibility to model
distributions with different shapes. It has a broader range of the (81, 8») space than
other distributions and includes most of the alternative pdf [5, 6].

Since Hafley and Schreuder [4] introduced the four parameter Johnson’s Sp
distribution into forest literature, this probability density function has been widely
used in forest diameter (and height) distribution modeling by several authors, such
as [1,3,7,9,12,13,15,16].

To test the performance of Johnson Sp distribution to model diameter distribu-
tions of eucalyptus plantations in Portugal, the b; and b, estimates were computed
in each plot at each measurement age on the fitting data set in order to check if
the pairs (b1, b;) occur mainly in the parametric space that corresponds to this
distribution [12].

In order to complement the methodology used, based on the analysis of coeffi-
cients (B, B») for a first identification of the distribution to be used, the goodness-
of-fit Kolmogorov—Smirnov test was also used in order to test the hypothesis that the
Johnson Sp distribution fits the diameter distributions on individual plots [11, 14].
We used the modified Kolmogorov—Smirnov test because the parameters were
unknown and estimated from the data [10]. The test of the qui-square was not used,
for being dependent of the grouping of data in classes.

23 The Johnson System of Probability Density Functions

The Johnson system corresponds to the distribution of a random variable X, in
which a particular transformation is applied, in order to obtain a normal distribution
to the random variable processed. This system is composed by three kinds of
distributions (Johnson Sy, Sg, and Sy ), depending on the transformation applied
to the random variable [5].

When the transformation Z = y + §g(X) is made on the random variable X,
an infinite system of distribution functions (or random variables) is being defined,
clearly identified by the transformation g(X), necessary to obtain a transformed
with standard normal distribution.
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Johnson introduced four parameters y, §, €, and A, with y,e € R, L € RT,
8 € R\ {0} and expressed the generic transformation defined above in the following

way:
X_
Z=y+8g( 6), )

A

where y and § are shape parameters and € and A are location and scale parameters,
respectively. Although the parameters y and § affecting both the skewness and the
kurtosis of distribution, the parameter y is particularly associated with the asymme-
try and an increase in the parameter § corresponds to an increase in the kurtosis [5].

In order to generate distributions with limited support, the transformed chosen is

e =n(;25) @

€ .
results in

that in terms of the variable Y =

X —¢€
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“)
The system of random variables generated by Eq. (3) or (4) is called the Johnson
S system of distributions.

2.4  Algorithm to Estimate the Parameters of the Johnson S
Distribution

The parameters of the Johnson S distribution were estimated using the methodol-
ogy proposed by Parresol [12].
If Eq.(4) is expressed in terms of the variable Y, the following expression is

obtained for Y':
-1
Z—y
Y = [1 + exp (—T)} . %)

When the variable Z assumes the null value the median of the variable Y (or X)
is obtained: .

yip=(1+ e’’?) (6)

Note that the median of ¥ and X are related, since y;,, =

Equation (6) enables the estimation of the shape parameter y, according to the
median value of the diameter distribution, provided that the shape parameter § is
known:

X1/2—€
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However, another equation is needed to estimate the shape parameter §. As we
said in Sect. 1, a variable of great interest in the elaboration of stand models with
diameter distribution simulation is the stand basal area (G). This variable is related
to the second noncentral moment, E (X 2) of X, through the relation,

N
1 b4
G=—— )Y —d*=cNE(X? 2ha™! 8
1000024! ¢NE(XT) - (mha™h ®
with N = number of trees alive, per hectare, d; = diameter at breast height (cm)
measured of tree i, and ¢ = 40’5—00 is a conversion constant.
As

E(X?)=E(e+AY) =€ +2eAE (Y) + A’E (Y?),
then
G =cN (€ +2eAE (Y) + V’E (Y?)). )

The noncentral moments of order r (E(Y")) r = 1,2 may be determined through
the moment-generating function ¢ of the variable Y

Foo 1 t _22/2
oy (1) = 5 CXP = e " /7dz

—0o0

14+e 73
which shows the following relationship:

d’r 1 +o0 N
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The resolution of the system formed by Eqgs. (7) and (9), based on known values
of the median variable Y (or X), G, and N, allows, by assuming some reasonable
values for € and A, to obtain estimates for the parameters y and §. The solution
requires the use of numerical iterative methods of numerical integration, as the
calculation of moments of the distribution does not have an analytical solution [2,8].

As in any iterative process it is necessary to assign initial values to the
parameters. Parresol [12] suggests the attribution of an initial value to § for a first
approach of y obtained from Eq. (7). Thus the parameter § was initialized with
the estimate obtained for the kurtosis because an increase of § corresponds to an
increase in the kurtosis [5]. The parameter € was fixed as equal to the minimum
value of the observed diameter and A to the difference between the maximum and
minimum value of the observed diameter. The values for G and N were obtained
from the measurement of each plot in study.

EY") =




294

40
35
30

Frequency

10

25

IN]
o

o

W 52real
5.2 estimated

0 II|
6 10 14 18 22 26 30 34 38

Diameter class (cm)

60
m 148 real
50 4 14.8 estimated
—. 40
pes
= 30
=
P
o 20
o.lIII I "l -
18 22 26 30 34 38
Dlameter class (cm)
20
W 24.7 real
24.7 estimated
154
10 4

Frequency

(S

o

Y6 20 24 28 32 36
Dlameter class (cm)

Frequency

20

Frequency

Frequency

20

A. Mateus and M. Tomé

W 9.7 real
9.7 estimated

o

18 22 26 30 34 38

Dlameter class (cm)

o

o

o

m 19.7 real
19.7 estimated

o

16 20 24 28 32 %
Dlameter class (cm)

20

o

o

S

0

8

m 30.6 real
30.6 estimated

12 16 20 24 28 32 36
Diameter class (cm)

Fig. 1 Comparison of real and estimated diameter distribution from a plot at ages (years) 5.2, 9.7,

14.8, 19.7, 24.7, and 30.6 (dark = real values)

3

Results and Conclusions

The ranges for the coefficients (b;, b,) estimated with the data set described in
Tables 1 and 2 were —1.3977 < b; < 1.0805 and 1.8112 < b, < 6.8685, which
indicates the existence of a huge variety of empirical diameter distributions for
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eucalyptus plantations. This supports the choice of a very flexible distribution. The
values observed for the pairs (b;, b;) are included in the range of variation for the
coefficients of skewness and kurtosis of the Johnson Sz distribution [5].

It was also verified that in the great majority of the plots, the coefficients of
skewness assume negative values. In the growth of trees, competition between
trees affects growth in tree diameter; this fact explains the negative values for the
coefficients of skewness. In other words, the trees that had a higher initial growth
in diameter (d) will compete, mainly for light, with the smaller ones making those
to continue to have lower growth rates, and the differences between small and large
trees tended to increase.

The modified Kolmogorov—Smirnov test with a significance level of 5% showed
that the distribution Johnson S did not significantly differ from the empirical distri-
bution in 106 out of 111 studied stands, each of them with several remeasurements
between 5 and 32 years.

In conclusion, modeling diameter distributions of eucalyptus (Eucalyptus glob-
ulus Labill.) plantations in Portugal through a probability density function, namely
Johnson Sz, using a parameter recovery approach seems to be a good methodology
that can be generally applied to the most common values of the pair (by, by).
The main advantage of using parameter recovery models is that the stand variable
that was used in the parameter recovery, namely basal area, assures compatibility
between the characteristics of the observed population and those obtained through
simulation of diameter distribution. This means that basal area computed with the
simulated distribution is fairly closed to the one observed.

As an example Fig. 1 shows the evolution of the observed and simulated diameter
distribution from 5.2 to 30.6 years of age in one of the permanent plot from the
fitting data set when the initialization was made with the measurement at 5.2 years
of age. As can be seen the agreement is very good, even for ages far away from the
initial one. The results in other long-term series plots were similar.
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