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Abstract

In this paper we investigate updates of knowledge bases represented by logic programs. In order
to represent negative information, we use generalized logic programs which allow default negation not
only in their bodies but also in their heads.We start by introducing the notion of an update P & U
of a logic program P by another logic program U. Subsequently, we provide a precise semantic
characterization of P & U, and study some basic properties of program updates. In particular, we
show that our update programs generalize the notion of interpretation update.

We then extend this notion to sequences of logic programs updates P, @& P, @ ..., defining
dynamic program updates, thereby introducing the paradigm of dynamic logic programming. This
paradigm significantly facilitates modularization of logic programming, and thus modularization of
non-monotonic reasoning as a whole.

Specifically, suppose that we are given a set of logic program modules, each describing a different
state of our knowledge of the world. Different states may represent different time points or different
sets of priorities or perhaps even different viewpoints. Consequently, program modules may contain
mutually contradictory as well as overlapping information. The role of the dynamic program update
is to use the mutual relationships existing between different states to precisely determine, at any
given state, the declarative as well as procedural semantics of the combined program, resulting from
all these modules.

Keywords: Logic Programming, Nonmonotonic Logics, Updates

1 Introduction

Most of the work conducted so far in the field of logic programming has focused on representing static
knowledge, i.e., knowledge that does not evolve with time. This is a serious drawback when dealing with
dynamic knowledge bases in which not only the extensional part (the set of facts) changes dynamically
but so does the intensional part (the set of rules).

In this paper we investigate updates of knowledge bases represented by logic programs. In order to
represent negative information, we use generalized logic programs which allow default negation not only
in rule bodies but also in their heads. This is needed, in particular, in order to specify that some atoms
should became false, i.e., should be deleted. However, our updates are far more expressive than a mere
insertion and deletion of facts. They can be specified by means of arbitrary program rules and thus they
themselves are logic programs. Consequently, our approach demonstrates how to update one generalized
logic program P (the initial program) by another generalized logic program U (the updating program),
obtaining as a result a new, updated logic program P & U.

Several authors have addressed the issue of updates of logic programs and deductive databases (see
e.g. [9, 10, 1]), most of them following the so called “interpretation update” approach, originally proposed
in [11, 5]. This approach is based on the idea of reducing the problem of finding an update of a knowledge
base DB by another knowledge base U to the problem of finding updates of its individual interpretations
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(modelst). More precisely, a knowledge base DB’ is considered to be the update of a knowledge base DB
by U if the set of models of D B’coincides with the set of updated models of DB, i.e. “the set of models of
DB" = “the set of updated models of DB”. Thus, according to the interpretation update approach, the
problem of finding an update of a deductive database DB is reduced to the problem of finding individual
updates of all of its relational instantiations (models) M. Unfortunately such an approach suffers, in
general, from several important drawbacks?:

e In order to obtain the update DB’ of a knowledge base DB one has to first compute all the models
M of DB (typically, a daunting task) and then individually compute their (possibly multiple)
updates My by U. An update My of a given interpretation M is obtained by changing the status
of only those literals in M that are “forced” to change by the update U, while keeping all the other
literals intact by inertia (see e.g. [9, 10]).

e The updated knowledge base DB’ is not defined directly but, instead, it is indirectly characterized
as a knowledge base whose models coincide with the set of all updated models My of DB. In
general, there is therefore no natural way of computing® DB’ because the only straightforward
candidate for DB’ is the typically intractably large knowledge base DB’ consisting of all clauses
that are entailed by all the updated models My of DB.

e Most importantly, while the semantics of the resulting knowledge base DB’ indeed represents the
intended meaning when just the extensional part of the knowledge base DB (the set of facts) is
being updated, it leads to strongly counter-intuitive results when also the intensional part of the
database (the set of rules) undergoes change, as the following example shows.

Example 1 Consider the logic program P :

P: sleep <+ nottv_on tv_on +
watch_tv < tv_on

whose M = {tv_on,watch_tv} is its only stable model. Suppose now that the update U states that there
is a power failure, and if there is a power failure then the TV is no longer on, as represented by the logic
program U :

U: nottv_on < power_failure
power _ failure <

According to the above mentioned interpretation approach to updating, we would obtain, as the only
update of M by U, the model My = {power_ failure,watch_tv}. This is because power _ failure needs
to be added to the model and its addition forces us to make tv_on false. As a result, even though
there is a power failure, we are still watching TV. However, by inspecting the initial program and the
updating rules, we are likely to conclude that since “watch_tv” was true only because ‘tv_on” was

true, the removal of ‘tv_on” should make “watch_tv” false by default. Moreover, one would expect

“sleep” to become true as well. Consequently, the intended model of the update of P by U is the model
M[’J = {power_ failure, sleep}.

Suppose now that another update Uy follows, described by the logic program:

Us : notpower failure <

stating that power is back up again. We should now expect the TV to be on again. Since power was
restored, i.e. ‘power _ failure” is false, the rule “nottv_on < power _failure” of U should have no
effect and the truth value of ‘tv_on” should be obtained by inertia from the rule “tv_on < 7 of the
original program P. |

This example illustrates that, when updating knowledge bases, it is not sufficient to just consider the
truth values of literals figuring in the heads of its rules because the truth value of their rule bodies may

IThe notion of a model depends on the type of considered knowledge bases and on their semantics. In this paper we
are considering (generalized) logic programs under the stable model semantics.

2In [1] the authors addressed the first two of the drawbacks mentioned below. They showed how to directly construct,
given a logic program P, another logic program P’ whose partial stable models are exactly the interpretation updates
of the partial stable models of P. This eliminates both of these drawbacks (in the case when knowledge bases are logic
programs) but it does not eliminate the third, most important drawback.

3 In fact, in general such a database DB’ may not exist at all.
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also be affected by the updates of other literals. In other words, it suggests that the principle of inertia
should be applied not just to the individual literals in an interpretation but rather to entire rules of the
knowledge base.

In this paper we investigate the problem of updating knowledge bases represented by generalized logic
programs and we propose a new solution to this problem that attempts to eliminate the drawbacks of
the previously proposed approaches. Specifically, given one generalized logic program P (the so called
initial program) and another logic program U (the updating program) we define a new generalized logic
program P @ U called the update of P by U. The definition of the updated program P & U does not
require any computation of the models of either P or U and is in fact obtained by means of a simple,
linear-time transformation of the programs P and U. As a result, the update transformation can be
accomplished very efficiently and its implementation is quite straightforward?.

Due to the fact that we apply the inertia principle not just to atoms but to entire program rules, the
semantics of our updated program P ¢ U avoids the drawbacks of interpretation updates and moreover
it seems to properly represent the intended semantics. As mentioned above, the updated program P ® U
does not just depend on the semantics of the programs P and U, as it was the case with interpretation
updates, but it also depends on their syntaz. In order to make the meaning of the updated program
clear and easily verifiable, we provide a complete characterization of the semantics of updated programs
PoU.

Nevertheless, while our notion of program update significantly differs from the notion of interpretation
update, it coincides with the latter (as originally introduced in [9] under the name of revision program
and later reformulated in the language of logic programs in [10]) when the initial program P is purely
extensional, i.e., when the initial program is just a set of facts. Our definition also allows significant
flexibility and can be easily modified to handle updates which incorporate contradiction removal or
specify different inertia rules. Consequently, our approach can be viewed as introducing a general dynamic
logic programming framework for updating programs which can be suitably modified to make it fit
different application domains and requirements.

Finally, we extend the notion of program updates to sequences of programs, defining the so called
dynamic program updates. The idea of dynamic updates is very simple and quite fundamental. Suppose
that we are given a set of program modules Ps, indexed by different states of the world s. Each program
P; contains some knowledge that is supposed to be true at the state s. Different states may represent
different time periods or different sets of priorities or perhaps even different viewpoints. Consequently,
the individual program modules may contain mutually contradictory as well as overlapping information.
The role of the dynamic program update @ {P; : s € S} is to use the mutual relationships existing
between different states (as specified by the order relation) to precisely determine, at any given state s,
the declarative as well as the procedural semantics of the combined program, composed of all modules.

Consequently, the notion of a dynamic program update supports the important paradigm of dynamic
logic programming. Given individual and largely independent program modules P describing our knowl-
edge at different states of the world (for example, the knowledge acquired at different times), the dynamic
program update @ {Ps : s € S } specifies the exact meaning of the union of these programs. Dynamic
programming significantly facilitates modularization of logic programming and, thus, modularization
of non-monotonic reasoning as a whole. Whereas traditional logic programming has concerned itself
mostly with representing static knowledge, we show how to use logic programs to represent dynamically
changing knowledge.

Our results extend and improve upon the approach initially proposed in [7], where the authors first
argued that the principle of inertia should be applied to the rules of the initial program rather than to
the individual literals in an interpretation. However, the specific update transformation presented in [7]
suffered from some drawbacks and was not sufficiently general.

We begin in Section 2 by defining the language of generalized logic programs, which allow default
negation in rule heads. We describe stable model semantics of such programs as a special case of the
approach proposed earlier in [8]. In Section 3 we define the program update P @ U of the initial program
P by the updating program U. In Section 4 we provide a complete characterization of the semantics of
program updates P @& U and in Section 5 we study their basic properties. In Section 6 we introduce the
notion of dynamic program updates. We close the paper with concluding remarks and notes on future
research.

4The implementation is available from: http://www-ssdi.di.fct.unl.pt/~jja/updates/.
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2 Generalized Logic Programs and their Stable Models

In order to represent negative information in logic programs and in their updates, we need more general
logic programs that allow default negation not A not only in premises of their clauses but also in their
heads.>. We call such programs generalized logic programs. In this section we introduce generalized logic
programs and extend the stable model semantics of normal logic programs [3] to this broader class of
programs®,

The class of generalized logic programs can be viewed as a special case of a yet broader class of
programs introduced earlier in [8]. While our definition is different and seems to be simpler than the one
used in [8], when restricted to the language that we are considering, the two definitions can be shown to
be equivalent”.

It will be convenient to syntactically represent generalized logic programs as propositional Horn
theories. In particular, we will represent default negation not A as a standard propositional variable
(atom). Suppose that K is an arbitrary set of propositional variables whose names do not begin with a
“not”. By the propositional language Lx generated by the set K we mean the language £ whose set of
propositional variables consists of:

{A:AeK}u{not A: AcK}.

Atoms A € K, are called objective atoms while the atoms not A are called default atoms. From the
definition it follows that the two sets are disjoint.

By a generalized logic program P in the language Lx we mean a finite or infinite set of propositional
Horn clauses of the form:

L« Li,...,L,

where L and L; are atoms from Ly. If all the atoms L appearing in heads of clauses of P are objective
atoms, then we say that the logic program P is normal. Consequently, from a syntactic standpoint,
a logic program is simply viewed as a propositional Horn theory. However, its semantics significantly
differs from the semantics of classical propositional theories and is determined by the class of stable
models defined below.

By a (2-valued) interpretation M of L we mean any set of atoms from Ly that satisfies the condition
that for any A in K, precisely one of the atoms A or not A belongs to M. Given an interpretation M
we define:

Mt={AeK:Aec M} M- ={notA:notAc M}={notA: A¢ M}

Definition 2 (Stable models of generalized logic programs) We say that o (2-valued) interpre-
tation M of Lx is a stable model of a generalized logic program P if M is the least model of the Horn
theory P U M~ :

M = Least(P UM ™),
or, equivalently, if M = {L : L is an atom and PUM~ + L}. O
Example 3 Consider the program:

a < notb c+b e < notd
notd < notc,a d < note

and let K = {a,b,c,d,e}. This program has precisely one stable model M = {a,e, notb, not c, not d}. To
see that M is stable we simply observe that:

M = Least(P U {not b, not c, not d}).
The interpretation N = {not a, not e,b,c,d} is not a stable model because:

N # Least(P U {note,nota}). O

5For further motivation and intuitive reading of logic programs with default negations in the heads see [8].

6Tn a forthcoming paper we extend our results to 3-valued (partial) models of logic programs, and, in particular, to
well-founded models.

"Note that the class of generalized logic programs differs from the class of programs with the so called “classical”
negation [4] which allow the use of strong rather than default negation in their heads.
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Following an established tradition, from now on we will be omitting the default (negative) atoms when
describing interpretations and models. Thus the above model M will be simply listed as M = {a,e}.
The following Proposition easily follows from the definition of stable models.

Proposition 4 An interpretation M of Li is a stable model of a generalized logic program P if and only
if

Mt ={A:A€K and L + A} and M~ D2 {notA: A€k and £  notA},
where % denotes the Gelfond-Lifschitz transform [3] of P w.r.t. M. O

Clearly, the second condition in the above Proposition is always vacuously satisfied for normal pro-
grams and therefore we immediately obtain:

Proposition 5 The class of stable models of generalized logic programs extends the class of stable models
of normal programs [3]. O

3 Program Updates

Suppose that K is an arbitrary set of propositional variables, and P and U are two generalized logic
programs in the language £ = Lx. By K we denote the following superset of K:

K=KU{A™, Ap, Ap, Ay, Ay : AcK).

This definition assumes that the original set K of propositional variables does not contain any of the
newly added symbols of the form A~, Ap, A, Ay, Ay, so that they are all disjoint sets of symbols. If
K contains any such symbols then they have to be renamed before the extension of K takes place. We
denote by L= L the extension of the language £ = L generated by K.

Definition 6 (Program Updates) Let P and U be generalized programs in the language L. We call
P the original program and U the updating program. By the update of P by U we mean the generalized
logic program P & U, which consists of the following clauses in the extended language L:

(RP) Rewritten original program clauses:

Ap « By,...,B,,C{,...,C, (1)
Ap < Bi,...,B,,Cr,...,C; (2)
for any clause:
A <« By, ..., By, notCq, ..., notC,
and
notA <+ By, ..., By,notCy, ..., notC,

respectively, in the original program P. The rewritten clauses are obtained from the original ones
by replacing atoms A (respectively, the atoms not A) occurring in their heads by the atoms Ap
(respectively, Ap) and by replacing negative premises not C by C~.

(RU) Rewritten updating program clauses:

Ay <« By,...,Bn,Cr,...,C; (3)
A, < By,...,B,,C,...,C; (4)
for any clause:
A < By, ..., By, notCq, ..., notC,
and, respectively,
notA <+ By, ..., Bp,notCy, ..., notC,

in the updating program U. The rewritten clauses are obtained from the original ones by replacing
atoms A (respectively, the atoms not A) occurring in their heads by the atoms Ay (respectively,
Ay ) and by replacing negative premises not C' by C~.
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(UR) Update rules:
A+ Ay A” Ay (5)

for all objective atoms A € K. The update rules state that an atom A must be true (respectively,
false) in P @ U if it is true (respectively, false) in the updating program U.

(IR) Inheritance rules:
A Ap,not Ay A™ «— Ap, not Ay (6)

for all objective atorns A € K. The inheritance rules say that an atom A (respectively, A~ ) in
P 3 U is inherited (by inertia) from the original program P provided it is not rejected (i.e., forced
to be false) by the updating program U. More precisely, an atom A is true (respectively, false) in
P o U if it is true (respectively, false) in the original program P, provided it is not made false
(respectively, true) by the updating program U.

(DR) Default rules:
A~ < not Ap,not Ay not A « A~ (7

for all objective atoms A € K. The first default rule states that an atom A in P& U is false if it is
neither true in the original program P nor in the updating program U. The second says that if an
atom is false then it can be assumed to be false by default. It ensures that A and A~ cannot both
be true. O

It is easy to show that any model N of P & U is coherent, i.e., A 1is true (respectively, false) in
N iff A~ is false (respectively, true) in N, for any A € K. In other words, every stable model of P & U
satisfies the constraint not A = A~. Consequently, A~ can be simply regarded as an internal (meta-level)
representation of the default negation not A of A.

Example 7 Consider the programs P and U from Example 1:

P: sleep < nottv_on U: nottv_on < power_failure
watch_tv < tv_on power _ failure <
tv_on <

The update of the program P by the program U is the logic program P ® U = (RP) U (RU) U (UR) U
(IR) U (DR), where:

RP : sleepp < tv_on~ RU : tv_ony < power_ failure
watch _tvp < tv_on power _ failurey <+
tv_onp <

It is easy to verify that M = {power_ failure, sleep} is the only stable model (modulo irrelevant literals)
of PeU. O

4 Semantic Characterization of Program Updates

In this section we provide a complete semantic characterization of update programs P & U by describing
their stable models. This characterization shows precisely how the semantics of the update program
P ®© U depends on the syntax and semantics of the programs P and U.

Let P and U be fized generalized logic programs in the language £. Since the update program P& U
is defined in the extended language £, we begin by showing how interpretations of the language £ can
be extended to interpretations of the extended language L.

Definition 8 (Extended Interpretation) For any interpretation M of £ we denote by M its exten-

ston to an interpretation of the extended language L defined, for any atom A € K, by the following
rules:

A—eM iff notAe M
ApeM iff 3 A « Bodye€ P and M |= Body
Ap,eM iff InotA < Body € P and M = Body
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Ay € M iff 3A + Body € U and M = Body
ApeM iff InotA < Bodye U and M |= Body.O

We will also need the following definition:
Definition 9 For any model M of the program U in the language L define:
Defaults[M] = {not A: M = —-Body,Y(A < Body)e P U U};

Rejected[M] = {A + Body € P:3 (not A < Body' € U) and M = Body'}U
U{not A<+ Body € P:3 (A « Body €U) and M = Body'};

Residue[M] =P U U — Rejected[M]. O

The set Defaults[M] contains default negations not A of all unsupported atoms A, i.e., atoms that
have the property that the body of every clause from PUU with the head A is false in M. Consequently,
negation not A of these unsupported atoms A can be assumed by default. The set Rejected[M] C P
represents the set of clauses of the original program P that are rejected (or contradicted) by the update
program U and its model M. The residue Residue[M] consists of all clauses in the union P U U of
programs P and U that were not rejected by the update program U. Note that all the three sets depend
on the model M as well as on the syntax of the programs P and U.

Now we are able to describe the semantics of the update program P & U by providing a complete
characterization of its stable models.

Theorem 10 (Chamctemzatwn of stable models of update programs) An interpretation N of
the language L = = Lz 1is a stable model of the update P & U if and only if N is the extension N = M
of a model M of U that satisfies the condition:

M = Least(P U U — Rejected[M] U Defaults[M]),
or M = Least(Residue[M] U Defaults[M]), equivalently. O

Example 11 Consider again the programs P and U from Ezample 1. Let M = {power_ failure, sleep}.
We obtain:

sleep < nottv_on
watch_tv < tv_on
nottv_on < power _ failure
power _ failure <

Defaults[M] = {not watch_tv

3o B
Rejected[M] = {tv_on <} Residue[M] =

and thus it is easy to see that

M = Least(Residue[M] U Defaults[M]).

Consequently, M is a stable model of the update program P & U. O

5 Properties of Program Updates

In this section we study the basic properties of program updates. Since Defaults[M] C M—, we conclude
that the condition M = Least(Residue[M]U De faults[M]) clearly implies M = Least(Residue[M] U
M ™) and thus we immediately obtain:

Proposition 12 If N is a stable model of P & U then its restriction M = N|L to the language L is a
stable model of Residue[M]. O

However, the condition M = Least(Residue[M]U De faults[M]) says much more than just that M
is a stable model of Residue[M]. It says that M is completely determined by the set De faults[M], i.e.,
by the set of negations of unsupported atoms that can be assumed false by default.

Clearly, if M is a stable model of P U U then Rejected[M| = () and Defaults[M] = M~, which
implies:
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Proposition 13 If M is a stable model of the union P UU of programs P and U then its extension
N = M is a stable model of the update program P& U. Thus, the semantics of the update program P& U
is always weaker than or equal to the semantics of the union PUU of programs P and U. d

In general, the converse of the above result does not hold. In particular, the union P U U may be a
contradictory program with no stable models.

Example 14 Consider again the programs P and U from Example 1. It is easy to see that PUU is
contradictory. O

If either P or U is empty and M is a stable model of P U U then Rejected[M] = () and therefore M
is also a stable model of P & U.

Proposition 15 If either P or U is empty then M is a stable model of PUU iff N = M is a stable
model of P & U. Thus, in this case, the semantics of the update program P & U coincides with the
semantics of the union PUU. |

Proposition 16 If both P and U are normal programs (or if both have only clauses with default atoms

not A in their heads) then M is a stable model of PUU iff N = M is a stable model of P& U. Thus,
in this case the semantics of the update program P & U also coincides with the semantics of the union
PuUU of programs P and U. O

5.1 Program Updates Generalize Interpretation Updates

In this section we show that interpretation updates, originally introduced under the name “revision
programs” by Marek and Truszczynski [9], and subsequently given a simpler characterization by Przy-
musinski and Turner [10], constitute a special case of program updates. Here, we identify the “revision
rules”™

in(A) < in(B), out(C) and out(A) < in(B), out(C)
used in [9], with the following generalized logic program clauses:
A<« B,notC and not A < B, not C

Theorem 17 (Program updates generalize interpretation updates) Let I be any interpretation
and U any updating program in the language L. Denote by Pr the generalized logic program in L defined

by
Pr={A < :Ael} U {notA < :notAel}.

Then J is a stable model of the program update Pr & U of the program Pr by the program U iff J is
an interpretation update of I by U (in the sense of [9]). O

This theorem shows that when the initial program P is purely extensional, i.e., contains only positive
or negative facts, then the interpretation update of P by U is semantically equivalent to the updated
program P @ U. As shown by Example 1, when P contains deductive rules then the two notions become
significantly different.

Remark 18 [t is easy to see that, optionally, we could include only positive facts A < in the program
Py thus making it a normal program. |

5.2 Adding Strong Negation

We now show that it is easy to add strong negation —A ([4],[2]) to generalized logic programs. This
demonstrates that the class of generalized logic programs is at least as expressive as the class of logic
programs with strong negation. It also allows us to update logic programs with strong negation and to
use strong negation in updating programs.
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Definition 19 (Adding strong negation) Let K be an arbitrary set of propositional variables. In
order to add strong negation to the language L = Lx we just augment the set K with new propositional
symbols {—A : A € K}, obtaining the new set K*, and consider the extended language £* = Lx~. In
order to ensure that A and —A cannot be both true we also assume, for all A € K, the following strong
negation axioms, which themselves are generalized logic program clauses:

(SN1) notA«— —A
(SN2) not —A « A.

Remark 20 In order to prevent the strong negation rules (SN) from being inadvertently overruled by
the updating program U, one may want to make them always part of the most current updating program
(see the next section). O

6 Dynamic Program Updates

In this section we introduce the notion of dynamic program update @{ Py : s € S} over an ordered set
P ={ Ps:s €S} of logic programs which provides an important generalization of the notion of single
program updates P @ U introduced in Section 3.

The idea of dynamic updates, inspired by [6], is simple and quite fundamental. Suppose that we are
given a set of program modules P;, indexed by different states of the world s. Each program Ps contains
some knowledge that is supposed to be true at the state s. Different states may represent different time
periods or different sets of priorities or perhaps even different viewpoints. Consequently, the individual
program modules may contain mutually contradictory as well as overlapping information. The role of
the dynamic program update € {Ps : s € S} is to use the mutual relationships existing between different
states (and specified in the form of the ordering relation) to precisely determine, at any given state s,
the declarative as well as the procedural semantics of the combined program, composed of all modules.

Consequently, the notion of a dynamic program update supports the important paradigm of dynamic
logic programming. Given individual and largely independent program modules P, describing our knowl-
edge at different states of the world (for example, the knowledge acquired at different times), the dynamic
program update @ {Ps : s € S } specifies the exact meaning of the union of these programs. Dynamic
programming significantly facilitates modularization of logic programming and, thus, modularization of
non-monotonic reasoning as a whole.

Suppose that P = {P, : s € S} is a finite or infinite sequence of generalized logic programs in the
language £ = L, indexed by the set S = {1,2, ..., n, ...}. We will call elements s of the set SU{0}
states and we will refer to 0 as the initial state. If S has the largest element then we will denote it by
maz.

Remark 21 Instead of a linear sequence of states SU{0} one could as well consider any finite or infinite
ordered set with the smallest element so and with the property that every state s other than so has an
immediate predecessor s — 1 and that s = s — n, for some finite n. In particular, one may use a finite
or infinite tree with the root sg and the property that every node (state) has only a finite number of
ancestors. O

By K we denote the following superset of the set K of propositional variables:

K=Ku{ A=A, A7, Ap,, A}  reject(As),
reject(A;): Ae K, se SU{0}}.

As before, this definition assumes that the original set K of propositional variables does not contain any
of the newly added symbols of the form A~ Ay, A7, Ap,, Ap ,reject(As), reject(Ay) so that they are
all disjoint sets of symbols. If the original language K contains any such symbols then they have to be
renamed before the extension of K takes place. We denote by £ = L the extension of the language
L = Lx generated by K.

Definition 22 (Dynamic Program Update) By the dynamic program update over the sequence of
updating programs P = {Ps: s E_S} we mean the logic program \HYP, which consists of the following
clauses in the extended language L:
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(RP) Rewritten program clauses:

Ap, < Bi,...,Bn,Cr,....,C, (8)
Ap  « Bi,...,By,Cy,...,Cp 9)
for any clause:
A <« By, ..., By, notCq, ..., notC,
respectively, for any clause:
notA <« By, ..., Bp,notCq, ..., notCy

in the program Py, where s € S. The rewritten clauses are simply obtained from the original ones
by replacing atoms A (respectively, the atoms not A) occurring in their heads by the atoms Ap,
(respectively, Ap ) and by replacing negative premises not C by C~.

(UR) Update rules:
As + Ap,; Ay < Ap (10)

for all objective atoms A € K and for all s € S. The update rules state that an atom A must be
true (respectively, false) in the state s € S if it is true (respectively, false) in the updating program
P.

(IR) Inheritance rules:

As « As_1,notreject(As—1); Ay A, notreject(A;_;) (11)
reject(As_1) Ap reject(A, ,) < Ap, (12)

for all objective atoms A € K and for all s € S. The inheritance rules say that an atom A is
true (respectively, false) in the state s € S if it is true (respectively, false) in the previous state
s—1 and it is not rejected, i.e., forced to be false (respectively, true), by the updating program Ps.
The addition of the special predicate reject, although not strictly needed at this point, allows us to
impose later on additional restrictions on the inheritance by inertia.

(DR) Default rules (describing the initial state):
45 (13)

for all objective atoms A € K. Default rules describe the initial state 0 by making all objective
atoms initially false. O

Observe that the dynamic program update [HP is a normal logic program, i.e., it does not contain
default negation in heads of its clauses. Moreover, only the inheritance rules contain default negation
in their bodies. Also note that the program |§P does not contain the atoms A or A=, where A € K, in
heads of its clauses. These atoms appear only in the bodies of rewritten program clauses. The notion of
the dynamic program update @,P at a given state s € S changes that.

Definition 23 (Dynamic Program Update at a Given State) Given a fized state s € S, by the
dynamic program update at the state s, denoted by PP, we mean the dynamic program update 3P
augmented with the following:

Current State Rules CS(s):
A+ A A «— A not A — A (14)

for all objective atoms A € K. Current state rules specify the current state s in which the updated
program is being evaluated and determine the values of the atoms A, A~ and not A. In particular,
if the set S has the largest element max then we simply write @P instead of @mazP- O

Mark that whereas for any state s [P is not required to be coherent, @,P must be so.
The notion of a dynamic program update generalizes the previously introduced notion of an update
P & U of two programs P and U.
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Theorem 24 Let P, and P, be arbitrary generalized logic programs and let S = {1,2}. The dynamic
program update @{ Py, P} = @, {P1, P2} at the state max = 2 is semantically equivalent to the program
update Py & P> defined in Section 3. O

Example 25 Let P = {P,, P, P3}, where Py, P, and Ps are as follows:

P : sleep < nottv_on Py : nottv_on < power_ failure
watch_tv < tv_on power _ failure <
tv_on Ps : notpower _failure <

The dynamic program update over P is the logic program JP= (RP;) U (RP;) U(RP;)U(UR)U(IR)U
(DR), where

RP) : sleepp, < tv_on~ RP>: tv_onp, < power_ failure
watch _tvp, < tv_on power__ failurep, <
tv_onp, RP;:  power_ failurep, <

and the dynamic program update at the state s is @, P = P UCS(s). Consequently, as intended,
@D, P has a single stable model My = {tv_on,watch_tv}; @2P has a single stable model My =
{sleep, power _failure} and @P = P3P has a single stable model M3 = {tv_on,watch_tv} (all
models modulo irrelevant literals). Moreover. @2P is semantically equivalent to P, & Ps. O

7 Conclusions and Future Work

We defined a program transformation that takes two generalized logic programs P and U, and produces
the updated logic program P& U resulting from the update of program P by U. We provided a complete
characterization of the semantics of program updates P & U and we established their basic properties.
Our approach generalizes the so called revision programs introduced in [9]. Namely, in the special case
when the initial program is just a set of facts, our program update coincides with the justified revision of
[9]. In the general case, when the initial program also contains rules, our program updates characterize
precisely which of these rules remain valid by inertia, and which are rejected. We also showed how strong
or “classical” negation can be easily incorporated into the framework of program updates.

With the introduction of dynamic program updates, we have extended program updates to ordered
sets of logic programs (or modules). When this order is interpreted as a time order, dynamic program up-
dates describe the evolution of a logic program which undergoes a sequence of modifications. This opens
up the possibility of incremental design and evolution of logic programs, leading to the paradigm of dy-
namic logic programming. We believe that dynamic programming significantly facilitates modularization
of logic programming, and, thus, modularization of non-monotonic reasoning as a whole.

A specific application of dynamic logic programming that we intend to explore, is the evolution and
maintenance of software specifications. By using logic programming as a specification language, dynamic
programming provides the means of representing the evolution of software specifications.

However, ordered sets of program modules need not necessarily be seen as just a temporal evolution of
a logic program. Different modules can also represent different sets of priorities, or viewpoints of different
agents. In the case of priorities, a dynamic program update specifies the exact meaning of the “union”
of the modules, subject to the given priorities. We intend to further study the relationship between
dynamic logic programming and other preference-based approaches to knowledge representation.

Although not explored in here, a dynamic program update can be queried not only about the current
state but also about other states. If modules are seen as viewpoints of different agents, the truth of some
A, in @ P can be read as: A is true according to agent s in a situation where the knowledge of the € P
is “visible” to agent s.

We are in the process of generalizing our approach and results to the 3-valued case, which will
enable us to update programs under the well-founded semantics. We have already developed a working
implementation for the 3-valued case with top-down querying.

Our approach to program updates has grown out of our research on representing non-monotonic
knowledge by means of logic programs. We envisage enriching it in the near future with other dynamic
programming features, such as abduction and contradiction removal. Among other applications that we
intend to study are productions systems modelling, reasoning about concurrent actions and active and
temporal databases.
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