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Abstract: In the field of physics teaching, the simple pendulum provides a very simple way to study the
harmonic oscillator, source of some fundamental concepts like periodicity, relaxation time and
anharmonicity. As such, its experimental study is frequently integrated in the high school or first years
university programs. With this in mind, in this article we propose a simple setup allowing to study some of
its properties. By coupling a small wireless acquisition board to an oscillating mass, the centripetal
acceleration is recorded and analyzed. We show using basic calculations how this acceleration allow to
extract the variation with time of its period and of the amplitude. The experimental results show that the
damping of the amplitude is very well described by an exponential law. The accuracy we obtain on the
period allows to show that, not only it decreases with amplitude, but that this decrease is relatively well
described by standard calculation. Using wireless multipurpose acquisition board and usual spreadsheet
for experimental modelling, the completion of this work, about 4 hours, offers to the student an original
way to go a little beyond the classical study of the spectacular object that is the pendulum.
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1 Introduction

The harmonic oscillator is a fundamental system in physics and is often used as a basic model for many
phenomena in sciences and technology. Itis intrinsically connected to the birth of the science of mechanics
and, e.g., to the invention of accurate clocks and many other uses. An interesting example is the invention
of the pulsilogium, a simple pendulum invented by Galileo to measure objectively the human pulsation [1].
Its study in schools starts at early ages and is progressively developed, from simple concepts such as
frequency and period to second order differential equations. One of its simplest representation is a
pendulum — a particle of mass 7 suspended from a wire with length L and of negligible mass. The physical
analysis of this pendulum and its equations leading to 8(t), time dependence of its angle in respect to its
equilibrium position, are a common problem in the school science curriculum (and also on the mathematics

curriculum).



Thanks to this simple concretization and the important concept involved, the theoretical study of the
simple pendulum [2] is often accompanied by some practical work. For instance, the dependence of the
period 7" with the wire length is a classical work and can be used to verify the canonical equation T, =
211\/% (valid for small amplitudes) and to measure indirectly the local acceleration of gravity, g. More
difficult to measure is, for instance, T(8,), the relatively small dependence [3, 4] of the period with the
angular amplitude 6, when the approximation sin(8)~ 6 is no longer valid. As a matter of fact, such a
verification needs good accuracy on the period and on the amplitude measurements. Another practical
study, not less fundamental but closer to the reality, is the damped pendulum. Usually, a viscous force F=
—b v is introduced to describe the origin of the damping [2] and, doing so, the differential equation remains
easy to integrate: The solution is the well-known equation of the damped harmonic oscillator, 6(t) =
Boe~/"cos(wt + ¢) in which T = b/m. However, because the amplitude is not very simple to measure, the
amplitude decrease and its agreement with an exponential law need some special equipment to be verified
with some accuracy [5,6].

In this paper, we show how to use a small low-cost acquisition board equipped with an integrated
accelerometer and with wireless data transmission to describe the whole motion of a damped pendulum.
This device is attached directly to the oscillating mass to measure the centripetal acceleration during the
motion. The absence of any electrical wire and of other sensors and apparatuses turns the experimental
setup simple and easy to prepare. The data are recorded automatically and sent to a computer in real time.
After data acquisition, a spreadsheet using simple and usual functions allows a careful analysis leading to
the fundamental information about the properties of the system. The idea of using an oscillating
accelerometer to analyze pendulum motion is not original: for instance, cell phones with integrated
accelerometers have been used before but, as far as we know, the measurement was limited to a period
determination [7] or to the analysis of the forces for a more complicated motion [8]. More recently [9], a
small accelerometer was coupled to a physical pendulum consisting of a uniform rod. The data are acquired
using commercial 12 bits DAQ and allowed a rather complete mechanical study of its damping due to air
drag and of the anharmonicity of its motion. In our work, a significantly simpler analysis and an accurate
measurement of the acceleration over a long time allowed to determine the relaxation time and to measure
the period dependence upon the angular amplitude, keeping this practical assignment at an intermediate
level of difficulty.

Let us note, however, that the fact of measuring the centripetal acceleration instead of the position
makes the analysis not so trivial. As a matter of fact, we are not accustomed to think in terms of acceleration
and some results are not always intuitive — in other words, we need to think twice before trusting our
intuition! For instance, the fact that this acceleration is proportional to the square of the linear velocity
leads to a solution different than the -at first sight- expected ones: its frequency is twice that it observed
with eyes! Beyond the acceleration due to the pendulum motion, the accelerometer itself — cantilever type
— is also sensitive to its orientation with respect to gravity. These new “complications” makes this work a
little more complicated but also more challenging and, from our point of view, with many didactic
characteristics well adapted to the university level and even for high school students.

In the next section, we describe the tools (hardware and software) used to assemble this practical
work: the acquisition board and the small Python programs written to facilitate parts of the work. A brief

explanation of the operation of the accelerometer will clarify some tricky effects. The section ends with



typical experimental results. Section 3 summarizes basic results about the physics of the simple pendulum
and the equations for the centripetal acceleration necessary to analyze the experimental results. Section 4
is devoted to the analysis of the experimental results. It will be shown how this setup allowed measuring
the damping time with good accuracy. The dependence of the period upon the angular amplitude was
determined and is well described by the expected behavior. The last section will discuss some pros and

cons of this setup.

2 Experimental set-up and typical results

2.1 Basic hardware and software tools

To further reinforce the didactic component, we chose to base our work [9] in low-cost hardware and open
source software tools. For the hardware we adopted BITalino (Model: Plugged Kit BT), a platform
specialized in biomedical and motion data acquisition [11], which has been recently highlighted as one of
the most comprehensive resources for multiple research applications [12]. The characteristics that make
this platform particularly suitable for the present work are the Bluetooth wireless data transmission,
sampling rates of up to 1 kHz, 10 bit resolution, and seamless integration with the Python programming
language (which we selected to implement our software components due to the open source nature).
BITalino is equipped standardly with a micromechanical (MEMS) 3-axis accelerometer with
measurement range of -3g/+3g [13, 14]. As often with this type of sensor, the accelerometer consists in a
deformable beam (Fig. 1) with a small mass at one of its ends: measuring the beam deflection gives access
to the force applied to the mass [13, 14]. This technique implies that the signal measured (beam deflection)
has in fact two components. One is a “static” deflection due to gravity (Fig. 1) and is independent of the
sensor acceleration. This component, equal to g cos(8), varies between —g and +g, and this variation can
be used for a simple sensor calibration [15]. The second component is a “dynamic” deflection due to the
“real” acceleration (change of velocity) of the sensor in the axis direction. As explained below, this static

component can be used to determine the oscillation amplitude.

Figure 1: Scheme of the static deflection of the cantilever beam
due to gravity versus its orientation. The value read by
BlTalino (after calibration) is g cosé.



The Python program used for this didactical work has the following functionalities, some common for
this type of acquisition cards and others more specific to the pendulum experiment:

a) Graphical interface: a graphical user interface (GUI) displays a graph with the data measured by
the BITalino for the acceleration in the three axes as a function of time. It also displays various (adjustable)
parameters such as the sampling frequency and the minimum and maximum for each axis of the graph.
This GUI is fundamental for testing the correct operation of the BITalino and of the mechanical setup as
well as for some training and technical adjustments before starting data acquisition of the pendulum
oscillations.

b) Calibration of the sensor: to obtain the sensitivity of the sensor — expressed in (m/s2)/bit — in
each direction (x, y, z), the BITalino must be slowly rotated to find the maximum and the minimum of the
(static) accelerations. Once this is achieved, pressing an “OK” button assigns these extrema to the +g and
—g values and determine the two constants necessary to transform the readings from the digital codes of
the analog-to-digital (ADC) converter into the SI unit for acceleration (m/s?) [15].

c) “Save” button: this button stops the acquisition and save three files F1, F2 and F3 (standard ASCII
text file). One, F1, — with four columns — corresponds to the raw data (as expressed in digital codes
produced by the analog-to-digital converter) of the three-accelerometer axis as a function of time (BITalino
internal clock). A second file, F2, is almost identical, except that the data recorded are directly expressed in
m?/s using the last calibration performed. Depending of the student level and of the time allocated for the
work, the student can start the data analysis using one or the other file. The third file, F3, is very specific
for the pendulum experiment. It provides five columns:

Column 1 and 2: The time corresponding to every other relative maxima of z-axis acceleration and the
corresponding value in m2/s. As a matter of fact, it will be shown in section III that the period of
centripetal acceleration is half that of the oscillatory motion, that is why we choose to record the time and
the amplitude of every other maxima in this auxiliary file;

Column 3 and 4: The time corresponding to every other relative minima of z-axis acceleration and the
corresponding value in m2/s;

Column 5: The period of the oscillatory motion, calculated as the time difference between every other
maxima. This period is calculated for each every other maxima recorded in the file.

Let us mention that the extrema of the acceleration are determined with a classical smoothing
subroutine applied on the acquired data to facilitate their identification by minimizing the effects of noise
and fluctuations (see next section). As a matter of fact, a reliable determination of extrema using basing
functions available in common spreadsheet software being far to be obvious, we found necessary to

provide these data to the student to avoid time consuming auxiliary operations.

2.2  Mechanical set-up

Figure 2 shows the experimental setup. The oscillating mass consists of a brass cylinder (m= 200 g to 600
g in our experiments) suspended on a metallic rod. The distance between the center of mass and the

suspension point, Z, was varied from 18 cm to 31 cm. The BITalino case was attached to the lower base of



the mass using double-sided adhesive tape allowing an easy (dis-)assembly, with its z-axis parallel to
gravity when the mass is at rest. To minimize oscillations out of the plane perpendicular to the metallic rod,
the mass was supported by two nylon wires as shown in Figure 2 and care was taken to maintain the
BITalino z-axis in this plane when the mass was dropped from the maximum amplitude (initial angle, &, as
large as 60°, see below). Doing so, the oscillation take place in a unique plane, perpendicular to the rod, and
its centripetal acceleration is measured by the accelerometer z-axis, a Due to the relatively heavy masses
used and the large initial angles, it is difficult to avoid totally some oscillations and deformations of all this

structure: to minimize such issues, the use of heavy rods and supports are recommended.

Figure 2. Left: global experimental set-up with the BlTalino attached to the
oscillating mass. Right: BITalino in its plastic case with its three axes, BITalino
has a thickness of about 15 mm. The z-axis is perpendicular to the 61 mm x 71
mm face.

2.3 Typical results

Figure 3 shows a typical result for centripetal acceleration using the system described in Figure 2 with a
mass of 600 g and a distance L~ 31 cm. To obtain data on a large amplitude range, the motion was recorded
during 5 min. To determine the period of the signal and the maxima and minima of acceleration with good
accuracy, the data were acquired using a 100 Hz sampling rate. These two constraints lead to quite large
files (about 30 000 lines) but still perfectly manageable by the current computers. The equilibrium value
(dashed horizontal line) for a- agrees with the expected value, 9.81 m/s?, for the static acceleration (Fig.
1). The main uncertainty comes from the calibration due to the 10-bit ADC: for a -3g/3g accelerometer,
one bit corresponds to ~ 0.06 m/s2. Before going further in the analysis, the following experimental
observations must be noticed:
i. the data are not symmetric with respect to the equilibrium value. Whereas the initial
amplitude of the maximum acceleration is about 13 m/s2, the initial of the minimum
amplitude is about 6 m/s?;

ii. the period manually measured (“old fashion”, measuring visually the time over 10 periods,

for instance) gives T~ 1.1 s, close to the expected one, (21/L/g = 1.12 s);



iii. the period of the BITalino signal (= 0.6 s) is approximately half of the visually measured.
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Figure 3: Acceleration measured by BITalino vs time on a large (main plot) and
short (insets) time scales. These measurements were performed usinga 600 g
mass for a distance L = 31.1 cm (Figure 2). The dashed horizontal line
corresponds to a-= 9.81 m/s2. This figure corresponds to the direct plot of the

data stored in files F2 (az(¢), small symbols) and F3 (every other extrema de
az(t), open symbols).

This frequency doubling is easy to understand physically: for example, during one period of the
motion, the centripetal acceleration reaches twice its maximum (upward direction) in 8 = 0 (maximum
linear velocity) and twice its minimum in 8 = +86,, (null velocity). This frequency doubling will be derived
rigorously in section IIl. More information can be obtained in the auxiliary file F3 that gives the time at
which occurs the every other maxima and minima of the acceleration as well as their respective value (open
symbols in insets to Figure 3): the time determination is relatively trustworthy whereas the determination
of the amplitude becomes not so accurate for small amplitudes. The period of the oscillatory motion is
available in the same file and is plotted in Figure 4 (open symbols). The time measured by the BlTalino
being a multiple of the sampling period, its resolution is limited to 0.01 s, leading to a discretization, clearly
visible in Figure 4. To mitigate this effect, a more continuous behavior for the period was obtained by
calculating a moving average on five consecutive determinations (continuous line). This graph shows that
twice the a. period, as calculated in F3, is quite close to the calculated 21'[\/% period or to the visually
determined one. This Figure 4 also shows that the period decreases with time: it will be analyzed in section
4 as a consequence of the amplitude decrease, the quantification of this effect being one of the objectives of
this work.

These observations and experimental data can now be compared with the theory summarized in the

following section.
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Figure 4: The open circles represent the period of the oscillation — twice the
period of the acceleration (Cf. Figure 3) versus time, calculated by the Python
program and stored in the F3 file. The continuous line is the moving average of
the period calculated with five consecutive measurements. The dashed

horizontal line shows the expected period (2m,/L/g) for L=31.1cm and
£=9.81m/s2

3 Centripetal acceleration for the simple pendulum

3.1 Period of a simple pendulum

Let us recall some characteristics of the canonical simple pendulum motion. A full and more detailed
description of this system as well as its mathematic treatment can be found in many classical textbooks.
The simple pendulum consists in a mass m suspended on a wire of length Z ; if no other force than gravity
mg is applied, it obeys the differential equation
6+ wisin(@) =0 , Eq.1

where 0= 4(t) represents the angle measured in respect to the vertical, and w, = \/m is the natural
frequency. In the small angle approximation, 8 «< 1 (i.e.,, 8 < 60°), sin(f) = 0 and Eq. 1 is easily solved: if
the mass is deviated by 6, from its equilibrium position and released at t = 0 without initial velocity the
solution of Eq. 1 is

0(t) = Bycos(wypt) Eq. 2a



corresponding to an harmonic motion of period T, = 2m,/L/g. If the condition 8 « 1 is not fulfilled, it can
be shown that the period of the oscillations 7 becomes slightly amplitude dependent. One usual

approximation for this dependence is given by [3, 4]:

T-To 1,2 11

To 16 0 ' 3072

0,* . Eq.3

This equation indicates that the period decreases when the amplitude decreases, behavior in qualitative
agreement with the results displayed in Figure 4, in which the initial period decreases by ~ 10 % between
the beginning and the end of the experiment. To verify quantitatively this Eq. 3, it is necessary to obtain the

angular amplitude from the acceleration data displayed in Figure 3.

3.2 The centripetal acceleration of the pendulum

The centripetal acceleration dcentrip(t), perpendicular to the tangential velocity v of the mass, will be

measured by the a, accelerometer. The mass describing a circular trajectory, it is given by:

2

Qcentrip = 7 - Eq. 4
Using v = L6 and calculating 6 by Eq. 2a, the tangential velocity can be written as:
v(t) = —Lwg Opsin(w,t) . Eq. 5a
Using this expression and w, = \/m,
Geentrip(£) = 2 = gOF sin* (wot) = g0F (1 — <2C20) | Eq. 6a
Before going further, let us note that this last equation confirms that the centripetal acceleration
oscillates at a frequency twice higher than that of the motion w,: mathematically, the reason is that Acentrip
depends quadratically upon the tangential velocity, this one oscillating at w,. This is a special case of a very

general rule in physics: non-linear effects lead to the appearance of new frequencies.

3.3 The centripetal acceleration of the damped pendulum

To describe the motion damping, a viscous force F=—-bbis usually introduced and a term (1/7) 6, in
which 7= b/m is the damping time, appears in the left-hand side of Eq. 1. In the case of weak damping (i.e.
woT > 1) the solution of the modified Eq. 1 becomes (same initial conditions, 8(0) = 6,, v(0) = 0)

0(t) = Bpe ™" cos(wt) = Opax(t) cos(wt) Eq. 2b

in which w? = w2(1 — ﬁ). In Eq. 2b, 6,,,,4(t) represents the amplitude of the oscillation that decreases
0

exponentially with time due to the viscous force. The tangential velocity can be calculated as

v(t) = —ieoe_t/fmsin(wt +B) Eq.5b
with tan § = 1/wt.
In the case of very weak damping, w,t > 1 (it will be verified latter that this condition is fulfilled
in our experimental setup), the terms of higher order than 1/(wt) can be dropped and the centripetal
acceleration is given by:

2 _t _t
Qeentrip(t) == = g0 e 2 sin® (w,t) = goZe v (3 — <=C2ed) Eq. 6b



Within this very weak damping approximation, the main difference in respect to Eq. 6a (no friction) is the

t
attenuation factor, e 7/2, coming from viscous force.

3.4 Extrema of the measured acceleration

As explained in section 2-1, the acceleration given by Eq. 6b corresponds to the “real” acceleration (change
of velocity) of BITalino and the signal measured by the BlTalino, a,(t), is actually the sum of this real

acceleration and of the component corresponding to the “static” deflection gcos(6(t)):

a,(t) = gege_f/LZ sin?(wgt) + g cos(BOe_% cos(wyt)) . Eq.7
Instead of trying to fit the experimental data to this analytical expression?, let us focus on the extrema of
a,(t).
Maxima of acceleration: They occur when the mass passes through its rest position with its
maximum velocity and then maximum centripetal acceleration. They corresponds to 8(t) = 0,i.e. wyt =

n/2 + nn (Eq. 2b). From Eq. 7:

az,max(9 =0) :gege_r/%+9 . Eq.8
The amplitude of these maxima decreases exponentially with a relaxation time equal to z/2. Fitting this
relaxation time gives access to 7 and to g62: 6, can be obtained as well as the angular amplitude versus
time, e /7.
Minima of acceleration. These minima occur when the mass velocity is null, i.e, when the mass

reaches its maximum of amplitude 8,,,, corresponding to wyt = nn (Eq. 2b). In these cases, a, measures

only the “static” contribution and the envelope of these minima is given by

t
Az min(0 = Omax) = g cOS (Goe r) . Eq.9
Note that the asymmetry of the data in respect to the equilibrium value highlighted in section 2.3 are
explained by the equations 8 and 9: the positive and negative extrema of a,(t), as well as their damping

times, are different.

1 Let us note that, because actually the period decreases with amplitude, this fit would not be so trivial.

9
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Figure 5: Theoretical (Eq. 8 and 9) and experimental (Python determination)
values of the extrema of a,. The adjustment of the theoretical determination to
the experimental data of the maximaled to 6, = 65°and 7 = 115 s. These same
values are used to calculate the theoretical minima.

4 Analysis of the experimental results

4.1 Damping time determination

In Figure 5, the experimental data for the extrema of a-(£) saved in the auxiliary file F3 are compared with
the analytical expression given by the equations 8 and 9 with 6, and r as adjustable parameters. In the
upper part of this figure, are plotted these experimental data for the maxima (decreasing red thick line), as
well as the equation 8 (decreasing black thin line). By a try-and-error process, a very good agreement
between these two types of data is found, leaving, in the case of this experiment, to 8, = 65°and 7= 115s.
In the lower part of the same graph are plotted the experimental values for the minima (increasing green
thick line) as well as the equation 9 (thin black line) with the same values for (6, 7): a very good agreement
is also obtained. Let us remind that these two sets of measurements (maxima and minima of a,) are indeed
independent, each one measuring a different effect (one measures the centripetal acceleration at = 0, the
other one measures the maximum inclination of the pendulum), the agreement between the two calculated
curves and the corresponding experimental data must be taken as a proof of the quality of the recorded
data. Let us however mention that a value 7= 110 s could describe slightly better (visual evaluation) the
evolution of the minima value versus time.

Using this quite good experimental determination of 7, this damping time was measured for various
systems using different wire length and mass. The results for w, and z are indicated in Table 1. First, let us
note that the condition w,t > 1 is always satisfied (last column of Table 1): our system is very lightly

damped and the various approximations done to reach relatively simple analytical expressions in section

10



3.3 are fully justified. Frequently, in practical classes, the pendulum period is measured for various length
L and these data are used to verify the 7 vs L1/2 law and to deduce the gravity acceleration. Using the data
of table 1, the T'vs. L1/2slope gives = 2.017 s kg=1/2,leading to g~ 9.71 m/s? 2. This » 1 % discrepancy could
come from the imprecision on the Z measurement, or by the fact that, in our case, the oscillating mass is
not so small compared to L and the T = Zn\/m law have to be refined taking into account its real moment
of inertia, such an analysis is out of the scope of this article but could also be included in a more complete
work. Whereas a viscous force implies zoc m, our data shows that 7 decreases with m indicating that, in
our system, the damping is caused by other effects: for example, the friction of the wire on the metallic rod
as well as the energy lost by deflecting the relative light supporting rods during the motion could be the

main source of energy dissipation but, once again, further analysis is beyond the scope of this paper.

Table 1: Experimental results for angular frequency measured ( @meas) from period at small
amplitude (7o) and damping time for different configurations (wire length and oscillating mass).

Config. L/m m/g To/s (Wmeas /S 7/s (measT
a 0.311 600.3 1.12 5.610 115 645
b 0.296 402.3 1.1 5.712 130 743
c 0.301 200.5 1.105 5.686 140 796
d 0.226 200.5 0.96 6.545 100 654
e 0.186 200.5 0.87 7.222 77 556

4.2 Period versus amplitude

~t/T at each extremum

The Equations 8 and 9 allow to extract the angular amplitude, 8,,.4(t) = 8,e
from the acceleration data. For instance, 6,,,,(t) obtained from the experimental acceleration maxima
a, max displayed in Fig. 5 and using Eq. 8 are plotted on Figure 6. 8,,,(t) calculated by the minima of the
acceleration (Eq. 9) was also computed and lead to very similar results [9], they are not displayed in this
figure for sake of clarity. To obtain a less noisy data set, especially for low amplitude, this amplitude was
averaged on 5 periods (Omax, average- thick grey line) exactly as done for the period smoothing process.
Moreover, doing so, each period averaged (data of Fig. 4) can be associated with the corresponding

averaged amplitude (data of Fig. 6) then the dependence of the period T upon Omax can be obtained as
displayed on figure 7a.

2 Along this article, no error handling is presented: it would turn it heavier and without real benefits
in respect to the main goal of this article that is to show that this setup is a good tool for studying pendulum
physics. Error handling can be included in the full work to be performed by the students

11
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Figure 6. The symbols indicate the angular amplitude, 6,,,,4(t), versus time
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moving average calculated by Eq. 8 on 5 consecutive periods.

Considering Eq. 3, in Figure 7a, the average period was plotted as a function of Héax‘average. In first
approximation, a quadratic dependence of the period in 8,,,, described quite well the experimental data.
In this figure, the thick black line represents the first correction predicted by Eq. 3 and its value is in quite
good agreement with the measurements, especially at low amplitude. However, for higher amplitude, the
departure from this quadratic dependence is larger than the quartic correction proposed by Eq. 3 (thin
black line): a quartic correction three times larger than proposed by Eq. 3 described very well these data
(thick grey line). As already mentioned, the fact that the oscillating mass cannot be considered as point-like
should be considered for a finer description of this T(8,,.4x) behavior. The T(6,,.x) dependences were
measured for the various configurations (Z, m) listed in Table 1. They are displayed in Figure 7b and show
that, within the uncertainties of our measurement, the quadratic and quartic corrections seem at first sight
independent of mass and length as predicted by Eq. 3. A more complete analysis is beyond the scope of this

work but seems to be possible using this experimental setup.

12
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Figure 7: Period of oscillation versus the square of the angular amplitude 62,,.

Figure 7a: for the L = 31,1 cm and m = 600 g configuration. Note the very good
agreement with the first correction of Eq. 3 (thick black line) for small angle.
For angle higher than ~ 0.7 rad (= 40°), the experimental results follow (thick
gray line) a dependence three times larger than predicted (thin black line).
Figure 7b: Relative change of period for the various configuration listed in
table 1.

5 The pendulum and the BITalino in the framework of the classroom

The work described in the previous sections can be easily adapted to various educational levels (from high
school to 15t cycle of university) or to the time allocated for practical session. The analytical expressions of
section 3 can be either obtained by the students or given by the teacher and discussed with the students
using elementary knowledge about the damped pendulum. It is important to highlight that measuring the
centripetal acceleration and using a cantilever induces some “unintuitive results”. For instance, depending
on the teaching strategies, the frequency doubling of the measured signal can be deduced by the students
before experiments or, on the contrary, can be discovered and explained by the students during the
experimental work. Total duration of 4-6 hours seems to us reasonable to perform all the work. This
duration includes the software installation, the calibration of the sensors, some training and tests and the
data acquisition with different masses and lengths. If necessary, these 4-6 hours can be divided in two
different sessions, the first one dedicated to the installation and training, the second to data acquisition and
basic analysis. Student skills in data analysis using spreadsheets are frequently not as developed as
expected: this work is a good opportunity to use spreadsheets to make mathematical data processing as
well as to compare theory with experimental results. In the version we described in this article, we chose
to provide to the student the software that calculates the period of the signal as well as the time stamps of
the extrema turning usual spreadsheets adequate for data analysis. However, for students with some
knowledge of computer programming, this program can be part of the work or a complementary work
done in collaboration with informatics class: data smoothing and extrema detection is a useful and
enriching exercise.

From the point of view of the teacher, the experimental setup is very simple and inexpensive to install

(Figure 2). The wireless capability leads to a very clean experimental site without irritating problems due
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to faulty wires, cables or contacts. In this experimental set-up, no complicate mechanism is needed for the
angle measurement, its value being determined by the accelerometer. Moreover, the same acquisition
board can be used for many other applications within the practical class and is then very easily finantially
amortized. For instance, in the framework of a didactical experiment dedicated to magnetic induction
phenomenon [9], this same board, coupled to a simple homemade amplifier, was used as a microvoltmeter
to measure low voltage (10-300 pV range) versus time. Other properties or signals can be measured by
built-in sensors or using the analogical inputs existing in general in such type of devices. For us, beyond
their relatively reduced price, one of the main advantages of using such boards is really their versatility: it
avoids problems frequently encountered in our physics lab such as compatibility between apparatuses of
different brands, limitation due to “closed” software and so on. The students and/or the teacher can really

build their own experiment, with their own material and with their own ideas.

6 Conclusion

Modelling is in the essence of physical sciences [16]. Most physical models are expressed as equations and
becoming familiar with the process of creating these equations is an essential task in learning science and
engineering. The pendulum study is a good way to train this creating process. We showed in this paper that
the experimental results obtained with a low-cost data acquisition card, incorporating wireless
communication and accelerometer sensors as it is quite common nowadays, are accurate and useful to go
beyond the basic theory of the simple pendulum: by measuring the acceleration, the damping time, as well
as the dependence of the period with amplitude, are obtained with good precision. To allow comparison
with the usual theoretical predictions, the data has to be analyzed using a spreadsheet and various
calculation steps, contributing to improve student skills with this type of general computational tools.
Beyond this mathematical analysis, some of these results, namely the non-symmetrical a.(¢) behavior as
well as the frequency doubling, can be understood after some reflection needed by the fact that the
centripetal acceleration is not related to the oscillation angle by an obvious way. We take this reflection
(accompanied or not by the mathematical demonstration) as an added value to the usual pendulum lab
assignments.

Sometimes, to generate an extra motivation and some enthusiasm, it is necessary to introduce or
explain to the students the practical work using some exciting ideas. With the work presented here, the
very classical simple pendulum experiment became, in our opinion, more attractive and challenging than
some typical didactical pendulum works. More attractive because the measurements are performed using
a microelectromechanical device currently used in many domains other than physics laboratories
(including their very beloved cell cell-phones!). It is important that the student becomes familiar with
hardware used outside schools. Attractive also because the acquisition board used in this experiment is
wireless, very versatile and can be used for many other types of measurements. Unfortunately, in teaching
laboratories, many experimental apparatuses are exclusive of these labs. Using devices that can be used for
other purposes helps to build the idea that physics labs are useful not only to test or “discover” physical
laws but also as an introduction to other type of measurements in “real life”. More attractive also because

this work avoids studying one of the more fascinating and fundamental physics problems by the angle
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measurement that seems the most obvious way... so obvious that it could seem, a priori, tedious3. Studying
this motion by measuring the centripetal acceleration offers an alternative to this “obvious” solution.
However, as mentioned in the introduction, acceleration is not as intuitive as linear or angular position. For
instance, it is very probable that a student will take as evident that the periodicity seen on Figure 3 is the
periodicity of the motion. A rapid measurement will show that this spontaneous guess is wrong, as the
asymmetric results displayed on Figure 3 were also, at first sight, not expected. A full explanation of these
“not obvious results”, without any calculations, would be a challenge for the sagacity of the students.
Because neither expensive apparatus nor special materials are needed except the acquisition board,
the experimental setup can be installed on any site other than the classroom. An alternative way to the
classical work performed in a classical physics laboratory could be to say to the students: “Here is an
acquisition card with an integrated accelerometer, build something to put some mass to oscillate, fix the

acquisition board to it and come back with the parameters of your own damped oscillator!”.
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Figure 6:
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Figure 7 :
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