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Abstract: In the field of physics teaching, the simple pendulum provides a very simple way to study the 
harmonic oscillator, source of some fundamental concepts like periodicity, relaxation time and 
anharmonicity. As such, its experimental study is frequently integrated in the high school or first years 
university programs. With this in mind, in this article we propose a simple setup allowing to study some of 
its properties. By coupling a small wireless acquisition board to an oscillating mass, the centripetal 
acceleration is recorded and analyzed. We show using basic calculations how this acceleration allow to 
extract the variation with time of its period and of the amplitude. The experimental results show that the 
damping of the amplitude is very well described by an exponential law. The accuracy we obtain on the 
period allows to show that, not only it decreases with amplitude, but that this decrease is relatively well 
described by standard calculation. Using wireless multipurpose acquisition board and usual spreadsheet 
for experimental modelling, the completion of this work, about 4 hours, offers to the student an original 
way to go a little beyond the classical study of the spectacular object that is the pendulum.  
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1 Introduction 

The harmonic oscillator is a fundamental system in physics and is often used as a basic model for many 

phenomena in sciences and technology.  It is intrinsically connected to the birth of the science of mechanics 

and, e.g., to the invention of accurate clocks and many other uses. An interesting example is the invention 

of the pulsilogium, a simple pendulum invented by Galileo to measure objectively the human pulsation [1]. 

Its study in schools starts at early ages and is progressively developed, from simple concepts such as 

frequency and period to second order differential equations. One of its simplest representation is a 

pendulum ― a particle of mass m suspended from a wire with length L and of negligible mass. The physical 

analysis of this pendulum and its equations leading to 𝜃𝜃(𝑡𝑡), time dependence of its angle in respect to its 

equilibrium position, are a common problem in the school science curriculum (and also on the mathematics 

curriculum). 
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Thanks to this simple concretization and the important concept involved, the theoretical study of the 

simple pendulum [2] is often accompanied by some practical work. For instance, the dependence of the 

period T  with the wire length is a classical work and can be used to verify the canonical equation 𝑇𝑇0 =

2π�𝐿𝐿/𝑔𝑔 (valid for small amplitudes) and to measure indirectly the local acceleration of gravity, 𝑔𝑔. More 

difficult to measure is, for instance, 𝑇𝑇(𝜃𝜃0), the relatively small dependence [3, 4] of the period with the 

angular amplitude 𝜃𝜃0 when the approximation sin(𝜃𝜃)≈ 𝜃𝜃 is no longer valid. As a matter of fact, such a 

verification needs good accuracy on the period and on the amplitude measurements. Another practical 

study, not less fundamental but closer to the reality, is the damped pendulum. Usually, a viscous force 𝐹⃗𝐹 =

−𝑏𝑏 𝑣⃗𝑣 is introduced to describe the origin of the damping [2] and, doing so, the differential equation remains 

easy to integrate: The solution is the well-known equation of the damped harmonic oscillator, 𝜃𝜃(𝑡𝑡) =

 𝜃𝜃0𝑒𝑒−𝑡𝑡/𝜏𝜏cos (ω𝑡𝑡 + φ) in which 𝜏𝜏 = 𝑏𝑏/𝑚𝑚. However, because the amplitude is not very simple to measure, the 

amplitude decrease and its agreement with an exponential law need some special equipment to be verified 

with some accuracy [5,6]. 

In this paper, we show how to use a small low-cost acquisition board equipped with an integrated 

accelerometer and with wireless data transmission to describe the whole motion of a damped pendulum. 

This device is attached directly to the oscillating mass to measure the centripetal acceleration during the 

motion. The absence of any electrical wire and of other sensors and apparatuses turns the experimental 

setup simple and easy to prepare. The data are recorded automatically and sent to a computer in real time. 

After data acquisition, a spreadsheet using simple and usual functions allows a careful analysis leading to 

the fundamental information about the properties of the system. The idea of using an oscillating 

accelerometer to analyze pendulum motion is not original: for instance, cell phones with integrated 

accelerometers have been used before but, as far as we know, the measurement was limited to a period 

determination [7] or to the analysis of the forces for a more complicated motion [8]. More recently [9], a 

small accelerometer was coupled to a physical pendulum consisting of a uniform rod. The data are acquired 

using commercial 12 bits DAQ and allowed a rather complete mechanical study of its damping due to air 

drag and of the anharmonicity of its motion.  In our work, a significantly simpler analysis and an accurate 

measurement of the acceleration over a long time allowed to determine the relaxation time and to measure 

the period dependence upon the angular amplitude, keeping this practical assignment at an intermediate 

level of difficulty. 

Let us note, however, that the fact of measuring the centripetal acceleration instead of the position 

makes the analysis not so trivial. As a matter of fact, we are not accustomed to think in terms of acceleration 

and some results are not always intuitive ― in other words, we need to think twice before trusting our 

intuition! For instance, the fact that this acceleration is proportional to the square of the linear velocity 

leads to a solution different than the –at first sight- expected ones: its frequency is twice that it observed 

with eyes! Beyond the acceleration due to the pendulum motion, the accelerometer itself ― cantilever type 

― is also sensitive to its orientation with respect to gravity. These new “complications” makes this work a 

little more complicated but also more challenging and, from our point of view, with many didactic 

characteristics well adapted to the university level and even for high school students. 

In the next section, we describe the tools (hardware and software) used to assemble this practical 

work: the acquisition board and the small Python programs written to facilitate parts of the work. A brief 

explanation of the operation of the accelerometer will clarify some tricky effects. The section ends with 
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typical experimental results. Section 3 summarizes basic results about the physics of the simple pendulum 

and the equations for the centripetal acceleration necessary to analyze the experimental results. Section 4 

is devoted to the analysis of the experimental results. It will be shown how this setup allowed measuring 

the damping time with good accuracy. The dependence of the period upon the angular amplitude was 

determined and is well described by the expected behavior. The last section will discuss some pros and 

cons of this setup. 

2 Experimental set-up and typical results 

2.1 Basic hardware and software tools 

To further reinforce the didactic component, we chose to base our work [9] in low-cost hardware and open 

source software tools. For the hardware we adopted BITalino (Model: Plugged Kit BT), a platform 

specialized in biomedical and motion data acquisition [11], which has been recently highlighted as one of 

the most comprehensive resources for multiple research applications [12]. The characteristics that make 

this platform particularly suitable for the present work are the Bluetooth wireless data transmission, 

sampling rates of up to 1 kHz, 10 bit resolution, and seamless integration with the Python programming 

language (which we selected to implement our software components due to the open source nature). 

BITalino is equipped standardly with a micromechanical (MEMS) 3-axis accelerometer with 

measurement range of −3g/+3g [13, 14]. As often with this type of sensor, the accelerometer consists in a 

deformable beam (Fig. 1) with a small mass at one of its ends: measuring the beam deflection gives access 

to the force applied to the mass [13, 14]. This technique implies that the signal measured (beam deflection) 

has in fact two components. One is a “static” deflection due to gravity (Fig. 1) and is independent of the 

sensor acceleration. This component, equal to 𝑔𝑔 cos(𝜃𝜃), varies between −𝑔𝑔 and +𝑔𝑔, and this variation can 

be used for a simple sensor calibration [15]. The second component is a “dynamic” deflection due to the 

“real” acceleration (change of velocity) of the sensor in the axis direction. As explained below, this static 

component can be used to determine the oscillation amplitude. 

 
Figure 1: Scheme of the static deflection of the cantilever beam 
due to gravity versus its orientation. The value read by 
BITalino (after calibration) is g cosθ. 
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The Python program used for this didactical work has the following functionalities, some common for 

this type of acquisition cards and others more specific to the pendulum experiment: 

a) Graphical interface: a graphical user interface (GUI) displays a graph with the data measured by 

the BITalino for the acceleration in the three axes as a function of time. It also displays various (adjustable) 

parameters such as the sampling frequency and the minimum and maximum for each axis of the graph. 

This GUI is fundamental for testing the correct operation of the BITalino and of the mechanical setup as 

well as for some training and technical adjustments before starting data acquisition of the pendulum 

oscillations.  

b) Calibration of the sensor: to obtain the sensitivity of the sensor ― expressed in (m/s2)/bit ― in 

each direction (x, y, z), the BITalino must be slowly rotated to find the maximum and the minimum of the 

(static) accelerations. Once this is achieved, pressing an “OK” button assigns these extrema to the +𝑔𝑔 and 

−𝑔𝑔 values and determine the two constants necessary to transform the readings from the digital codes of 

the analog-to-digital (ADC) converter into the SI unit for acceleration (m/s2) [15]. 

c) “Save” button: this button stops the acquisition and save three files F1, F2 and F3 (standard ASCII 

text file). One, F1, ― with four columns ― corresponds to the raw data (as expressed in digital codes 

produced by the analog-to-digital converter) of the three-accelerometer axis as a function of time (BITalino 

internal clock). A second file, F2, is almost identical, except that the data recorded are directly expressed in 

m2/s using the last calibration performed. Depending of the student level and of the time allocated for the 

work, the student can start the data analysis using one or the other file. The third file, F3, is very specific 

for the pendulum experiment. It provides five columns: 

Column 1 and 2: The time corresponding to every other relative maxima of z-axis acceleration and the 

corresponding value in m2/s. As a matter of fact, it will be shown in section III that the period of 

centripetal acceleration is half that of the oscillatory motion, that is why we choose to record the time and 

the amplitude of every other maxima in this auxiliary file; 

Column 3 and 4: The time corresponding to every other relative minima of z-axis acceleration and the 

corresponding value in m2/s; 

Column 5: The period of the oscillatory motion, calculated as the time difference between every other 

maxima. This period is calculated for each every other maxima recorded in the file. 

Let us mention that the extrema of the acceleration are determined with a classical smoothing 

subroutine applied on the acquired data to facilitate their identification by minimizing the effects of noise 

and fluctuations (see next section). As a matter of fact, a reliable determination of extrema using basing 

functions available in common spreadsheet software being far to be obvious, we found necessary  to 

provide these data to the student to avoid time consuming auxiliary operations. 

 

2.2 Mechanical set-up 

Figure 2 shows the experimental setup. The oscillating mass consists of a brass cylinder (m= 200 g to 600 

g in our experiments) suspended on a metallic rod. The distance between the center of mass and the 

suspension point, L, was varied from 18 cm to 31 cm. The BITalino case was attached to the lower base of 
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the mass using double-sided adhesive tape allowing an easy (dis-)assembly, with its z-axis parallel to 

gravity when the mass is at rest. To minimize oscillations out of the plane perpendicular to the metallic rod, 

the mass was supported by two nylon wires as shown in Figure 2 and care was taken to maintain the 

BITalino z-axis in this plane when the mass was dropped from the maximum amplitude (initial angle, θ0, as 

large as 60°, see below). Doing so, the oscillation take place in a unique plane, perpendicular to the rod, and 

its centripetal acceleration is measured by the accelerometer z-axis, az. Due to the relatively heavy masses 

used and the large initial angles, it is difficult to avoid totally some oscillations and deformations of all this 

structure: to minimize such issues, the use of heavy rods and supports are recommended.  

  

 

Figure 2. Left: global experimental set-up with the BITalino attached to the 
oscillating mass. Right: BITalino in its plastic case with its three axes, BITalino 
has a thickness of about 15 mm. The z-axis is perpendicular to the 61 mm × 71 
mm face.  

2.3 Typical results 

Figure 3 shows a typical result for centripetal acceleration using the system described in Figure 2 with a 

mass of 600 g and a distance L ≈ 31 cm. To obtain data on a large amplitude range, the motion was recorded 

during 5 min. To determine the period of the signal and the maxima and minima of acceleration with good 

accuracy, the data were acquired using a 100 Hz sampling rate. These two constraints lead to quite large 

files (about 30 000 lines) but still perfectly manageable by the current computers. The equilibrium value 

(dashed horizontal line) for az agrees with the expected value,  9.81 m/s2, for the static acceleration (Fig. 

1). The main uncertainty comes from the calibration due to the 10-bit ADC: for a −3g/3g accelerometer, 

one bit corresponds to ≈ 0.06 m/s2. Before going further in the analysis, the following experimental 

observations must be noticed: 

i. the data are not symmetric with respect to the equilibrium value. Whereas the initial 

amplitude of the maximum acceleration is about 13 m/s2, the initial of the minimum 

amplitude is about 6 m/s2; 

ii. the period manually measured (“old fashion”, measuring visually the time over 10 periods, 

for instance) gives T≈ 1.1 s, close to the expected one, (2π�𝐿𝐿/𝑔𝑔 ≈ 1.12 s); 

5 



iii. the period of the BITalino signal (≈ 0.6 s) is approximately half of the visually measured. 

 

 

Figure 3: Acceleration measured by BITalino vs time on a large (main plot) and 
short (insets) time scales. These measurements were performed using a 600 g 
mass for a distance L = 31.1 cm (Figure 2). The dashed horizontal line 
corresponds to az= 9.81 m/s2. This figure corresponds to the direct plot of the 
data stored in files F2 (az(t), small symbols) and  F3 (every other extrema de 
az(t), open symbols). 

This frequency doubling is easy to understand physically: for example, during one period of the 

motion, the centripetal acceleration reaches twice its maximum (upward direction) in θ = 0 (maximum 

linear velocity) and twice its minimum in 𝜃𝜃 = ±𝜃𝜃0 (null velocity). This frequency doubling will be derived 

rigorously in section III. More information can be obtained in the auxiliary file F3 that gives the time at 

which occurs the every other maxima and minima of the acceleration as well as their respective value (open 

symbols in insets to Figure 3): the time determination is relatively trustworthy whereas the determination 

of the amplitude becomes not so accurate for small amplitudes. The period of the oscillatory motion is 

available in the same file and is plotted in Figure 4 (open symbols). The time measured by the BITalino 

being a multiple of the sampling period, its resolution is limited to 0.01 s, leading to a discretization, clearly 

visible in Figure 4. To mitigate this effect, a more continuous behavior for the period was obtained by 

calculating a moving average on five consecutive determinations (continuous line). This graph shows that 

twice the az period, as calculated in F3, is quite close to the calculated 2π�𝐿𝐿/𝑔𝑔 period or to the visually 

determined one. This Figure 4 also shows that the period decreases with time: it will be analyzed in section 

4 as a consequence of the amplitude decrease, the quantification of this effect being one of the objectives of 

this work. 

These observations and experimental data can now be compared with the theory summarized in the 

following section. 
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Figure 4: The open circles represent the period of the oscillation ― twice the 
period of the acceleration (Cf. Figure 3) versus time, calculated by the Python 
program and stored in the F3 file. The continuous line is the moving average of 
the period calculated with five consecutive measurements. The dashed 
horizontal line shows the expected period (2π�𝐿𝐿/𝑔𝑔) for L = 31.1 cm and 
g = 9.81 m/s2.  

 

3 Centripetal acceleration for the simple pendulum 

3.1 Period of a simple pendulum 

Let us recall some characteristics of the canonical simple pendulum motion. A full and more detailed 

description of this system as well as its mathematic treatment can be found in many classical textbooks. 

The simple pendulum consists in a mass m suspended on a wire of length L ; if no other force than gravity 

𝑚𝑚𝑔⃗𝑔 is applied, it obeys the differential equation 

𝜃̈𝜃 + 𝜔𝜔0
2 sin(𝜃𝜃) = 0   , Eq. 1 

where θ = θ(t) represents the angle measured in respect to the vertical, and 𝜔𝜔0 = �𝑔𝑔/𝐿𝐿 is the natural 

frequency. In the small angle approximation, 𝜃𝜃 ≪ 1 (i.e., 𝜃𝜃 ≪ 60°), sin(𝜃𝜃) ≈ 𝜃𝜃 and Eq. 1 is easily solved: if 

the mass is deviated by 𝜃𝜃0 from its equilibrium position and released at t = 0 without initial velocity the 

solution of Eq. 1 is 

𝜃𝜃(𝑡𝑡) = 𝜃𝜃0cos (𝜔𝜔0𝑡𝑡)   , Eq. 2a 
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corresponding to an harmonic motion of period 𝑇𝑇0 = 2𝜋𝜋�𝐿𝐿/𝑔𝑔. If the condition 𝜃𝜃 ≪ 1 is not fulfilled, it can 

be shown that the period of the oscillations T  becomes slightly amplitude dependent. One usual 

approximation for this dependence is given by [3, 4]: 

                                                              𝑇𝑇−𝑇𝑇0
𝑇𝑇0

≈ 1
16
𝜃𝜃02 + 11

3072
𝜃𝜃04  . Eq. 3 

This equation indicates that the period decreases when the amplitude decreases, behavior in qualitative 

agreement with the results displayed in Figure 4, in which the initial period decreases by ≈ 10 % between 

the beginning and the end of the experiment. To verify quantitatively this Eq. 3, it is necessary to obtain the 

angular amplitude from the acceleration data displayed in Figure 3. 

3.2 The centripetal acceleration of the pendulum 

The centripetal acceleration 𝑎⃗𝑎centrip(𝑡𝑡), perpendicular to the tangential velocity 𝑣⃗𝑣 of the mass, will be 

measured by the 𝑎𝑎𝑧𝑧 accelerometer. The mass describing a circular trajectory, it is given by: 

𝑎𝑎centrip = 𝑣𝑣2

𝐿𝐿
   . Eq. 4 

Using 𝑣𝑣 = 𝐿𝐿𝜃̇𝜃 and calculating 𝜃̇𝜃 by Eq. 2a, the tangential velocity can be written as:  

𝑣𝑣(𝑡𝑡) ≈ −𝐿𝐿𝜔𝜔0 𝜃𝜃0sin(𝜔𝜔𝑜𝑜𝑡𝑡)   . Eq. 5a 

Using this expression and 𝜔𝜔0 = �𝑔𝑔/𝐿𝐿,  

𝑎𝑎centrip(𝑡𝑡) = 𝑣𝑣2

𝐿𝐿
= 𝑔𝑔𝜃𝜃02 sin2(𝜔𝜔0𝑡𝑡) = 𝑔𝑔𝜃𝜃02 �

1
2
− cos (2𝜔𝜔0𝑡𝑡)

2
�  . Eq. 6a 

Before going further, let us note that this last equation confirms that the centripetal acceleration 

oscillates at a frequency twice higher than that of the motion 𝜔𝜔0: mathematically, the reason is that 𝑎𝑎centrip 

depends quadratically upon the tangential velocity, this one oscillating at 𝜔𝜔0. This is a special case of a very 

general rule in physics: non-linear effects lead to the appearance of new frequencies.  

3.3 The centripetal acceleration of the damped pendulum 

To describe the motion damping, a viscous force 𝐹⃗𝐹 = −𝑏𝑏𝑣⃗𝑣 is usually introduced and a term (1 𝜏𝜏)⁄ 𝜃̇𝜃, in 

which τ = b/m  is the damping time, appears in the left-hand side of Eq. 1. In the case of weak damping (i.e. 

𝜔𝜔0𝜏𝜏 > 1) the solution of the modified Eq. 1 becomes (same initial conditions, 𝜃𝜃(0) = 𝜃𝜃0, 𝑣𝑣(0) = 0) 

𝜃𝜃(𝑡𝑡) = 𝜃𝜃0𝑒𝑒−𝑡𝑡/𝜏𝜏 cos(𝜔𝜔𝜔𝜔) = 𝜃𝜃max(𝑡𝑡) cos(𝜔𝜔𝜔𝜔)   , Eq. 2b 

in which 𝜔𝜔2 = 𝜔𝜔0
2(1 − 1

(𝜔𝜔0𝜏𝜏)2
). In Eq. 2b, 𝜃𝜃max(𝑡𝑡) represents the amplitude of the oscillation that decreases 

exponentially with time due to the viscous force. The tangential velocity can be calculated as 

𝑣𝑣(𝑡𝑡) =  −𝐿𝐿
𝜏𝜏
𝜃𝜃0𝑒𝑒−𝑡𝑡/𝜏𝜏�1 + (𝜔𝜔𝜔𝜔)2sin (𝜔𝜔𝜔𝜔 + 𝛽𝛽)  Eq. 5b 

with 𝑡𝑡𝑡𝑡𝑡𝑡 𝛽𝛽 = 1/𝜔𝜔𝜔𝜔.  

In the case of very weak damping, 𝜔𝜔𝑜𝑜𝜏𝜏 ≫ 1 (it will be verified latter that this condition is fulfilled 

in our experimental setup), the terms of higher order than 1/(𝜔𝜔𝜔𝜔) can be dropped and the centripetal 

acceleration is given by: 

𝑎𝑎centrip(𝑡𝑡) = 𝑣𝑣2

𝐿𝐿
≈ 𝑔𝑔𝜃𝜃𝑜𝑜2 𝑒𝑒−

𝑡𝑡
𝜏𝜏/2  sin2(𝜔𝜔𝑜𝑜𝑡𝑡) = 𝑔𝑔𝜃𝜃𝑜𝑜2𝑒𝑒

− 𝑡𝑡
𝜏𝜏/2 �1

2
− cos (2𝜔𝜔𝑜𝑜𝑡𝑡)

2
�  Eq. 6b 
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Within this very weak damping approximation, the main difference in respect to Eq. 6a (no friction) is the 

attenuation factor, 𝑒𝑒−
𝑡𝑡
𝜏𝜏/2, coming from viscous force. 

3.4 Extrema of the measured acceleration 

As explained in section 2-1, the acceleration given by Eq. 6b corresponds to the “real” acceleration (change 

of velocity) of BITalino and the signal measured by the BITalino, 𝑎𝑎𝑧𝑧(𝑡𝑡), is actually the sum of this real 

acceleration and of the component corresponding to the “static” deflection 𝑔𝑔cos(𝜃𝜃(𝑡𝑡)): 

𝑎𝑎𝑧𝑧(𝑡𝑡) = 𝑔𝑔𝜃𝜃02𝑒𝑒
− 𝑡𝑡
𝜏𝜏/2  sin2(𝜔𝜔0𝑡𝑡) + 𝑔𝑔 cos(𝜃𝜃0𝑒𝑒

−𝑡𝑡𝜏𝜏 cos(𝜔𝜔0𝑡𝑡))  . Eq. 7 

Instead of trying to fit the experimental data to this analytical expression1, let us focus on the extrema of 

𝑎𝑎𝑧𝑧(𝑡𝑡). 

Maxima of acceleration: They occur when the mass passes through its rest position with its 

maximum velocity and then maximum centripetal acceleration. They corresponds to 𝜃𝜃(𝑡𝑡) = 0, i. e.   𝜔𝜔0𝑡𝑡 =

π 2⁄ + 𝑛𝑛π (Eq. 2b). From Eq. 7: 

𝑎𝑎𝑧𝑧,max(𝜃𝜃 = 0) = 𝑔𝑔𝜃𝜃02𝑒𝑒
− 𝑡𝑡
𝜏𝜏/2 + 𝑔𝑔  . Eq. 8 

The amplitude of these maxima decreases exponentially with a relaxation time equal to τ/2. Fitting this 

relaxation time gives access to τ  and to 𝑔𝑔𝜃𝜃02: 𝜃𝜃0 can be obtained as well as the angular amplitude versus 

time, 𝜃𝜃0𝑒𝑒−𝑡𝑡/𝜏𝜏 .  

Minima of acceleration. These minima occur when the mass velocity is null, i.e., when the mass 

reaches its maximum of amplitude 𝜃𝜃max corresponding to 𝜔𝜔0𝑡𝑡 = 𝑛𝑛π (Eq. 2b). In these cases, 𝑎𝑎𝑧𝑧  measures 

only the “static” contribution and the envelope of these minima is given by 

𝑎𝑎𝑧𝑧,min (𝜃𝜃 = 𝜃𝜃max) = 𝑔𝑔 cos �𝜃𝜃0𝑒𝑒
−𝑡𝑡𝜏𝜏�  . Eq. 9 

Note that the asymmetry of the data in respect to the equilibrium value highlighted in section 2.3 are 

explained by the equations 8 and 9: the positive and negative extrema of 𝑎𝑎𝑧𝑧(𝑡𝑡),  as well as their damping 

times, are different. 

1 Let us note that, because actually the period decreases with amplitude, this fit would not be so trivial. 
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Figure 5: Theoretical (Eq. 8 and 9) and experimental (Python determination) 
values of the extrema of 𝑎𝑎𝑧𝑧 . The adjustment of the theoretical determination to 
the experimental data of the maxima led to 𝜃𝜃0 = 65° and τ = 115 s. These same 
values are used to calculate the theoretical minima. 

4 Analysis of the experimental results 

4.1 Damping time determination 

In Figure 5, the experimental data for the extrema of az(t) saved in the auxiliary file F3 are compared with 

the analytical expression given by the equations 8 and 9 with 𝜃𝜃0 and τ  as adjustable parameters. In the 

upper part of this figure, are plotted these experimental data for the maxima (decreasing red thick line), as 

well as the equation 8 (decreasing black thin line). By a try-and-error process, a very good agreement 

between these two types of data is found, leaving, in the case of this experiment, to 𝜃𝜃0 = 65° and τ = 115 s. 

In the lower part of the same graph are plotted the experimental values for the minima (increasing green 

thick line) as well as the equation 9 (thin black line) with the same values for (𝜃𝜃0, τ ): a very good agreement 

is also obtained. Let us remind that these two sets of measurements (maxima and minima of 𝑎𝑎𝑧𝑧) are indeed 

independent, each one measuring a different effect (one measures the centripetal acceleration at θ = 0, the 

other one measures the maximum inclination of the pendulum), the agreement between the two calculated 

curves and the corresponding experimental data must be taken as a proof of the quality of the recorded 

data. Let us however mention that a value τ = 110 s could describe slightly better (visual evaluation) the 

evolution of the minima value versus time. 

Using this quite good experimental determination of τ, this damping time was measured for various 

systems using different wire length and mass. The results for 𝜔𝜔0 and τ  are indicated in Table 1. First, let us 

note that the condition 𝜔𝜔0𝜏𝜏 ≫ 1 is always satisfied (last column of Table 1): our system is very lightly 

damped and the various approximations done to reach relatively simple analytical expressions in section 
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3.3 are fully justified. Frequently, in practical classes, the pendulum period is measured for various length 

L and these data are used to verify the T  vs 𝐿𝐿1/2 law and to deduce the gravity acceleration. Using the data 

of table 1, the T vs. 𝐿𝐿1/2 slope gives ≈ 2.017 s kg−1/2, leading to g ≈ 9.71 m/s2 2. This ≈ 1 % discrepancy could 

come from the imprecision on the L measurement, or by the fact that, in our case, the oscillating mass is 

not so small compared to 𝐿𝐿 and the 𝑇𝑇 = 2π�𝐿𝐿/𝑔𝑔 law have to be refined taking into account its real moment 

of inertia, such an analysis is out of the scope of this article but could also be included in a more complete 

work.  Whereas a viscous force implies τ ∝ 𝑚𝑚, our data shows that τ  decreases with m indicating that, in 

our system, the damping is caused by other effects: for example, the friction of the wire on the metallic rod 

as well as the energy lost by deflecting the relative light supporting rods during the motion could be the 

main source of energy dissipation but, once again, further analysis is beyond the scope of this paper.  

Table 1: Experimental results for angular frequency measured (ωmeas) from period at small 
amplitude (T0) and damping time for different configurations (wire length and oscillating mass).  

Config. L/m m/g T0/s ωmeas/s-1 τ/s ωmeasτ  

 a 0.311 600.3 1.12 5.610 115 645 

 b 0.296 402.3 1.1 5.712 130 743  

 c 0.301 200.5 1.105 5.686 140 796  

 d 0.226 200.5 0.96 6.545 100 654  

 e 0.186 200.5 0.87 7.222 77 556  

4.2 Period versus amplitude 

The Equations 8 and 9 allow to extract the angular amplitude, 𝜃𝜃max(𝑡𝑡) = 𝜃𝜃0𝑒𝑒−𝑡𝑡/𝜏𝜏 , at each extremum 

from the acceleration data. For instance, 𝜃𝜃max(𝑡𝑡) obtained from the experimental acceleration maxima 

𝑎𝑎𝑧𝑧,max displayed in Fig. 5 and using Eq. 8 are plotted on Figure 6. 𝜃𝜃max(𝑡𝑡) calculated by the minima of the 

acceleration (Eq. 9) was also computed and lead to very similar results [9], they are not displayed in this 

figure for sake of clarity. To obtain a less noisy data set, especially for low amplitude, this amplitude was 

averaged on 5 periods (θmax, average- thick grey line) exactly as done for the period smoothing process. 

Moreover, doing so, each period averaged (data of Fig. 4) can be associated with the corresponding 

averaged amplitude (data of Fig. 6) then the dependence of the period 𝑇𝑇 upon θmax can be obtained as 

displayed on figure 7a. 

2 Along this article, no error handling is presented: it would turn it heavier and without real benefits 
in respect to the main goal of this article that is to show that this setup is a good tool for studying pendulum 
physics. Error handling can be included in the full work to be performed by the students 
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Figure 6. The symbols indicate the angular amplitude, 𝜃𝜃max(𝑡𝑡), versus time 
obtained from Eq. 8. The thick grey solid line corresponds to 𝜃𝜃max,average, 
moving average calculated by Eq. 8 on 5 consecutive periods.  

Considering Eq. 3, in Figure 7a, the average period was plotted as a function of 𝜃𝜃ma𝑥𝑥,average
2 . In first 

approximation, a quadratic dependence of the period in 𝜃𝜃max described quite well the experimental data. 

In this figure, the thick black line represents the first correction predicted by Eq. 3 and its value is in quite 

good agreement with the measurements, especially at low amplitude. However, for higher amplitude, the 

departure from this quadratic dependence is larger than the quartic correction proposed by Eq. 3 (thin 

black line): a quartic correction three times larger than proposed by Eq. 3 described very well these data 

(thick grey line). As already mentioned, the fact that the oscillating mass cannot be considered as point-like 

should be considered for a finer description of this 𝑇𝑇(𝜃𝜃max) behavior. The 𝑇𝑇(𝜃𝜃max) dependences were 

measured for the various configurations (L, m) listed in Table 1. They are displayed in Figure 7b and show 

that, within the uncertainties of our measurement, the quadratic and quartic corrections seem at first sight 

independent of mass and length as predicted by Eq. 3. A more complete analysis is beyond the scope of this 

work but seems to be possible using this experimental setup. 
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Figure 7: Period of oscillation versus the square of the angular amplitude 𝜃𝜃max2 . 
Figure 7a: for the L = 31,1 cm and m = 600 g configuration. Note the very good 
agreement with the first correction of Eq. 3 (thick black line) for small angle. 
For angle higher than ≈ 0.7 rad (≈ 40°), the experimental results follow (thick 
gray line) a dependence three times larger than predicted (thin black line). 
Figure 7b: Relative change of period for the various configuration listed in 
table 1.  

5 The pendulum and the BITalino in the framework of the classroom 

The work described in the previous sections can be easily adapted to various educational levels (from high 

school to 1st cycle of university) or to the time allocated for practical session. The analytical expressions of 

section 3 can be either obtained by the students or given by the teacher and discussed with the students 

using elementary knowledge about the damped pendulum. It is important to highlight that measuring the 

centripetal acceleration and using a cantilever induces some “unintuitive results”. For instance, depending 

on the teaching strategies, the frequency doubling of the measured signal can be deduced by the students 

before experiments or, on the contrary, can be discovered and explained by the students during the 

experimental work. Total duration of 4-6 hours seems to us reasonable to perform all the work. This 

duration includes the software installation, the calibration of the sensors, some training and tests and the 

data acquisition with different masses and lengths. If necessary, these 4-6 hours can be divided in two 

different sessions, the first one dedicated to the installation and training, the second to data acquisition and 

basic analysis. Student skills in data analysis using spreadsheets are frequently not as developed as 

expected: this work is a good opportunity to use spreadsheets to make mathematical data processing as 

well as to compare theory with experimental results. In the version we described in this article, we chose 

to provide to the student the software that calculates the period of the signal as well as the time stamps of 

the extrema turning usual spreadsheets adequate for data analysis. However, for students with some 

knowledge of computer programming, this program can be part of the work or a complementary work 

done in collaboration with informatics class: data smoothing and extrema detection is a useful and 

enriching exercise. 

From the point of view of the teacher, the experimental setup is very simple and inexpensive to install 

(Figure 2). The wireless capability leads to a very clean experimental site without irritating problems due 
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to faulty wires, cables or contacts. In this experimental set-up, no complicate mechanism is needed for the 

angle measurement, its value being determined by the accelerometer. Moreover, the same acquisition 

board can be used for many other applications within the practical class and is then very easily finantially 

amortized. For instance, in the framework of a didactical experiment dedicated to magnetic induction 

phenomenon [9], this same board, coupled to a simple homemade amplifier, was used as a microvoltmeter 

to measure low voltage (10-300 µV range) versus time. Other properties or signals can be measured by 

built-in sensors or using the analogical inputs existing in general in such type of devices. For us, beyond 

their relatively reduced price, one of the main advantages of using such boards is really their versatility: it 

avoids problems frequently encountered in our physics lab such as compatibility between apparatuses of 

different brands, limitation due to “closed” software and so on. The students and/or the teacher can really 

build their own experiment, with their own material and with their own ideas. 

6 Conclusion 

Modelling is in the essence of physical sciences [16]. Most physical models are expressed as equations and 

becoming familiar with the process of creating these equations is an essential task in learning science and 

engineering. The pendulum study is a good way to train this creating process. We showed in this paper that 

the experimental results obtained with a low-cost data acquisition card, incorporating wireless 

communication and accelerometer sensors as it is quite common nowadays, are accurate and useful to go 

beyond the basic theory of the simple pendulum: by measuring the acceleration, the damping time, as well 

as the dependence of the period with amplitude, are obtained with good precision. To allow comparison 

with the usual theoretical predictions, the data has to be analyzed using a spreadsheet and various 

calculation steps, contributing to improve student skills with this type of general computational tools. 

Beyond this mathematical analysis, some of these results, namely the non-symmetrical az(t) behavior as 

well as the frequency doubling, can be understood after some reflection needed by the fact that the 

centripetal acceleration is not related to the oscillation angle by an obvious way. We take this reflection 

(accompanied or not by the mathematical demonstration) as an added value to the usual pendulum lab 

assignments. 

Sometimes, to generate an extra motivation and some enthusiasm, it is necessary to introduce or 

explain to the students the practical work using some exciting ideas. With the work presented here, the 

very classical simple pendulum experiment became, in our opinion, more attractive and challenging than 

some typical didactical pendulum works. More attractive because the measurements are performed using 

a microelectromechanical device currently used in many domains other than physics laboratories 

(including their very beloved cell cell-phones!). It is important that the student becomes familiar with 

hardware used outside schools. Attractive also because the acquisition board used in this experiment is 

wireless, very versatile and can be used for many other types of measurements. Unfortunately, in teaching 

laboratories, many experimental apparatuses are exclusive of these labs. Using devices that can be used for 

other purposes helps to build the idea that physics labs are useful not only to test or “discover” physical 

laws but also as an introduction to other type of measurements in “real life”. More attractive also because 

this work avoids studying one of the more fascinating and fundamental physics problems by the angle 
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measurement that seems the most obvious way… so obvious that it could seem, a priori, tedious3. Studying 

this motion by measuring the centripetal acceleration offers an alternative to this “obvious” solution. 

However, as mentioned in the introduction, acceleration is not as intuitive as linear or angular position. For 

instance, it is very probable that a student will take as evident that the periodicity seen on Figure 3 is the 

periodicity of the motion. A rapid measurement will show that this spontaneous guess is wrong, as the 

asymmetric results displayed on Figure 3 were also, at first sight, not expected. A full explanation of these 

“not obvious results”, without any calculations, would be a challenge for the sagacity of the students. 

Because neither expensive apparatus nor special materials are needed except the acquisition board, 

the experimental setup can be installed on any site other than the classroom. An alternative way to the 

classical work performed in a classical physics laboratory could be to say to the students: “Here is an 

acquisition card with an integrated accelerometer, build something to put some mass to oscillate, fix the 

acquisition board to it and come back with the parameters of your own damped oscillator!”. 
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