SLX — A top-down derivation pro-
cedure for programs with explicit
negation

José Jilio Alferes, Carlos Viegas Damasio, and Luis Moniz
Pereira

CRIA, Uninova and DCS, U. Nova de Lisboa

2825 Monte da Caparica, Portugal

{jjalcd|lmp}@fct.unl.pt

Abstract

In this paper we define a sound and (theoretically) complete top-down derivation
procedure for a well-founded semantics of logic programs extended with explicit
negation (WFSX). By its nature, it is amenable to a simple interpreter implemen-
tation in Prolog, and readily allows pre-processing into Prolog, showing promise as
an efficient basis for further development.

The derivation method is directly inspired on the semantic AND-tree charac-
terization of WFSX in our paper [2], but does not require knowledge of it. In fact,
that work can be seen as a preliminary step towards the definition of the procedure
presented here.

Because of its properties, which are paramount for top-down query evaluation
and other approaches do not fully enjoy, WFSX is a natural candidate to being the
semantics of choice for logic programs extended with explicit negation. Moreover,
WFSX is sound wrt to the answer-sets semantics, and it is a better aproximation
to answer-sets than simply using the well-founded semantics of normal programs,
plus a renaming of explicitly negated literals. Thus, our top-down procedure can be
used as a sound one for answer-sets, that provides less incompleteness than others.

Since WFSX coincides with the well-founded semantics on normal programs,
our method is applicable to it and, for ground programs, compares favourably with
previous approaches [2].

1 Introduction

The evolution of Logic Programming semantics has included the introduction
of an explicit form of negation, beside the older implicit (or default) negation
typical of Logic Programming, cf. [10, 13, 21]. The widespread use of such
extended programs requires the definition of a correct top-down querying
mechanism, as for Prolog. The purpose of this paper is to present one such
SLDNF-like derivation procedure, SLX, for programs with explicit negation
under well founded semantics (WFSX) [13], and prove its soundness and
completeness. (Its soundness wrt the answer-sets semantics is also shown.)
The derivation method is directly inspired on the semantic AND-tree
characterization of WFSX in our paper [2], but does not require knowledge of
it. In fact, that work can be seen as a preliminary step towards the definition
of the procedure presented here, in which there was no concern with the

construction of the trees (they are assumed to exist). The attribution of
failure and success was made “a posteriori” and assuming all the required
trees simultaneoulsly present. Here not only do we define how the derivations
are constructed in a top-down way, using an arbitrary selection rule, but also
do we attribute success and failure of literals incrementally as the derivation
develops. The characterization in [2] is a declarative semantics, and a first
step towards the present one, which is procedural.

Our choice of WFSX as the base semantics is justified by the structural
properties it enjoys, which are paramount for top-down query evaluation.
Indeed, because of its properties, which other approaches do not fully en-
joy, WFSX is a natural candidate to being the semantics of choice for logic
programs extended with explicit negation. Namely, it exhibits the struc-
tural properties: well-foundedness, cumulativity, rationality, relevance, par-
tial evaluation. By well-foundedness we mean that it can be characterized
(without recourse to three-valued logic) by the least fixpoint of two iterative
operators (cf. below), which justify our top-down procedure. By cumula-
tivity [7], we refer to the efficiency related ability of using lemmas, i.e. the
addition of lemmas does not change the semantics of a program. By ra-
tionality [7], we refer to the ability to add the negation of a non-provable
conclusion without changing the semantics; this is important for efficient
default reasoning. By relevance [8], we mean that the top-down evaluation
of a literal’s truth-value is made possible because it requires only the call-
graph below it. By partial evaluation [8] we mean that the semantics of a
partially evaluated program keeps to that of the original'. Additionally, it is
amenable to both top-down and bottom-up procedures, and its complexity
for finite DATALOG programs is polynomial. These and other properties of
WFSX are detailed and proven in [1].

As proven in [1], WFSX is sound wrt to the answer-sets semantics of [10],
and it is a better aproximation to answer-sets than simply using WFS plus
the renaming of —-literals (cf. example in [2]). Thus, our top-down method
can be used as a sound one for answer-sets, that provides less incompleteness
than others. Since WFSX coincides with WFS on normal programs, our
method is applicable to it and, for ground programs, compares favourably
with previous approaches [2].

To the best of our knowledge paper [19] is the only in the literature that
addresses the topic of proof procedures for extended logic programs. The
author uses the notion of conservative derivability [22] as the proof-theoretic
semantics for extended programs. The paper provides a program transfor-
mation from such programs to normal ones. Then it is proved that Kunen
semantics [11] applied to the transformed program is sound and complete
wrt conservative derivability. This approach has several problems mainly
motivated by the interpretation of default negation as finite failure as rec-

1Stable model based approaches, such as answer-sets, enjoy neither cumulativity, nor
rationality, nor relevance.

ognized by the author. For instance, in the program {a « a} the literal —a
is false but a is undefined, contrary to the results obtained by answer sets
and WFSX where not a is true. As a final remark, conservative derivability
is not defined for programs with functor symbols. Therefore the approach
is only applicable to extended programs without functor symbols. WFSX
solves all these problems properly.

The paper commences with a WFSX review, followed by the definition of
SLX derivation, and continues with proofs of its soundness and (theoretical)
completeness. The paper concludes with discussion.

2 WFSX overview

Here we recall the language of logic programs extended with explicit nega-
tion, or extended logic programs for short, and briefly review the WFSX
semantics [13]. An extended program is a (possibly infinite) set of ground
rules of the form Lo < Lyi,..., Ly,not Lyi1,...,n0t L, (0 < m < n),
where each L; is an objective literal (0 < ¢ < n). An objective literal is
either an atom A or its explicit negation —A. In the sequel, we also use = to
denote complementary literal wrt the explicit negation, so that -——4 = A.
The set of all objective literals of a program P is called the extended Her-
brand base of P and denoted by H(P). The symbol not stands for negation
by default®. not L is called a default literal. Literals are either objective or
default literals. By not {a1,...,an,...} we mean {not a,...,not a,...}.
An interpretation of an extended program P is denoted by T'Unot F', where
T and F are disjoint subsets of H(P). Objective literals in T are said to
be true in I, objective literals in F' false by default in I, and in H(P) — I
undefined in I.

WFSX follows from WFS for normal programs plus the coherence re-
quirement relating the two forms of negation: “For any objective literal L,
if =L s entailed by the semantics then not L must also be entatled”. This
requirement states that whenever some literal is explicitly false then it must
be assumed false by default.

Here we present WFSX in a distinctly different manner with respect to its
original definition. This presentation is based on the alternating fixpoints of
Gelfond-Lifschitz I'-like operators. The equivalence between both definitions
is proven in [1]. For lack of space we do not present here the definition of T
(see [10]). To impose the coherence requirement 3 we introduce:

Definition 2.1 (Seminormal version of a program) The seminormal
version of a program P 1s the program Ps obtained from P by adding to the
(possibly empty) Body of each rule L «— Body the default literal not —L,
where =L is the complement of L wrt explicit negation.

2. ’

“This designation has been used in the literature instead of the more operational “nega-
tion as failure (1o prove)”.

3[1] shows how the use of semi-normal programs in fact imposes coherence.

Below we use I'(S) to denote I'p(.S), and I';(S) to denote I'p_(S).

Definition 2.2 (Partial stable model) An interpretation T U not F s
called a partial stable model of P iff T =TT T and F = H(P) — I',T.

Not all extended programs have partial stable models (e.g. P = {a; -a}
has no partial stable models). Programs without partial stable models are
said contradictory.

Theorem 2.1 (WFSX semantics) Every noncontradictory program P has
a least (wrt C) partial stable model, the well-founded model of P (W FM(P)).
To obtain an iterative “bottom-up” definition for WFM(P) we define
the following transfinite sequence {I,} (where § is a limit ordinal):
Io={}; I 1 =TT, I =J{IL|a<eé}
There exist a smallest ordinal X for the sequence above, such that I is the
smallest fixpoint of I'Ts. Then WFM(P) = I\ Unot (H(P) —T'1)).

If the program does not contain explicit negation then WEFSX coincides
with the well-founded semantics of [9].

In this constructive definition, literals obtained after an application of
[T, (i.e. in some I,) are true in WFM (P), and literals not obtained after
an application of Ty (i.e. not in T'yI,, for some «) are false by default in
WFM(P).

Note that, like the alternating fixpoint definition of WFS [20], this defini-
tion of WFESX also relies on the application of two anti-monotonic operators.
However, unlike the definition of WFS, these operator are distinct. As we
shall see, this points to the definition of two different kinds of derivation
procedures, one reflecting applications of ' and proving verity of objective
literals, and the other reflecting applications of I'y and proving nonfalsity of
objective literals. The two become meshed when the proof of verity of not L
is translated into the failure to prove the nonfalsity of L.

The theorem below relates WFSX with the answer-sets semantics of [10],
and its proof can be found in [1]:

Theorem 2.2 (Soundness wrt Answer-sets) Let P be an extended logic
program with at least one answer-set. Then P 1s noncontradictory, i.c. has
partial stable models. Moreover, for any objective literal L, if L € WFM (P)
then L belongs to all answer-sets of P; if not L € WFM(P) then L does
not belong to any answer-set of P.

3 SLX definition

In this section we define SLX (where X stands for eXtended programs, and
SL stands for Selected Linear), a top-down derivation procedure for extended
logic programs under WFSX [13]. Its correctness is proven in section 4.

The definition of SLX is directly inspired on the semantic tree character-
ization of [2], and relies on SLDNF-like definitions of derivation, refutation,
and failure. For the sake of simplicity we present the definition only for
ground (but possibly infinite) programs. However, its generalization for pro-
grams with variable is straightforward.

In order to informally motivate the definitions, we start with the simpler
problem of programs without explicit negation. It is well known [4, 5, 6, 14,
18] that the main issues in the definition of top-down procedures for WES
are infinite positive recursion, and infinite recursion through negation by
default. The former gives rise to the truth value false (so that, for some L
involved in the recursion, there should exist a refutation for not L. and no
refutation for L), and the latter to the truth value undefined (so that both
L and not L should have no refutation).

Apart from these additional issues, we mainly follow the ideas of SLDNF
[12] where refutations are derivations ending with the empty goal, derivations
are constructed via resolution, and the negation as failure rule (stating that
a selected not L is removed from the goal if L has no refutation and is the
last goal of the derivation if L has one).

To solve the problem of positive recursion, as in SLS-resolution [16], we
introduce a failure rule for not necessarily finite derivations.

Example 1 Let P = {p < p}. The only derivation for p («— p,<— p,...)
is infinite. By stipulating that there is no refutation for <« p we have that
«— not p, < O is a refutation.

For recursion through negation by default we want both L and not L to
have no refutations, which seems to violate the negation as failure rule. In
fact that rule in SLDNF states that if there is no refutation for L, not L
should succeed (i.e. removed from the goal), and if L has a refutation than
not L should fail (i.e. be the last goal in the derivation). This is so because
SLDNF relies on a two-valued semantics, and so failure of verity means
falsity and vice-versa. In WFS, it being a three valued semantics, the same
cannot apply. In fact, for WFS a failure of L simply means that L is not
true, i.e. it can be false or undefined.

To solve this problem, others [15, 16, 17, 18] have defined derivation
procedures that consider the extra status of “undefined” or “undetermined”
assigned to goals. Literals involved in an infinite recursion through negation
are assigned that status. As we shall see below, this approach does not
generalize to extended programs.

Instead of considering an extra status we distinguish two kind of deriva-
tions: SLX-T-derivations that prove verity in the WFM, and SLX-TU-
derivations (where TU stands for “true or undefined”) that prove nonfal-
sity in the WFM. Now, for any L, the verity of not L succeeds iff there is
no SLX-TU-refutation for L (i.e. L is false), and the nonfalsity of not L
succeeds iff there is no SLX-T-refutation for L (i.e. L is not true).

Having these two kinds of derivations, it becomes easy to define the
derived goal of a goal G, even with the selected literal L involved in recursion
through negation by default. Indeed, since in this case, and according to
WEFS, L is to be undefined, it must be failed (i.e. the last goal in the
derivation) if it occurs in a SLX-T-derivation, and refuted (i.e. removed
from the goal) if it occurs in a SLX-TU-derivation.

Example 2 Let P = {p — not p}. In order to prove the verity of p we start
by building a SLX-T-derivation for < p. By resolving the goal with the
program rule we obtain < p, < not p. Now, < not p is the last goal in the
derivation if there is a SLX-TU-refutation for « p, and is replaced by the
empty goal otherwise.

So we start building a SLX-TU-derivation for « p. Resolving the goal
with the program rule we obtain «— p, < not p, and so there is a recursion
in not p through negation by default. Thus, as we are in a derivation for
“true or undefined”, not p is removed from the goal, and its derived goal
is the empty goal. This gives a SLX-TU-refutation for <« p, which in turn
determines < not p to be the last goal in the SLX-T-derivation above,
making it a failed one.

Now we show how to generalize this procedure to deal with explicit nega-
tion in WFSX. In a lot of points the treatment of extended programs is akin
to that of normal ones, where instead of atoms we refer to objective literals,
namely because, as expected, objective literals are treated exactly like atoms
are in WFS.

The main difference in the generalization to extended programs resides
in the treatment of negation by default. In order to fulfill the coherence
requirement there must be an additional way to refute a literal not L. In
fact not L is true if =L is also true.

Example 3 Counsider P = {a « not b; b — not a; —a «— }, whose WFM is
{—a,b,not a,not —b}.

In order to prove the verity of b, one starts to build one SLX-T-derivation
for goal « b. By solving it with the only rule for b in P we obtain « b, —
not a. Now, according to what was said above, one has to build SLX-TU-
derivations for « a.

Solving «+— a with the first program rule we obtain « a, < not b. Since
this is a case of recursion through negation by default, and we are in a TU-
derivation, the derived goal is «— 0. Consequently there is no refutation for
— b. However, since —a is true, by coherence « not a (and thus « b also)
must be refuted, by the additional method of proof for default literals via
coherence.

In SLX-T-derivations, in order to obtain coherence, we introduce an
extra possibility of removing a not L from a goal: “In a SLX-T-derivation, a

selected literal not L is removed from a goal if there is no SLX-TU-refutation
for L or if there is one SLX-T-refutation for —L".

Care must also be taken in nonfalsity derivations because the coherence
requirement can override undefinedness (cf. [13]):

Example 4 Consider P = {a < b; b — not ¢; ¢ < not ¢; =b «— }, whose
WFM is {—b,not a,not b,not =b,not —c}.

In trying to prove verity of not a one starts building SLX-TU-derivations
for «— a to check whether they fail. The only possible such derivation starts
with «— a,« b, not ¢. To determine the derived goal of not ¢ one tries
to find a SLX-T-refutation for « ¢ which, as the reader can easily check,
does not exist. Thus there is a SLX-TU-refutation for < a («+ a,+ b,
not ¢, «— O), so that there is no SLX-T-refutation for «— not a.

However, not a belongs to the WFM of P. Note that this problem occurs
because there is a SLX-TU-refutation for «<— b which should not exist since
b is false. Indeed the falsity of b in the WFM is imposed by the coherence
principle, since —b is true. Note that in the derivations above —b is not even
used. In fact, in the SLX-TU-derivation for < a, the goal « b should be the
last one, because —b is true. In other words, the verity of =L (stating that
L is false) forbids the use of resolution with rules for I in SLX-derivations.

In SLX-TU-derivations coherence imposes the verification of a precon-
dition for the application of resolution on objective literals. Namely: “In
a SLX-TU-derivation resolution can only be applied to a selected objective

literal L if there is no SLX-T-refutation for -L".

Remark 3.1 Note that coherence intervenes differently in T and TU-derwa-
tions. This is a consequence of having two distinct anti-monotonic operators
mn the definition of the WEM. At this point it is easier to understand the
claim we made before that the usage of an undefined status, instead of hav-
g two different kinds of deriwvation, hampers the generalization to extended
programs. In fact, in normal programs one can symply replace the two kinds
of derivations by the addition of an undefined status because the single dif-
ference between the two derivation types is in the success or failure of literals
mwolved in infinite recursion through default negation. However, in extended
programs there are other differences, namely in what regards the applications
of the coherence principle, which make the distinction crucial.

The formalization of the intuitions presented above yields the following
definitions of derivations and refutations:

Definition 3.1 (SLX-T-derivation) Let P be an extended program, and
R an arbitrary but fired computational rule. A SLX-T-derivation Go, G, ...

for G in P via R s defined as follows: Gy = G. Let G; be «— Ly,..., Ly,
and suppose that R selects the literal Ly (1 < k < mn). Then:
o if L 1s an objective literal, and the input rule is Ly «— By,..., B,

the derived goal is — Ly, ..., Ly—1,By1,..., By, Lipy1,... Ly.

o if L. wsnot A then, iof there is a SLX-T-refutation for = A in P or there
is no SLX-TU-refutation for A i P, the derived goal is:

- le"'vafl:Lk+ls---Ln

o otherunse G; s the last goal n the derivation.

Definition 3.2 (SLX-TU-derivation) Let P be an extended program, and
R an arbitrary but fized computational rule. A SLX-T-deriwation Gy, G, . ..
for G wn P wvia R s defined as follows: Gy = G. Let G; be — Ly,....L,
and suppose that R selects the literal Ly, (1 <k <n). Then:

o if Ly 1s an objective literal then

— af there exists a SLX-T-refutation for =Ly then G; is the last goal
i the derivation.

— otherwise, if the input rule vs Ly «— By, ..., B, the derwed goal
15 «— Ll, PN L/{.,l, Bh . 7Bm, L/f+l? . Ln

— f there ©s no rule for Ly then G; s the last goal in the derivation.

o if L is not A then:

— if there 1s a SLX-T-refutation for «— A in P then G; s the last
goal in the derwvation.

— of all SLX-T-derwations for «— A are SLX-T-failures then the
deriwved goal is < Ly, ..., Ly_1,Lg4q, ... Ly.

— due to infinite recursion through default negation, it might happen
that the previous points are not enough to determine the derived
goal. In such a case, by definition, the derived goal is also

<_Llw---«,kalek'{»lv---Ln-

Definition 3.3 (SLX refutation and failure) A SLX-T-refutation (resp.
SLX-TU-refutation) for G in P is a finite SLX-T-derivation (resp. SLX-TU-
derivation) which ends in the empty goal (— O).

A SLX-T-derivation (resp. SLX-TU-derivation) for G in P is a SLX-T-
farlure iff it s not a refutation, i.e. it 1s infinite or it ends with a goal other
than the empty goal.

4 Correctness of SLX

In this section we prove the soundness, and theoretical completeness? of the
SLX derivation procedure. To do so we assign ranks to derivations. The
proofs of correctness essentially rely on two lemmas proven by transfinite
induction on the rank of derivations. In order to trim the proof we begin by
making some simplifications in the above definitions of derivations:

In definition 3.1 of SLX-T-derivation one possible way of removing a
selected default literal not A from a goal is to find a SLX-T-refutation for «—

*In practice completeness cannot be achieved because in general the WFM is not com-
putable [9]. However, in theory, and with the possible need of constructing more than w
derivations, completeness is obtained.

—A. However this case is redundant. Note that the other case for removing
not A is when there is no SLX-TU-refutation for «— A. But definition 3.2
states that in a SLX-TU-derivation, if there is a SLX-T-refutation for the
explicit complement of a selected objective literal then the goal is the last
in the derivation. Thus, if there is a SLX-T-refutation for <« —A, the only
SLX-TU-derivation for « A is this single goal and is a failure, and so, even
when not considering the first possibility, not A is nevertheless removed from
the goal. Thus, in definition 3.1 the case L = not A can be simplified to:
iof there is no SLX-TU-refutation for A in P then the derwed goal is
— Ll,...,L],¢_],L]‘1+1,...L7l

Now let’s look at the cases for a selected objective literal Lj in definition
3.2. Clearly the first one corresponds to introducing not —L;, in the derived
goal. This is so because if there is a SLX-T-refutation for « =L the deriva-
tion will become a failure (and this is equivalent to the first case), and if
there is no such refutation it is simply removed (and this is equivalent to the
second case). Consequently, in definition 3.2 we remove the first case for a
selected objective literal, keep the third, and modify the second to: if the
mput rule 1s Ly «+— By, ..., By the derived goal 1s

«—Ly1,...,Lp_1,n0t =L, B1,...,By, Liy1.... Ly

Now we assign ranks to these simplified derivations. As the proofs shall
show, we do not need to assign a rank neither to SLX-T-failures nor to
SLX-TU-refutations. These do not contribute towards proving literals that
belong to the WEM?.

Intuitively, the rank of a SLX-T-refutation reflects the depth of “calls”
of subsidiary derivations that are considered in the refutation. Its definition,
below, can be seen as first assigning to each literal removed from a goal an
associated rank. When removing an objective literal no subsidiary derivation
is considered, and so the rank is not affected. The empty goal has rank 0.
When removing a default literal, the depth of subsidiary derivations that
has to be considered is the maximum (more precisely, the least upper bound
for the infinite case) of the depth of all SLX-TU-failures®. The depth needed
for finally removing all literals from a goal is the maximum of the ranks
associated with each of the literals in the goal.

Definition 4.1 (Rank of a SLX-T-refutation) The rank of a SLX-T-
refutation is the rank of its first goal. Ranks of goals wn the refutation are:
o The rank of — O s 0.
e Let Gy be a goal in a refutation whose next selected literal is objective.
The rank of G; s the rank of Giy1.
e Let G; be a goal in a refutation whose next selected hiteral is a default

one, not L, and let « be the least ordinal upper bound (i.e. mazimum
in the finite case) of the ranks of the SLX-TU-failures for «— L7. The

®This is tantamount to having no need to assign a rank to indetermined nodes in [18].

®Note that for removing a default literal all SLX-TU-failures must be considered. This
is the reason behind “maximum”.

"Since we are in a SLX-T-refutation, all SLX-TU-derivations for — L are failures.

rank of G; is the mazimum of a and the rank of Giy1.

Ranks of SLX-TU-failures reflect the depth of “calls” that is needed to fail
the subsidiary derivations. Note that the failure of a derivation is uniquely
determined by the last goal in it, and more precisely by its selected literal. If
that literal is objective then no subsidiary derivation is needed to fail it, and
thus its rank is 0. For failing a default literal not L one has to find a SLX-T-
refutation for «+— L. Several might exist, but it is enough to consider the one
with minimum depth. Moreover, in this case one has to increment the rank,
since the default literal not L was failed, and caused an extra “call”. Note
that, for SLX-T-refutations this increment is not considered. The issue of
incrementing the rank only for one kind of derivations is tantamount to that
of considering the increment of levels of I;s in the sequence for constructing
the WFM only after the application of the two operators, I' and I';.

Definition 4.2 (Rank of a SLX-TU-failure) An infinite SLX-TU-failu-
re has rank 0. The rank of a finite SLX-TU-failure is the rank of its last
goal. Let G, be the last goal of the derivation, and L. be its selected literal:

e if L. 15 an objective literal then the rank is 0.

e if Ly is a default literal, not A, then the rank is o + 1, where « is the
manemum of the ranks of all SLX-T-refutations for «— A.

The following lemma is used in the proofs of correctness. This lemma
relates the existence of sequences where some default literals are removed to
the I' operator by which some default literals are removed from the body of
rules:

Lemma 4.1 Let I be an interpretation, and let («— L), G, ... be a sequence
of goals constructed as per definition 3.2 (resp. definition 3.1), except that
selected default literals not Ly such that L. & I are ymmediately removed
from goals. Then: L € T'sI (resp. L € T'I) iff the sequence is finite and ends
with the empty goal.

Proof (sketch): Here we omit the proof for L € T'T with definition 3.1, which is
similar. If L € T'yI then, as per the definition of ['y, there must exist a finite set
of rules in EI— such that L belongs to its least model. According to the definition
of PT and of semi-normal program, there is a finite set of rules in P such that for
each default literal not L in their bodies L &€ I, and for each such rule with head
H, -H ¢ 1. Let P be the subset of P formed by those rules. The only default
literals to be considered by definition 3.2 will be those in the bodies, plus the default
negations of =-complements of the heads of rules used in the derivation. So, given
the completeness of SL-resolution® [12], and the fact that all these introduced literals
are not in I (as shown above), a sequence of goals considering only the rules in the
p?
1

finite P* exists and ends in « O. Thus the least model of contains L.

8For definite programs both T and TU derivations reduce to SL-derivation.

Lemma 4.2 Let P be a noncontradictory extended logic program, L an ob-
jective literal, and {I,} be the sequence constructed for the WEM of P, as
per theorem 2.1. In that case:

1. if there 1s a SLX-T-refutation for — L in P with rank < 2 then L € I;.
2. af all SLX-TU-derwations for < L wn P are failures with rank < 1 then
L ZT0;.

Proof: For point 1, by transfinite induction on i(for point 2 the proofis similar, and
omitted here for brevity):

¢ is a limit ordinal 6: The case where 6 = 0 is trivial. For 6 # 0, for point 1,
assume that there is a SLX-T-refutation for «— L with rank < 4. Thus,
there is a a < ¢ for which such a refutation exists with rank < «. Then,
Ja<sl € In. Thus, L € J, 51, ie. L€ Is.

Induction step: If thereis a SLX-T-refutation for «— L with rank < 241 then, by
definition of ranks for these refutations, all subsidiary derivations for default
literals not L; in the refutation are failed and of rank < i 4+ 1 (and thus < i)
and are simply removed. So, given point 2, Vj,L; € I'.I;. From lemma 4.1,
by tacking there the interpretation I = I';I;, and by removing all not L;
literals, it follows that L € I'l'sl;, i.e. L € I;4q.

Theorem 4.3 (Soundness of SLX) Let P be a noncontradictory extended
logic program, L an arbitrary literal from P. If there s an SLX-T-refutation
for — L in P then L € WFM(P).

Proof: If L is an objective literal, then the result follows immediately from lemma
4.2, and the monotonicity of I'T'.

Let L = not A. If there is a SLX-T-refutation for « not A with rank ¢ then,
by definition of SLX-T-refutation, all SLX-TU-derivations for «— A are failures of
rank < i. By point 2 of lemma 4.2, A & I',1;.

Let M be the least fixpoint of I'T'y. Given that I'Ty is monotonic, I; C M,
i.e. for any objective literal A, A € I; = A € M. By antimonotonicity of Ty,
AeTlsM = A €Tl Thus, since A & T';I;, A & T'sM i.e.. by definition of the
WFM, not A € WFM(P).

Given the soundness of WFSX wrt the answer-sets semantics (theorem
2.2) and the soundness of SLX wrt WFSX, it follows easily that SLX can be
used as a sound derivation procedure for the answer-sets semantics.

Corollary 4.1 (Soundness wrt answer-sets) Let P be an extended logic
program with at least one answer-set, and L an arbitrary objective literal
from P. If there s an SLX-T-refutation for < L wn P then L belongs to all
answer-sets of P. If there is an SLX-T-refutation for < not L in P then
there 1s no answer-set of P with L.

Now we prove theoretical completeness of SLX. To do so we begin by
presenting a lemma that, like lemma 4.1 (and with a similar proof), relates

sequences with the I' operator. Then we prove completeness for objective
literals by transfinite induction on the ranks for a particular class of selection
rules. Finally we lift this restriction, and prove completeness also for default
literals.

Lemma 4.4 Let I be an interpretation, and L an objective literal. If L &
['sI (resp. L & T'I) then each possible sequence of goals starting with «—
L and constructed as per definition 3.2 (resp. definition 3.1), except that
selected default literals not Ly such that Ly € I are immediately removed
from goals, s either: wnfinite; ends with a goal where the selected literal 1s
objective; ends with a goal where the selected literal 1s not A and A € I.

Lemma 4.5 Let P be an extended logic program, L an objective literal, and
{I,} be the sequence constructed for the WFM of P. Then, there exists a
selection rule R such that:
1. +f L € I; then there 1s a SLX-T-refutation for «— L wn P with rank < .
2. 4f L @ U'gl; then all SLX-TU-derivations for — L in P are failures
with rank <.

Proof: Let R be a selection rule that begins by selecting all objective literals, and
then default ones subject to that it selects a not L before a not L' if there is a j in
the sequence of the {I,} such that L ¢ I';I; and L' € T, I;.

By transfinite induction on i:

¢ is a limit ordinal 6: The case where 6 = 0 is trivial. For point 1 and é # 0, the
proof is similar to the one presented in lemma 4.2 when 2 = 6.
For point 2 and 6 # 0, assume that L ¢ I';Is. By lemma 4.4, making the [in
that lemma equal to Is, each SLX-TU-derivation for « L is either: infinite,
and in this case a failure of rank 0; ends with a goal where the selected literal
is objective, i.e. a failure of rank 0; ends with a goal where the selected literal
is not A and A € Is. In this case, and given that point 1 is already proven for
¢ = 6, there is a SLX-T-refutation for «— A with rank < a such that a < 6.
Thus, and according to the definition of ranks, the rank of this derivation is
< 6.

Note that, by cousidering the special selection rule R in the sequences men-
tioned in lemma 4.4, these become indeed equal to derivations, where the
not Ly, such that Lj € Is are never selected.

Induction step: Assume points 1 and 2 of the lemma hold. We begin by proving
that point 1 also holds for 7 4 1.

Assume that L € TT I;. By lemma 4.1, there exists a sequence ending with
the empty goal, constructed as per definition 3.1, except that selected default
literals not Ly such that Ly & I'sl; are immediately removed from goals. By
point 2, for any Ly, all SLX-TU-derivations for « L; are failures with rank
< 7. Therefore the sequence is a refutation. Moreover its rank is < i and
thus also < 2. This proves point 1.

Now we prove that point 2 also holds for ¢ + 1. Assume that L & T'sl;41.
By lemma 4.4, considering the I in that lemma equal to I;y;, each SLX-TU-
derivation for «— L is either: infinite, and in this case a failure of rank 0;

ends with a goal where the selected literal is objective, i.e. a failure of rank
0; ends with a goal where the selected literal is not A and A € I;1,. In this
case, and given that point 1 is already proven, there is a SLX-T-refutation
for «— A with rank < 7 + 1. Thus, and according to the definition of ranks,
the rank of this derivation is < ¢+ 2, i.e. <74 1.

The argument for saying that the sequences of lemma 4.4 are derivation is
similar to the one used above for limit ordinals.

Note that, in the proof of point 1 above, we never use the special selection
rule R. Thus, for SLX-T-derivations an arbitrary selection rule can be used.

Moreover, in point 2, the only usage of R is to guarantee that the rank
of all SLX-TU-failures is indeed < z. This is needed for proving the lemma
by induction. However, it is clear that if by using R all SLX-TU-derivations
are failures, although with a possibly greater rank, the same happens with
an arbitrary selection rule”. This is why there is no need to consider the
special selection rule in the theorem below.

Theorem 4.6 (Theoretical completeness of SLX) Let P be a noncon-
tradictory extended program, and L an arbitrary literal from P. If L €
WFEM(P) then there exists a SLX-T-refutation for «— L in P.

Proof: If L is an objective literal the proof follows from lemma 4.5.

Let L = not A. By definition of WFM, there exists an ordinal A such that I is
the least fixpoint of I'T'y. Thus, again by definition of WFM, A ¢ ' I, and by point
2 of lemma 4.5 all SLX-TU-derivations for < A in P are failures. Consequently,
the SLX-T-derivation consisting of the single goal «— not A is a refutation.

This theorem requires one to know “a priori” whether the program is
contradictory. However this is not problematic since SLX can detect contra-
dictions:

Theorem 4.7 (Contradictory programs) If P is contradictory, there ex-
ists a L € 'H for which there are SLX-T-refutations for both — L and «— —L.

5 Discussion

Although sound and complete, the method described in the previous section
is not effective (even for finite ground programs). In fact, and because it
furnishes no mechanism for detecting loops, termination is not guaranteed.
To ensure the latter (at least) for finite ground programs, we’ve studied in
[2] rules that prune the AND-trees search space, and eliminate both cyclic
positive recursion and cyclic recursion through negation by default.

Now, for SLX to detect both kinds of cyclic recursions we need to use
two types of ancestors: local ancestors are assigned to all literals appearing

?Literals involved in infinite recursion through negation do not give rise to SLX-TU-
failures.

in derivations, and are used for detecting cyclic positive recursion; g¢lobal
ancestors are assigned to whole derivations, and are used to detect cyclic
negative recursion. We’ve shown that two of the pruning rules there are
necessary and sufficient to guarantee termination for all finite (and ground)
extended logic programs. More sound pruning rules exist and can be used
by a particular implementation to improve efficiency, thereby reducing the
size and number of derivations searched. Due to its SLDNF-resemblance, it
has been rather easy to implement a pre-processor that compiles'? WFSX
programs into Prolog.

A straightforward generalization method for nonground programs faces
two problems: first, as shown in [3], the loop detection methods do not guar-
antee termination in the nonground case, even for term-bounded programs;
second, the procedure flounders on nonground default literals. Being cumu-
lative, WFSX is amenable to the use of tabulation methods to guarantee
termination for nonground term-bounded programs. With the introduction
of constructive negation techniques in SLX we hope to abate the floundering
problems.

Another item of discussion is whether there is some program transfor-
mation, from extended programs into normal programs, such that available
top-down procedures for WFS could be then applied to obtain an equivalent
semantics to that of WFSX (where if the program is contradictory this must
be detected). In fact there is one such transformation (lack of space prevents
us to present it here). However, the resulting programs has a specific form,
which makes any general WFS procedure less than optimal because such
specificity is not exploited. In contradistinction, our SLX procedure takes
into account the WFSX particulars to achieve better performance, namely
certain steps (already mentioned) which are required in one of the two types
of derivation are not in the other, and vice-versa.

Additionally, in our paper [2] we contrast our approach to other WFS top-
down procedures, in the case of normal programs (where no transformation
is needed), and find it compares favourably.

Acknowledgements

We thank Esprit BR project Compulog 2 (no. 6810), and JNICT - Portugal for
their support.

References

[1] J. J. Alferes. Semantics of Logic Programs with Explicit Negation. PhD thesis,
Universidade Nova de Lisboa, 1993.
[2] J. . Alferes, C. V. Damésio, and L. M. Pereira. Top-down query evaluation for

well-founded semantics with explicit negation. In ECAI’94. Morgan Kaufmann,
1994.

19T his implementation is available on request.

3]
[4]
[5]

K. Apt, R. Bol, and J. Klop. On the safe termination of Prolog programs. In
Proc. ICLP’89. MIT Press, 1989.

R. Bol and L. Degerstedt. Tabulated resolution for well founded semantics. In
ILPS°93. MIT Press, 1993.

W. Chen and D. S. Warren. A goal-oriented approach to computing well—

founded semantics. In IJCSLP’92. MIT Press, 1992.

W. Chen and D. S. Warren. Query evaluation under the well founded semantics.

In PODS’93, 1993.

J. Dix. Classifying semantics of logic programs. In 1st LP & NMR. MIT Press,
1991.

J. Dix. A framework for representing and characterizing semantics of logic
programs. In 3rd KR. Morgan Kaufmann, 1992.

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. J. of the ACM, 38(3), 1991.

M. Gelfond and V. Lifschitz. Logic programs with classical negation. In
ICLP’90. MIT Press, 1990.

K. Kunen. Negation in logic programming. Journal of LP, 4, 1987.

J. Lloyd. Foundations of Logic Programming. Springer—Verlag, 1987.

L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs
with explicit negation. In ECAI’'92. Morgan Kaufmann, 1992.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. A derivation procedure for
extended stable models. In IJCAL Morgan Kaufmann, 1991.

H. Przymusinska, T. C. Przymusinski, and H. Seki. Soundness and complete-
ness of partial deductions for well-founded semantics. In Int. Conf. on Auto-
mated Reasoning. LNAI 624, 1992.

T. Przymusinski. Every logic program has a natural stratification and an
iterated fixed point model. In 8th Symp. on Principles of Database Systems.
ACM SIGACT-SIGMOD, 1989.

T. Przymusinski and D.S. Warren. Well-founded semantics: Theory and im-
plementation. Draft, 1992.

K. A. Ross. A procedural semantics for well-founded negation in logic pro-
grams. Journal of LP, 13, 1992.

F. Teusink. A proof procedure for extended logic programs. In ILPS’93. MIT
Press, 1993.

A. van Gelder. The alternating fixpoint of logic programs with negation. In
Symp. on Principles of Database Systems. ACM SIGACT-SIGMOD, 1989.

G. Wagner. Logic programming with strong negation and innexact predicates.

J. of Logic and Computation, 1(6), 1991.

G. Wagner. Neutralization and preeemption in extended logic programs. Tech-
nical report, Freien Universitat Berlin, 1993.

