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Resumo 

O nicho das células hematopoiéticas estaminais (CHE) na medula óssea (MO) é um microambiente 

protetor de difícil acesso, tornando-se difícil de modular no contexto de transplante de CHE e doenças 

hematopoiéticas. Nesta tese, desenvolvemos novas estratégias para ultrapassar estes obstáculos, 

utilizando uma combinação de ferramentas de nanomedicina com células, utilizadas como veículo. No 

contexto da leucemia, acredita-se que as células resistentes às terapias convencionais residam em nichos 

protetores. Aqui, descrevemos nanopartículas (NP) poliméricas induzíveis por luz que contêm ácido 

retinóico (RA). Estas NPs têm a capacidade de se acumular no citoplasma das células leucêmicas (CL) 

durante vários dias enquanto mantêm a capacidade de libertar grandes quantidade de RA, poucos 

minutos após exposição à luz azul / Ultravioleta. Quando comparadas com NPs não ativadas pela 

exposição à luz, RA+NPs reduzem mais eficientemente a clonogenicidade de CL da MO de pacientes 

com Leucemia mieloide aguda (LMA) e induzem a diferenciação de CL com sensibilidade ao RA 

reduzida. Adicionalmente, nós demostramos in vivo que as CL transfectadas com RA+NPs 

fotossensíveis podem enxertar a MO na proximidade de outras CL, induzir a diferenciação após 

exposição à luz azul e libertar fatores parácrinos que modulam as células na proximidade das células 

utilizadas como veículo. Esta capacidade de modular remotamente o nicho leucémico foi testada num 

modelo animal de LMA com sucesso. As RA+NPs induziram a diferenciação de LMA na linhagem 

monocítica / macrofágica no modelo animal em murganhos de LMA contendo o oncogene MLL-AF9. 

Além disso, demostramos in vitro que as RA+NPs estimulam a ativação de macrófagos M1, com 

capacidades anti-tumorais. Esta indução de diferenciação em macrófagos in vivo parece ter efeito anti- 

leucêmico “sistêmico” dentro do nicho leucêmico da BM, pois observamos uma redução significativa 

de CL na MO de animais tratados com RA+NPs quando comparados com animais tratados com NPs 

vazias (RA-NPs). Por último, foram feitos estudos prospetivos tendo como objectivo o uso de CHEs 

saudáveis como transportadoras de NP. Os nossos resultados mostraram que, apesar de serem um tipo 

celular mais sensível, as células UCB CD34+ podem ser carregadas com RA+NPs e, após a libertação 

de RA induzida pela luz, observamos um aumento de expressão de CD38. No contexto de utilização 

deste tipo de ferramentas na modulação do enxerto de CHE no contexto de transplante medular,  fomos 

capazes de produzir HOXB4 funcional, um fator de transcrição fundamental para o normal 

funcionamento e expansão de CHE,  através da indução dum estado de quiescência e paragens do ciclo 

celular em G0. Contudo a funcionalização de NP com este tipo de molécula constitui um desafio e 

poderá ser tema de trabalho futuro. 

 

Palavras-chave: Nanopartículas, Administração direcionada de fármacos; Activação por luz; 

Leucemia Mieloide Aguda; células transportadoras 
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Abstract 

 

The bone-marrow haematopoietic stem cell niche is a protective hard to reach microenvironment 

that is difficult to modulate in the context of HSC transplant and malignant haematopoietic disease. In 

this thesis we developed new strategies to tackle this by the use of a combination of nanomedicine tools 

and cell-mediated delivery systems. In the context of leukaemia, cells that are resistant to conventional 

therapies are thought to reside in protective niches. Here, we describe light-inducible polymeric retinoic 

acid (RA)-containing nanoparticles (NPs) with the capacity to accumulate in the cytoplasm of leukaemia 

cells for several days and release their RA payloads within a few minutes upon exposure to blue/UV 

light. Compared to NPs that are not activated by light exposure, these NPs more efficiently reduce the 

clonogenicity of bone marrow cancer cells from patients with AML and induce the differentiation of 

RA-low sensitive leukaemia cells. Importantly, we show that leukaemia cells transfected with light-

inducible NPs containing RA can engraft into bone marrow in vivo in the proximity of other leukaemic 

cells, differentiate upon exposure to blue light and release paracrine factors that modulate nearby cells. 

This capacity of remotely modulating the leukaemic niche has been tested in an AML disease animal 

model with success. RA+NPs induced AML differentiation towards monocytic/macrophage lineage in 

the MLL-AF9 mouse model of AML. Also, we have shown in vitro that RA+NPs stimulate antitumoral 

M1 macrophage activation. This macrophage induced differentiation in vivo seems to have “systemic” 

anti-leukemic effect within the BM leukemic niche, as we observed a significant reduction of leukemic 

cells in the BM of animals treated with RA+NPs when compared with animals treated with empty NPs 

(RA-NPs). Finally, prospective studies on the use of healthy HSCs as carriers have shown that despite 

having a more sensitive behaviour UCB CD34+cells can be loaded with RA+NP and after light-activated 

release of RA, induce CD38 expression and differentiate. Towards the use of this type of tools in the 

context of HSC transplant engraftment modulation we were able to produce functional HOXB4, a 

pivotal transcription factor for HSC potency, that was able to induce G0 quiescence, but NP-

functionalization with this molecule remains a challenge and is the subject of future work. 

 

Keywords: Nanoparticles; Targeted drug delivery; Light activation; Acute Myeloid Leukaemia; 

Carrier cells 
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• EPR - enhanced permeability and retention 

• ERα - oestrogen receptor-α 

• EVI-1 - ecotropic viral integration site 1 

• FACs - Fluorescence activated cell sorting 

• FBS - fetal bovine serum 

• Fbxw7 - F-box and WD repeat domain containing 7, E3 ubiquitin protein ligase 

• FDA - US Food and Drug Administration 

• FFPE - formalin-fixed paraffin embedded tissues 

• FGF1 - fibroblast growth factor 1  

• FGF2 - fibroblast growth factor 2 

• FGFR - FGF receptor 

• FITC - Fluorescein isothiocyanate 

• FLT3 - FMS-related tyrosine kinase 3 

• FLT3-ID - FMS-like tyrosine kinase 3/internal tandem duplication 

• FRET, fluorescence energy transfer 

• FR-β - folate receptor-β 

• FSC/SSC - Forward-scattered light / Side-scattered light 

• G-CSF - granulocyte colony-stimulating factor 

• GFP - green fluorescent protein  

• GMPs - granulocyte-macrophage progenitors 

• GVHD - Graft-versus-host disease 

• H2O - water 

• HA – hydroxyapatite 

• HCT-CI - Haematopoietic Cell Transplantation Co-morbidity Index 

• HEPES - hydroxyethyl piperazineethanesulfonic acid 

• HGF - hepatocyte growth factor 

• HLA - Human leukocyte antigen 

• HSCs - Haematopoietic stem cells 

• HSCT - haematopoietic stem cell transplantations 

• HUVECs – human vein umbilical endothelial cells 

• ICP-MS - inductively coupled plasma mass spectrometry 

• IDH - isocitrate dehydrogenase 
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• IDH1 - isocitrate dehydrogenase 1 

• IFN-γ - interferon 

• IGF1 - insulin-like growth factor 1 

• IGF1R - IGF1 receptor 

• IGF2 - insulin-like growth factor 2 

• IL-1α - interleukin-1α 

• IL-3 - interleukin 3 

• IL-6 - interleukin-6 

• IMDM - Iscove's Modified Dulbecco's Medium 

• ISH - in situ hybridization 

• ITD - internal tandem duplication 

• IT-HSC - intermediate-term haematopoietic stem cells 

• JAK2 - Janus kinase 2 

• KCl - Potassium chlorate 

• Kcps - kilo counts per second 

• KSP - kinesin spindle protein (also known as KIF11) 

• LDLR - low-density lipoprotein receptor 

• LepR- leptin receptor 

• lncRNA - long non-coding RNA 

• LNP - lipid NP 

• LSCs - leukaemia Stem Cells 

• LSK - lineage−SCA1+KIT+ 

• LT - long-term 

• LTC-IC - long-term culture-initiating cell 

• LT-HSC - long-term haematopoietic stem cells 

• M.F.I - mean fluorescence intensity 

• MAFIA - macrophage-Fas-induced apoptosis transgenic  

• mCRPC - metastatic castration resistant prostate cancer 

• MDS - myelodysplastic syndrome  

• MEPs - megakaryocyte/erythroid progenitors 

• MIP-1α - macrophage inflammatory protein-1α 

• miR - microRNA 

• MKL1 - megakaryoblastic leukaemia (translocation) 1 

• MKs - megakaryocytes  

• MLL - myeloid/lymphoid or mixed-lineage leukaemia (also known as KMT2A) 

• MLL-AF9 YFP cells 

• MLLT3 - MLL translocated to 3 

• MNPs - magnetic nanoparticles 

• MPB - mobilized peripheral blood 

• MPL - myeloproliferative leukaemia protein 

• MPN - myeloproliferative neoplasm phenotype 

• MPS - mononuclear phagocyte system 

• MPS - myeloproliferative syndrome 

• MRD - minimal residual disease 

• MRI - magnetic resonance imaging 

• MS-5 - murine MS-5 stromal cell line 

• MSC - mesenchymal stem cell 

• MSN - mesoporous silica NP 

• mTOR - mammalian target of rapamycin 

• MUC1 - membrane bound mucin 1 
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• MYH11 - myosin heavy chain 11 smooth muscle 

• NA- not applicable 

• nab - nanoparticle albumin bound 

• NaCl - Sodium chloride 

• NC – nanocrystal 

• NIR - near infrared regions 

• NK - normal karyotype 

• NMR - Nuclear magnetic resonance 

• NP – nanoparticles 

• NPM1 - nucleophosmin 

• NPY - neuropeptide Y  

• NSCLC - non small cell lung cancer 

• NSCs - neural stem cells 

• NSG - Nod-Scid-gamma 

• NUP214 - nucleoporin 214kDa 

• OBC - osteoblastic lineage cells 

• OPN - osteopontin 

• P - pellets 

• PB - peripheral blood 

• PBS - Phosphate-buffered saline 

• PcG - Polycomb group family 

• PCL - photocleavable linker 

• PCS - photon correlation spectroscopy 

• PDGF- β - platelet-derived growth factor-β  

• PDMS - poly(dimethylsiloxane) 

• PdPc(OBu)8 - 1,4,8,11,15,18,22,25-octabutoxyphthalocyaninato-palladium-(II) 

• PEComa - perivascular epithelioid cell tumours 

• PEG - poly(ethylene glycol) 

• PEI - poly(ethyleneimine) 

• Pen-Strep - Penicillin Streptomycin 

• P-gp - P-glycoprotein 

• pI - isoelectric point 

• PLGA - poly(lactic acid-co-glycolic acid) 

• PLK1 - polo like kinase 1 

• PMF - primary myelofibrosis  

• PML - promyelocytic leukaemia 

• PNIPAM - poly(N-isopropylacrylamide) 

• polyArg - peptide sequence with nine arginines; 

• Prx-1 - paired related homeobox-1  

• PSMA - prostate specific membrane antigen 

• PTC - Pseudotumour cerebri 

• PTK7 - protein tyrosine kinase 7 

• PTX - paclitaxel 

• QD - quantum dot 

• q-RT-PCR – quantative Reverse transcription polymerase chain reaction 

• RA - retinoic acid 

• RAREs - retinoic acid response elements 

• RARs - retinoic acid receptors 

• RARα or RARA - retinoic receptor α 

• Rarγ - retinoic acid receptor γ  
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• Rb - retinoblastoma  

• RBC - red blood cells 

• RBM15 - RNA-binding motif protein 15 

• RES - reticulo-endothelial system 

• RNAi - RNA interference 

• ROBO4 - roundabout guidance receptor 4 

• ROS - reactive oxygen species  

• RPMI-1640 - Roswell Park Memorial Institute medium-1640 

• RPN1 - ribophorin I 

• RUNX1 - Runt-related transcription factor 1 

• RUNX1T1 - RUNX1 translocated to 1 

• RXR - retinoid X receptor 

• s.e.m. - standard error of mean 

• SBDS - Schwachman-Bodian-Diamond syndrome  

• SCA1 - spinocerebellar ataxia type 1 protein 

• SCF - stem-cell factor 

• SDS-PAGE - sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

• SERS - surface-enhanced Raman scattering 

• Shh - Sonic hedgeho 

• shRNA - short hairpin RNA 

• siRNA - small interfering RNA 

• SMA - smooth muscle actin  

• SMANCS - poly(styrene co maleic acid) conjugated neocarzinostatin 

• SN - supernatants 

• SNS - sympathetic nervous system  

• SP - side population 

• SR-1 - StemRegenin1 

• SSC - skeletal stem cell 

• ssDNA - single-stranded DNA 

• STR-HSCs - short-term repopulating haematopoietic stem cells 

• TET2 - tet methylcyto¬sine dioxygenase 2 

• TfR - transferrin receptor 

• TFs - transcription factors 

• TGFβ1 -  transforming growth factor β1  

• THPO - thrombopoietin 

• TIE2 - tyrosine kinase with Ig and EGF homology domains 2 

• TLR - Toll-like receptor 

• TNC - total nucleated cells 

• TNF - tumour necrosis factor  

• TNF- β - transforming growth factor-β  

• TNFα- Tumour necrosis factor alpha 

• TPO - thrombopoietin 

• TRITC – Tetramethylrhodamine 

• TRM - treatment related mortality 

• TSP1 - thrombospondin-1 

• UCB - umbilical cord blood 

• UCBT -  umbilical cord blood transplants 

• USPIO - ultra-small paramagnetic iron oxide 

• UV - Ultraviolet light 

• VE-cadherin - vascular endothelial-cadherin 
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• VEGF-A - vascular endothelial growth factor A 

• VEGFR2 - vascular endothelial growth factor receptor-2 

• WBC - white blood cells 

• WHO - Word Health Organization 

• Wnt - wingless-type 

• WT1 - Wilms tumour 1 

• XIAP - X-linked inhibitor of apoptosis protein 

• β-ER - β-estradiol 
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Research aim and thesis outline 

Nanomedicine has gained enormous focus on the last decade with nanoplatforms presenting 

themselves as an attractive strategy to improve old and open new venues of cancer therapy. However, 

most of these advancements have been made only in solid tumours and not in leukaemia and other 

“liquid tumours”. Despite all advances, approximately 25% of APL patients receiving RA will develop 

serious complications, such as “differentiation syndrome”1. Hence, there is a need for more effective 

formulations to deliver RA into leukaemia cells while preventing RA side effects. In addition, leukaemia 

cells resistant to conventional therapies reside in microenvironmental niches in the bone marrow that 

are difficult to access by therapeutic interventions2. New strategies are required to address these 

problems. With this work, we explore the potential of using stem cells as carriers for targeted delivery 

of photo-triggerable NPs not only to modulate the diseased HSC BM niche in AML but also healthy 

HSC BM niches. 

 

This PhD thesis is divided in five chapters: Chapter 1 provides a general overview of the present 

work, providing information about the problem, motivations and contribution to the state of art. Chapter 

2 reviews the state of the art on the bone marrow microenvironment during healthy and malignant 

haematopoiesis along with a description on the latest advances in nanomedicine and targeted drug 

delivery in leukaemia. In Chapter 3 and 4 there is a description of all the results obtained during the 

development of a novel photo-triggerable nanoformulation, the pivotal element in our controlled drug 

delivery system, in which cells are used as carriers of photo-triggerable RA+NPs, allowing precise 

control of timing, duration and magnitude targeted drug delivery system. In Chapter 3, initial work on 

NP formulation and in vitro testing was developed by Dr.Carlos Boto, which I followed and continued 

with in vitro and in vivo experiments. In this chapter, we were able to demonstrate that RA+NPs can 

reduce the clonogenicity of bone marrow tumour cells from patients with acute myeloid leukaemia bone 

marrow and induce the differentiation of RA-low sensitive leukaemia cells expressing the chimeric 

promyelocytic leukaemia zinc finger/RARα fusion protein. RA released from light-activated NPs was 

superior at inducing leukaemia cell differentiation compared to soluble RA and RA released from NPs 

by passive diffusion. Further, we demonstrate the importance of temporal activation of the 

nanoformulation during the intracellular trafficking to maximize RA effect and show in vivo that 

leukemic cells loaded with NPs kept their natural tropism to leukaemic BM niches and that NPs can be 

light-activated to release RA, thereby allowing greater spatio-temporal control of drug delivery. In 

Chapter 4, we continue to explore the applicability of our drug delivery system. In this chapter, we 

show that RA+NPs have a paracrine effect in vivo within the BM leukaemic niche upon NP activation. 

We were able to decrease total disease burden in RA+NPs mice, which could be explained by the 

differentiation of RA+NPs carriers cells in macrophages, confirmed in vitro and in vivo, along with the 

observed activation in pro-inflammatory and anti-tumoral M1 macrophages observed in vitro. We also 

tested NP loading and activation in human CD34+ and the use of a nanoformulation for the transport of 

a transcription factor involved in the HSC self-renewal and expansion. 

Finally, in Chapter 5 we summarize the main findings, general conclusions and future directions opened 

by this work. 

In Chapter 6 we list all the references used in this work. 
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2.1. Haematopoiesis 

Every day, thousands of blood cells and immune cells are produced in our body by a continuous 

hierarchical process called haematopoiesis. On top of this hierarchy are haematopoietic stem cells 

(HSCs). This immature cell type can be functionally defined by the capacity for self-renewal and 

differentiation into multipotent progenitors. These progenitors will in turn become progressively more 

restricted to committed precursors until they give origin to the different types of mature blood cells 

(Figure 2.1).  

The origin of the concept of an immature cell common to all blood lineages goes back to the early 

20th century 3,4, but it was only in the 1960s, with the work of James Till and Ernest McCulloch 5, that 

this concept was first demonstrated. They were able to rescue lethally irradiated mice with a transplant 

of a donor bone marrow (BM), which reconstituted the recipient BM. Later, in 1978, Schofield6 

proposed that HSCs reside in a specialized tissue microenvironment “niche”, where HSCs could be 

protected and regulated. Since then, extensive studies have been made to identify the cellular 

components of this niche, as well as the autocrine, endocrine and paracrine signals and cell-to-cell 

interactions that are essential for the correct regulation of haematopoiesis. 

Most studies on this subject have been carried out using mouse models, which are considered 

comparable to humans in terms of haematopoiesis; despite presenting some differences, mostly in terms 

of location7. After birth, most HSCs are almost exclusively found in the BM. In response to acute stress, 

however, haematopoiesis can take place in extramedullary tissues. Similarly, during development, HSCs 

reside in the foetal liver and spleen 8. 

Due to their high heterogeneity, the classification and isolation of HSC subpopulations has been a 

challenge. Although it is still not clear whether HSCs can be naturally divided into subpopulations or if 

they represent a continuum of states of the same population, the most widely accepted model for 

haematopoiesis categorizes HSCs and progenitor cells based on their self-renewal capacities9,10,life 

span11-13 and differentiation capabilities14.  

Based on transplantation experiments, HSCs can be divided in 3 subpopulations: long-term (LT-

HSC), intermediate-term (IT-HSC), and short-term repopulating HSCs (ST-HSC)15. This division is 

based on distinct capabilities of HSCs to engraft, repopulate, and maintain multilineage haematopoiesis 

in irradiated recipients16. LT-HSCs self-renewal capacity assures the maintenance of a pool of clonal 

haematopoietic progenitor cells and haematopoiesis sustainability throughout an individual’s life-span. 

They are less frequent, mostly found in quiescent state and can be isolated by the CD150 marker 17,18. 

The IT-LSC represents an intermediate population with six to eight months of reconstitution potential 

before their clones become exhausted and can be isolated from both LT and ST-HSC fractions using  

the integrin α2 (CD49b) marker19. By contrast, ST-HSCs have a limited self-renewal capacity (up to 

two months) and are found mostly in the peripheral blood where they contribute to the pool of progenitor 

cells which will reconstitute the myeloid and lymphoid compartments. Common myeloid progenitors 

(CMP) are the source of megakaryocyte/erythroid progenitors (MEPs) and granulocyte-macrophage 

progenitors (GMPs). GMPs give rise to the committed precursors of mast cells, eosinophils, neutrophils, 

and macrophages, whereas common-lymphoid progenitors (CLPs) are the source of committed 

precursors of B and T lymphocytes13. The contribution of HSC to lymphoid and myeloid lineages is still 

not clear and seems to be biased by the diversity of the BM niches they occupy 20-22. This supports the 
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hypothesis that there is not a unique BM niche, but rather a variety of “microniches”, that at the same 

time create and are created by chemotactic gradients and different cell populations. Each of these 

microniches induces different responses in HSCs such as homing, mobilization, quiescence, self-

renewal, or lineage commitment. 

 

Figure 2.1 - Haematopoiesis. The long-term reconstitution potential of the pluripotent long-term haematopoietic 

stem cells (LT-HSCs), can further differentiate toward the multipotent short-term (ST)-HSCs in the BM. 

Subsequent differentiation gives rise to either the common-lymphoid progenitors (CLPs), able to generate the 

complete lymphoid lineage (natural killer [NK] cells as well as B and T lymphocytes) or the common-myeloid 

progenitors (CMPs), which are able to differentiate into the myeloid lineage. Following these committed 

progenitors, both megakaryocyte/erythroid progenitors (MEPs) and granulocyte-macrophage progenitors (GMPs) 

are able to form all mature myeloid lineage cells in the BM. Figure and legend adapted from 23 . 

2.2. Adult BM niche 

In mice, haematopoiesis is supported by all bones, but in humans it is only supported by axial 

skeleton such as the skull, sternum, ribs, spine, sacrum, and pelvis24,25. HSCs, along with other 

haematopoietic cells, blood vessels and neurons form the soft tissue of the bone, which is distributed by 
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the interconnecting bone rods and trabeculae, which in turn is covered by a cellular layer called 

endosteum. Recent extensive studies have uncovered that many cell types in the BM participate in niche 

activities to support HSC function. Although more than one HSC niche has been defined in the bone 

marrow, all have the commonality to maintain the unique features of HSCs over time. The bone marrow 

is a cellularly diverse and dynamic structure that includes HSCs, stromal cells, vascular cells, 

osteolineage cells, neuronal cells, and the extracellular matrix in which these cells reside. HSC niches 

are formed from these elements and function to regulate haematopoiesis and maintain HSC quiescence 

(Figure 2.2) either by direct contact or by the production of niche factors that regulate HSCs and other 

cells populations of the niche (Table 2.1). 

 

 

Figure 2.2 - The adult bone marrow HSC niche. The vasculature has emerged as a key structure for the 

maintenance of HSCs in the bone marrow. Dormant HSCs are found around arterioles where factors such as CXC-

chemokine ligand 12 (CXCL12) and SCF secreted by perivascular, endothelial, Schwann, and sympathetic 

neuronal cells promote their maintenance. Less quiescent or activated HSCs are located near sinusoidal niches 

which are likely diverse in their influence for self-renewal, proliferation, and differentiation. Haematopoietic cells 

such as macrophages or megakaryocytes are examples of HSC-derived progeny that can feed back to the niche to 

influence HSC migration or proliferation. GFAP, glial fibrillary acidic protein; TGF-β1, transforming growth 

factor beta-1. Figure and legend adapted from 26. 
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Table 2.1 - Soluble Factors in the Bone Marrow Niche Affecting Mammalian HSCs.  

Factor Source Receptor 
Responding cell 

type or types 

Effect on niche or 

hematopoiesis 

Angiogenin 27  

Mesenchymal stromal 

cells and hematopoietic 

cells 

Secreted RNase that 

changes RNA processing 

in a cell-type-specific 

manner 

HSCs, LSK cells 

and myeloid 

progenitors 

Promotes quiescence in 

HSCs and the 

proliferation of myeloid 

progenitors 

Angiopoietin 1 
28 

HSCs, KIT+ cells and 

LEPR+ cells 
TIE2 Endothelial cells 

Promotes the 

regeneration of patent 

blood vessels after 

vascular injury 

Angiopoietin-

like protein 3 29  

Sinusoidal endothelial 

cells and liver cells 
Unknown HSCs 

Promotes the 

maintenance of HSCs 

and some types of 

restricted hematopoietic 

progenitor 

BMPs 30-32 

Osteoblasts, 

endothelial cells and 

megakaryocytes 

Complexes of BMP type 

I and type II receptors 
HSCs 

Canonical signaling does 

not affect HSC 

maintenance or 

haematopoiesis; BMP4 is 

required for normal niche 

function 

CXCL 4 33 Megakaryocytes Unknown HSCs 
Inhibits self-renewal and 

induces quiescence 

CXCL 12 34,35 

Osteoblasts, 

endothelial cells, CAR 

cells, MSCs, LepR+ 

perivascular cells 

CXCR4 

HSCs and 

lymphoid 

progenitors 

Positive regulator of self-

renewal, retention and 

function 

FGF1 36,37  Megakaryocytes FGFR1 
HSCs and 

megakaryocytes 

Promotes the 

regeneration of HSCs 

and megakaryocytes 

after myeloablation 

FGF2 38 
Bone marrow stromal 

cells 

Multiple FGFRs are 

present on HSCs 
HSCs 

Promotes the 

proliferation of HSCs 

and stromal cells after 

myeloablation 

G-CSF 39,40 

Monocytes and 

macrophages, bone 

marrow stromal cell 

populations 

G-CSF receptor 

Stromal cells and 

myeloid 

progenitors 

Mobilizes HSCs and 

increases myelopoiesis 

IL-6 41,42 
T cells and 

macrophages 
IL-6 receptor 

HSCs and 

restricted 

progenitors 

Promotes HSC self-

renewal and regulates the 

function of restricted 

progenitors 

IGF143,44 Liver and osteoblasts IGF1R 

HSCs, myeloid 

progenitors and 

pro-B cells 

Reduced plasma IGF1 

levels promote increased 

HSC self-renewal and 

increase the frequency of 

myeloid progenitors 

Leptin 45,46 Adipocytes LEPR 

LEPR+/CAR 

perivascular 

stromal cells 

Causes LEPR+ cells to 

form adipocytes at the 

expense of bone 
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FGFR - FGF receptor; IL-6, interleukin-6; LSK, lineage−SCA1+KIT+; ROBO4, roundabout guidance receptor 4; SCA1, 

spinocerebellar ataxia type 1 protein; TIE2, tyrosine kinase with Ig and EGF homology domains 2. CAR cell, 

CXCL12-abundant reticular cell; EMH, extramedullary haematopoiesis; ERα, oestrogen receptor-α; IGF1, insulin-like growth 

factor 1; IGF1R, IGF1 receptor; MPL, myeloproliferative leukaemia protein; SSC, skeletal stem cell. 

 

Endosteal niche 

The formation and regulation of bone matrix is mediated by the opposing actions of the osteoblasts 

and osteoclasts (cellular components of the endosteum), contributing to the structural foundations for 

the development of the soft tissue. Together, these osteolineage cells create the “endosteal niche”, the 

preferential site for homing of transplanted HSCs 69-72. Furthermore, HSCs isolated from this region tend 

to be more primitive, with higher proliferation rate and long term reconstitution potential73,74. After birth, 

the development of the haematopoietic systems is closely related with bone formation75,76. Osteolineage 

Notch ligands 
47,48 

Bone marrow stromal 

cells, endothelial cells 

and osteoblasts 

Notch receptors, 

particularly Notch 2 

HSCs, progenitors 

and endothelial 

cells 

Notch 2 promotes HSC 

regeneration after 

myeloablation 

Osteopontin 49 Osteoblasts Integrins and CD44 HSCs 
Negatively regulates 

HSC frequency 

Oestrogen 50 Ovary ERα 

HSCs as well as 

other 

hematopoietic 

cells 

Promotes HSC self-

renewal and EMH 

Pleiotrophin 51 

Endothelial cells and 

LEPR+ perivascular 

stromal cells 

Inhibits protein tyrosine 

phosphatase receptor-ζ 
HSCs 

Knockout mice have a 

reduced HSC frequency 

and show impaired 

recovery after irradiation 

SCF52,53 
Osteoblasts, 

endothelial cells, 

MSCs, nestin+ MSCs 

c-KIT receptor (CD117) HSCs 

Induces HSC 

maintenance and self 

renewal 

SLIT ligands 54-

56 

SLIT2 and SLIT3 are 

produced by 

perivascular stromal 

cells 

ROBO4 

HSCs and 

sinusoidal 

endothelial cells 

Has cell-autonomous and 

non-cell-autonomous 

effects on HSC 

engraftment and 

mobilization 

TGFβ 36,57 

Multiple cells 

including 

megakaryocytes; other 

cells such as Schwann 

cells regulate TGFβ 

activation 

Multiple type I and type 

II TGFβ receptors 

HSCs and other 

cell types 

Promotes HSC 

quiescence and self-

renewal 

Thrombopoietin
58-65 

Highest production in 

the liver and kidney, 

but the source of the 

thrombopoietin that 

acts on HSCs is not 

known 

MPL 
HSCs and 

megakaryocytes 

Required for the 

postnatal maintenance of 

HSCs, and for 

megakaryocyte and 

platelet production 

WNT ligands 66-

68 

Bone marrow stromal 

cells and lymphoid 

cells 

Frizzled receptors 

HSCs and 

lymphoid 

progenitors 

Canonical WNT 

signaling through β-

catenin and γ-catenin is 

dispensable for adult 

HSC maintenance and 

for hematopoiesis 
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cells are probably the most studied haematopoietic niche component, with osteoblasts being initially 

identified as key regulators of haematopoiesis by in vitro studies showing they can promote the 

expansion of haematopoietic progenitor cells in culture75-79.  In the beginning of this century, two 

independent studies have shown the first in vivo evidence that osteoblasts regulate the self-renewal and 

expansion of HSCs53,80. The increased osteoblast proliferation achieved either by using an osteolineage-

specific activator of parathyroid hormone (PTH), or conditional deletion of bone morphogenetic protein 

(BMP) receptor type IA was correlated with an increase of HSCs numbers. Osteoblasts are also 

contributing for the pool of cytokines and growth factors involved in the regulation of HSC homing, 

mobilization, and quiescence, such as: CXC-chemokine ligand 12 (CXCL12), which controls HSC 

homing, retention and repopulation81;  stem-cell factor (SCF), a key component in HSCs maintenance, 

although mainly secreted by perivascular cells, is also produced by osteoblasts52; osteopontin (OPN), a 

component of the glycoprotein matrix responsible for the retention, migration, proliferation and 

differentiation of HSCs at the endosteal surface49,82,83; granulocyte colony-stimulating factor (G-CSF), 

important in myelo-differentiation of HSCs75,84; annexin 2 (ANXA2), involved in the control of  HSCs 

homing and engraftment85;  angiopoietin 1 (ANG1) produced by osteoblast, induces HSC quiescence 

and adhesion by interaction with TIE286,87; or thrombopoietin (TPO), involved in the regulation of LT-

HSCs quiescence60.  

Despite these evidences, more recent studies have questioned the importance of osteolineage cells 

in haematopoiesis regulation, mainly in HSCs steady-state maintenance. For example, specific deletion 

of CXCL12, SCF or N-cadherin of osteolineage cells did not seem to influence the HSCs number in the 

BM34,52,88. Also, HSC expansion promoted by osteoblasts through parathyroid hormone (PTH) 

administration is due to increased Jagged-1 expression in osteoblasts and consequent activation of 

Notch-1 signalling pathway in HSCs89-91. However, inhibition or conditional deletion of receptors of 

canonical Notch-1 pathway in HSCs did not affect their maintenance in the BM92. Additionally, imaging 

studies have shown no association between phenotypic HSCs and osteoblasts93,94. Nevertheless, these 

observations are not necessarily contradictory but rather be an evidence of different regulation 

mechanism dependent on the differentiation state of osteolineage cells. Immature osteoblasts are more 

associated with the regulation of primitive HSCs, whereas mature osteoblasts and osteocytes are more 

connected to the regulation and mobilization of haematopoietic progenitor cells. For instances, in 

osteoblast-ablated mice, LT-HSCs show reduced long-term engraftment and self-renewal capacity as 

well as loss of quiescence95. On the other hand, it seems that osteopontin, mainly produced by mature 

osteoblasts and osteocytes, negatively regulates the HSC pool49. Also, a decrease in osteoblast number, 

similar to what happens during haematopoietic aging, promotes myeloid expansion at the expense of 

lymphoid and erythroid expansion and may predispose the BM to the development of acute myeloid 

leukaemia (AML)96.  

Perivascular niche 

The continuous production of blood cells is a metabolic demanding process that depends on a 

distribution system for gas exchange, nutrient supply, waste removal and to facilitate the trafficking of 

haematopoietic cells between the BM and the rest of the organism. This is why the niche is in close 

proximity to blood vessels which are extremely relevant in the maintenance and proliferation of HSCs17 

(Figure 2.2). The blood vessels entry point in the compact BM is made through the bone canal by 
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arteries that branch first into small arterioles and then to venous sinusoids near the endosteum surface. 

Venous sinusoids are composed of ECs, separated by basal lamina from discontinuous pericytes, which 

allow mobilization of mature blood and HSCs97. 

Despite of first experimental evidence that pointed the endosteal area as the main HSC-supporting 

niche69, further studies gave indication that endogenous HSCs were more closely related with 

sinusoids17, with the majority of quiescent HSCs occupying the perivascular niche98-100. Also, 

perivascular cells have a major contribution for the pool of niche factors101,102. Endothelial cells (EC) 

are one of the components of the perivascular niche and regulate HSC by the secretion of angiocrine 

factors such as CXCL12, vascular endothelial growth factor A (VEGF-A), fibroblast growth factor 2 

(FGF2), ANG1 and thrombospondin-1 (TSP1)103-105. EC isolated from the BM have shown to promote 

proliferation and differentiation of human HSC in vitro106 . Neutralization of vascular endothelial growth 

factor receptor-2 (VEGFR2) and vascular endothelial-cadherin (VE-cadherin) reduced the supportive 

function of ECs to LT-HSCs47. Although ECs have reduced expression of CXCL12 and SCF, the 

conditional deletion of these niche factors has shown a reduction in HSC number in the bone marrow52,88. 

Deletion or blockage of E-selectin, an adhesion molecule expressed only by bone marrow ECs, increases 

HSC quiescence and survival107. The activity of HSCs is also regulated by direct cell-to-cell contact 

through Notch signalling47. Besides ECs, the perivascular niche is also composed by stromal cells of 

mesenchymal origin. The best characterized are the CXCL12-abundant reticular (CAR) cells108. These 

cells are mainly found around sinusoids and create a homogeneous tangled network throughout the 

BM35. CAR cells express high levels of Cxcl12 and Scf genes, for example CAR cells express Cxcl12 

levels about 100-fold and 1000-fold higher than ECs and osteoblasts, respectively52. Most of CAR cells 

also express the receptor for leptin (LepR), a hormone secreted by adipocytes46,52,98. Indeed, conditional 

deletion of Cxcll12 from LepR-cre-marked cells promoted the mobilization of HSC from the BM to the 

peripheral blood and spleen but HSC numbers in the BM remained unaltered88.  On the other hand, 

conditional deletion of Scf on these cells, depleted HCSs in the BM, indicating that CXCL12 and SCF 

produced in LepR cells are critical for the mobilization and maintenance, respectively, of HSC in the 

BM52. Other markers have been identified to characterize the perivascular stromal cells, including the 

transcription factor Osx, paired related homeobox-1 (Prx-1)34,88 and neural/glial antigen 2-Cre-marked 

cells (NG2)109, expressed exclusively in cells marked with green fluorescent protein (GFP) under 

regulation of the Nestin promotor (Nes-GFP+). However, these markers are mostly overlapping with 

CAR LepR+ cells in respect to location and Cxcl12 and Scf expression levels93,101. 

More recently it has been proposed that there are two anatomically and functionally distinct 

perivascular niches, the peri-arteriole and peri-sinusoidal. This is supported by the evidence that LT-

HSCs seem to be more closely located to the arterioles rather than venous sinusoids93,97,98,110. Also, some 

heterogeneity can be observed in EC and stromal cells. EC expressing higher levels of CD31 and 

endomucin found in the end terminal arterioles also express higher levels of SCF when compared to EC 

associated with sinusoids97,110,111. Similarly, stromal cells expressing Nes-GFP can be divided in two 

populations regarding the GFP expression. Similarly, stromal cells expressing Nes-GFP can be divided 

in two populations regarding the GFP expression: Nes-GFPdim stromal cells which are closely associated 

with perisinusoidal cells and overlap with LepR+ and CAR cell; and Nes- GFPbright stromal cells found 

close to arterioles52. Furthermore, the lower permeability of arterioles promotes a more hypoxic 

microenvironment, protecting HSC from reactive oxygen species concentration (ROS), preventing their 



CHAPTER 2 - State of the Art 

20 

 

differentiation112. On the contrary, venous sinusoids are covered by fenestrated basal lamina making 

them more permeable and exposed to the blood stream, increasing ROS concentration, promoting HSC 

differentiation. 

 

SNS and glia 

The bone marrow is highly innervated by myelinated and non-myelinated nerve fibres and 

associated Schwann cells113, 114. Although most nerve fibres are found near the arterioles rather than 

sinusoids93,97 and have no direct contact with HSCs98, the sympathetic nervous system (SNS) has an 

important role in the regulation of haematopoiesis. SNS controls the circadian mobilization of HSC to 

the BM by catecholamine signalling, which are delivered to the BM niche through the blood circulation 

or by secretion from the nerve endings acting in a paracrine mode115. Catecholamines acts on the β3 

adrenaline receptor of Nes-GFP+, suppressing their niche function by regulation of CXCL12 

expression116. SNS is also related to HSC mobilization controlled by granulocyte colony-stimulating 

factor (G-CSF)113,117,118. Non-myelinating Schwann cells produce numerous niche factors and promote 

HSC quiescence by activation of transforming growth factor-β (TGF-β)57,119. 

 

Haematopoietic cell components of the niche  

Megakaryocyte 

More recent findings have identified HSC directly adjacent to megakaryocytes (MKs)33, which are 

found in close proximity to sinusoidal endothelium, with extensions of cytoplasmatic protrusions into 

the sinusoids to produce platelets120 . MK regulate haematopoiesis in steady-state haematopoiesis33, 121 

and under stress 36. Under homeostatic conditions MK regulate HSCs quiescence by the production of 

multiple cytokines (e.g., TPO, TGFβ, and CXCL4)119,121,122. Conditional ablation of MKs in vivo led to 

loss of quiescence in HSCs and consequently increased HSC frequency and proliferation36,123. This 

effect could be reverted by the administration of transforming growth factor β1 (TGFβ1, encoded by 

Tgfb1)36 or the chemokine C-X-C motif ligand 4 (CXCL4, also known as platelet factor 4, PF4)123. 

Accordingly, Cxcl4 and Tgfb1 knock-out mice have both shown increased HSC proliferation33,36. Under 

stress conditions, after BM radioablation, endogenous MK are recruited to the endosteum by 

thrombopoietin (TPO) signalling124. There, MKs promote HSCs engraftment and BM reconstitution by 

synthetizing MK-derived mesenchymal growth factors, such as fibroblast growth factor 1 (FGF1)36,37 

and platelet-derived growth factor-β (PDGF-β), which stimulates osteoblast expansion124. 

 

 

Macrophages 

Macrophages have been identified as an important BM niche player. They can be found near the 

endosteal osteoblasts and actively participate in bone mineralization125-127. Moreover, conditional 

deletion of macrophages by using macrophage-Fas-induced apoptosis transgenic (MAFIA) mice or 

administrating clodronate-loaded liposomes in wild-type mice led to HSC mobilization from the BM 

and reduction of endosteal osteoblasts. The same phenotype could be observed in G-CSF-induced HSC 

mobilization, where a reduction of macrophages and bone loss was detected40,128. 
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Macrophages, more specifically CD169+ macrophages, regulate HSC maintenance in the BM 

endosteal niche by promotion of CXCL12 expression in Nes-GFP+ stromal cells129 through secretion of 

oncostatin M130. The ligand for VCAM-1, integrin VLA-4 which is expressed by macrophages, also 

regulates HSC maintenance in the BM and spleen131-133. More specifically, in the spleen, silencing or 

conditional deletion of VCAM-1 in CD169+ macrophages promoted HSCs retention in the spleen134. It 

has also been proposed that macrophages mediate BM HSCs mobilization after phagocytosis of aged 

neutrophils135. A rare subset of macrophages, identified by expression of smooth muscle actin (SMA), 

were found close to HSC of the BM136. They promote HSC expansion after irradiation by 

cyclooxygenase 2 (COX2)-mediated expression of prostaglandin E2, associated with decreased ROS 

levels in HSCs128. Prostaglandin E2 increases CXCL12 expression in Nes-GFP+ stromal cells136 and 

CXCR4 expression on HSCs137. Macrophages also contribute to steady-state and stress-induced 

erythropoiesis. Reduction of BM erythroblasts is observed after specific depletion of CD169+ 

macrophages in mice. This depletion also led to myeloablation, decreased erythropoietic recovery 

followed by acute blood loss, myeloablation138. In contrast, in JAK2(V617F)-driven mouse model of 

polycythemia vera, characterized by elevated erythropoiesis, macrophage depletion normalized the 

erythroid compartment.139. 

Macrophages are also key regulators of the neuroprotective effect of neuropeptide Y, which 

regulates homeostasis in tissue expressing Y receptors140-142. Moreover, neuropeptide Y (NPY) deficient 

mice showed impaired HSC survival and BM regeneration, which could be rescued by pharmacological 

elevation of NPY143. 

 

Neutrophils 

Neutrophils are the most abundant subpopulation of leukocytes, are highly migratory cells and are 

sensitive to tissue damage or infection144. Neutrophil expansion in the BM is induced by G-CSF145 and 

may lead to mesenchymal stem cell (MSC) and osteoblast apoptosis and consequent reduction of several 

cytokines and receptors essential for HSC maintenance in the BM146. In vitro experiments have shown 

that neutrophils synthetize serine proteases, which are capable of cleaving CXCL12147 CXCR4148, 

VCAM-1149, c-Kit150 and SCF151. However, serine proteases might not be essential in vivo, as no 

alteration of G-CSF-induced mobilization was observed in vivo in mice without these proteases152. 

Furthermore, HSC mobilization is not directly proportional to neutrophil numbers in the BM40. Under 

homeostatic conditions, BM neutrophils seem to shadow HSC circulation regulated by the circadian 

rhythm. Aged neutrophils show higher tropism to the BM by low CD62L and high CXCR4 expression 

levels. Clearance of aged neutrophils is done by CD169+ macrophages which inhibit CXCL12 

production by Nes-GFP+ stromal cells, promoting HSC mobilization from the BM135. 

 

2.3. Haematological Malignancies 

Haematopoiesis balance can be deregulated in response to stress, like infection and wounding, by 

induction of HSC. These return to a quiescent state when the stress is over or the injury is healed153. 

However, disruption of homeostasis can lead to haematological malignancies, and ultimately to 
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leukaemia (Figure 2.3), which is sustained by leukaemia stem cells (LSC), which share many biological 

features with HSC154.  

Emerging evidence shows that alterations of the complex and dynamic signalling network regulated 

by cells of the BM niche are critical in the initiation, maintenance and outcome of myeloid and lymphoid 

disorders. These alterations can be driven by genetic mutations in stromal cells of the BM and/or 

promoted by malignant cells, which hijack BM niche supportive function, promoting a leukaemic niche 

at the expense of HSC155-162. Although most research has been done in leukaemic settings, these 

mechanisms can also be observed in multiple myeloma patients163. 

 

 

 

 

Figure 2.3 - Two models of the interaction of leukemic cells and their microenvironment. While 

leukemic cells can induce changes in HSC niche (a), abnormalities in bone marrow microenvironment have 

a potential to initiate hematological malignancies (b). It is of note that these two models are not mutually 

exclusive. They can form a self-reinforcing loop, contributing to the disease 

progression. KO knockout, OE overexpression. Figure and legend adapted from164. 

2.3.1. Initiation 

The first cue for a disease-initiation in the niche was given by the observation of donor-derived 

leukaemia in patients receiving allogeneic stem cell transplantations158. This concept gained support by 
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the experimental observation of myeloproliferative neoplasm phenotype (MPN) induced by genetic 

deletion of retinoblastoma (Rb) or retinoic acid receptor γ (RARγ) in mice. Furthermore, only 

transplantation of healthy HSCs to mutant mice and not transplantation of mutant HSC to wild-type 

mice, lead to MPN-like disease155,156. Development of MPN was also observed in mice with impaired 

Notch signalling in nonhaematopoietic cells165 and more recently in genetically altered Nes+ stromal 

cells160. 

Alterations at the endosteal niche, more specifically, mutations in osteoblastic lineage cells (OBC) 

have been implicated in the development of myelodysplasia (MDS) 162 and AML disease159. Inactivation 

of Dicer1 in OBC promotes aberrant gene expression and led to MDS in mice. For example, a 

downregulation of sbds, the gene mutated in Schwachman-Bodian-Diamond syndrome (SBDS) 162 was 

observed when Dicer1 was inactivated. In a subsequent study, sbds deletion in stromal cells promoted 

an inflammatory response which increased oxidative stress and DNA-damage response in HSC This 

effect was driven by the activation of Toll-like receptor (TLR) signalling in HSC, by stromal secretion 

of endogenous damage-associated molecular pattern (DAMP) molecules S100A8/9. Interestingly, AML 

development risk in MDS patients can be predicted by the expression levels of S100A8/9 166 

Deregulation of Notch pathway was also shown to promote MDS development which rapidly 

evolves to AML. A mutation in mice OBC led to overexpression of Jagged-1, a Notch ligand, followed 

by Notch signalling activation in HSC and β-catenin accumulation. This pathway triggered recurrent 

chromosomal aberrations and somatic mutations promoting clonal expansion91,159. Notably, stromal 

cells isolated from MDS/AML patients have also shown increased Jagged1-expression together with 

downregulation of key molecules in HSC regulation. MSC derived from MDS patients show decreased 

osteogenic differentiation and impaired support of healthy CD34+ in long-term culture-initiating cell 

assays. These observations where correlated with hypermethylation patterns in these MSC161. 

 

2.3.2. Progression and expansion 

The impaired haematopoietic function and decreased HSC numbers observed in patients with 

haematological malignancies suggests that HSCs are being expelled from their niche by LSC. This 

action takes possession of the niche for leukaemogenesis. Alongside with this concept, morphological 

and functional changes in the BM microenvironments were also reported in patients with different 

haematological malignancies, such as primary myelofibrosis (PMF), myelodysplastic syndrome (MDS), 

and different kinds of leukaemia157. Recent advances in murine mouse models of haematopoietic 

malignancies have helped to gain further insight in the mechanism of BM niche remodelling by 

myelodysplastic cells. More specifically, LSCs can remodel osteoblastic, neural, and endothelial BM 

microenvironments, by deregulated production of a variety of signals, including proinflammatory and 

angiogenic chemokines and cytokines, such as CXCL12, VEGF, tumour necrosis factor (TNF)-α, IL-1, 

IL-6, and IL-8166-168. 

 

Aberrant endosteal niche  

Besides all the HSC-intrinsic transformation steps that need to occur in AML there are extrinsic 

niche-specific factors that are fundamental for disease development. The characterization of the impact 
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that the disease has in the niche, and vice-versa, is very important. Clinical reports of osteopenia and 

osteoporosis in MDS and AML patients has been attributed to the observation of reduced numbers of 

osteoblasts in newly diagnosed AML patients. Decreased levels of cell cycle related genes and CXCL12 

was also observed in BM plasma of AML patients, but MSC isolated from the same patients had 

increased levels of Jagged-1 and CXCL12 that favour leukaemogenesis169,170. Furthermore, better 

prognosis after chemotherapy was correlated with an increase in osteoblast activity and bone mass171-

173. Accordingly, in AML and ALL mouse models deletion of OBC led to a reduction of bone mineral 

density accompanied by an increase in bone remodelling osteoclasts. This alteration of the endosteum 

niche seems to favour leukaemia progression and reduce HSC maintenance174-176. 

The role of osteoblast microenvironment in leukaemia was further elucidated by stimulated normal 

haematopoiesis, delayed disease engraftment, reduced tumour burden, and prolonged survival, after 

pharmacological induced maintenance of osteoblast number96. In a more recent study, the establishment 

of a human AML xenotransplant model in Nod-Scid-gamma (NSG) mice allowed to observe that 

patient-derived MSC can grow and differentiate effectively at the NSG-mice BM cavity, recapitulating 

the leukaemic-supportive function and LSC increased engraftment promoted by the formation of 

functional vascularized ossicles177. 

Similar to AML, in pediatric ALL patients, it was also observed a decrease in CXCL12 in the BM 

and peripheral blood plasma when compared with samples of healthy donors178. This observation was 

reinforced using osteoblastic T cell ALL mouse models, where a decrease in OBC numbers was 

accompanied by a reduced CXCL12 expression. This could be reversed by administration of Notch 

inhibitors176, in accordance with the observation of decreased CXCL12 in Notch-induced T cell ALL 

mouse model179. 

Furthermore, with the help of intravital imaging at the calvaria BM, was also possible to observe 

that Nalm-6 ALL transplanted cells can compete with haematopoietic progenitor stem cells for 

perivascular niches and are able to disrupt normal HSC regulation by the upregulation of SCF and 

downregulation of CXCL12 recruitment CD34+ HSC to leukaemic niches and impaired CD34+ 

mobilization in response to G-CSF180. 

An opposite effect at the endosteal niche has been observed in BCR/ABL transgenic chronic 

myeloid leukemia (CML) mice. In this model, transplantation of BCR/ABL mutant cells into wild-type 

mice promoted the expansion of OBCs in the BM. This effect was mediated by direct contact of 

leukaemic cells with MSC and increased secretion of inflammatory cytokines and chemokines, 

including macrophage inflammatory protein-1α (MIP-1α), chemokine ligand 3 (CCL3), TPO, 

interleukin-1α (IL-1α), IL-1β, tumour necrosis factor-α (TNF- α), IL-6, and G-CSF. This 

proinflammatory environment compromised HSC support function of OCB, with loss of LT-HSC at the 

BM and establishment of leukaemia supportive microenvironment181,182. 

 

Perivascular niche 

Malignant cells have also been shown to manipulate the perivascular niche in ALL and AML. 

Increased expression levels of VEGF and basic fibroblast growth factor (bFGF) are found in BM plasma 

of ALL patients. Also, evidence of neoangiogenesis was observed in immunocompromised mice when 

transplanted with cells from primary ALL patients183.  Cells isolated from AML patients were shown to 
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induce EC proliferation when co-cultured with human lung or dermal microvascular ECs, this was 

associated with increased levels of pro-angiogenic CXCL8, and decreased levels of anti-angiogenic 

factors CXCL9, CXCL10, and CXCL11184. In AML models, leukaemia cells can modulate ECs by 

upregulation of c-FOS and senescence-related genes, including interferon signalling and COL3A1185. 

Interestingly, the perivascular niche seems to act as a protective AML niche, as leukaemic cells adjacent 

to vessels become more quiescent and resistant to chemotherapy186. Accordingly, pharmacological 

degradation of EC adhesion molecules, reduced AML chemoresistance187. 

Neuropathy induced by malignant cells alters the BM Niche 

The SNS niche was also shown to be disrupted in a murine MPN model generated by Janus kinase 

2 (JAK2) mutation. In this model, damage of sympathetic nerve fibres and death of Schwann cells was 

induced by IL-1β produced in mutant cells, which lead to a reduction of Nes+MSCs and followed by 

decreased CXCL12 levels. Recovery of Nes+MSCs and reduction of leukaemia burden at the BM could 

be achieved by treatment with β3-adrenergic receptors (Adrβ3) agonist188. Similar results were obtained 

in a MLL-AF9 AML model, where SNS niche disruption led to a decrease of Adrβ3 expression and 

HSC maintenance factors, such as CXCL12, SCF, ANG1, and VCAM1 followed by expansion of MSC 

primed for osteoblastic differentiation. This effect could be mediated by β2 adrenergic receptor (Adrβ2) 

as increased number of LSC were observed at the BM when using Adrβ2 antagonist but not (Adrβ3)175. 

 

Exosomes 

The observation of high numbers of microvesicles in leukaemic areas of ALL, CLL, AML and CLL 

patients, associated with detection of VEGF, bFGF, hepatocyte growth factor (HGF), and TNF-α in the 

plasma and urine of patients,  indicates that exosomes might be instrumental during BM niche 

modulation by haematological malignancies189,190. Moreover, in vitro studies have shown examples of 

leukaemia-secreted exosomes in CML, AML cells lines and primary AML samples 191. These exosomes, 

enriched in unique RNA and microRNA, can be up taken by BM stromal cells, which leads to direct 

and indirect effects on HSC. Exosomes isolated from AML cells induced downregulation of CXCL12 

and SCF in stromal cells as well as downregulation of CXCR4 and c-kit in HSCs191,192. In CML, 

exosomes induce IL-8 production in stromal cells, a CML survival factor and also carried miR126, 

which targets HSC niche factors CXCL12 and VCAM1193,194. ECs and MSCs can be reprogrammed to 

leukaemia supporting cells by CLL-derived exosomes.  Leukaemia cell proliferation and angiogenesis 

was promoted by secretion of cytokines from these cells and was observed ex vivo after CLL-exosome 

uptake195. Exosomes released from BM MSC collected from MDS patients can modulate in vitro CD34+ 

cells expression of MDM2 and TP53 genes by transferring miR-10a and miR-15a, suggesting that 

intercellular communication between malignant BM niche and HSC can also be mediated by 

exosomes196. 

2.3.3. AML 

AML is a malignant blood disorder characterized by rapid abnormal proliferation and differentiation 

of HSCs, resulting in the accumulation of immature myeloid precursors (myeloblasts) in the BM and 

peripheral blood (PB). This uncontrolled expansion of malignant haematopoietic precursor cells at the 
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expense of normal haematopoietic cells results in the exhaustion of the BM. AML it’s the most common 

type of acute leukaemia in adults197, with an incidence of 3 to 5 cases per 100.000 in patients with less 

than 65 years old and in patients older than 65. After an increased incidence observed in the last quarter 

of the 20th century, AML incidence started to stabilize in this century198. To this contributed the 

advancement of diagnostic and treatment procedures, which led to an improvement in the disease 

outcome, mostly in young patients. With a median age at diagnosis of approximately 70 years199, AML 

has the worst prognosis within all types of leukaemia, especially in elder patients200, with a recovery rate 

of 35% to 40% in patients younger than 65 years old and only 5% to 15% in patients older than 65 years 

old, within the first year of the diagnosis198,201-203.  

In most of the cases, AML appears as a de novo malignancy in previously healthy individual or as 

therapy-related AML, as a consequence to previous treatments by exposure to DNA-damaging and 

cytotoxic agents (for example, ionizing radiation, alkylating agents or topoisomerase II inhibitors)204,205. 

Although no strong evidence of familiar predisposition to AML has been reported, except relatives of 

young patients, there is an increased risk for haematological malignancies and solid tumours among 

relatives of AML patients206. Also, there is predisposition of AML development in individuals with 

inherit disorders, such as Down syndrome, Fanconi anemia, Bloom syndrome, ataxia-telangiectasia, 

Diamond–Blackfan anemia, Schwachman–Diamond syndrome and severe congenital neutropenia (also 

called Kostmann syndrome) (for a review see REF 207). 

The clinical diagnosis of acute leukaemia is established by the presence of 20% or more blasts in 

the BM or PB202. Furthermore, AML and its subtypes are distinguished from other leukaemias by 

immunophenotyping, cytogenetic and molecular characterization of the myeloblasts. The cytogenetic 

heterogeneity in AML has been known for more than 30 years, with about half of all AMLs having 

structural cytogenetic changes visible at the karyotype level, with translocations and chromosomal gains 

or losses 208-210. For example, the chromosomal translocations such as t(8:21) in core-binding factor 

AML (CBF-AML) or t(15:17) in acute promyelocytic leukaemia (APL) result in the formation of 

chimeric proteins (RUNX1-RUNX1T1 and PML-RARΑ, respectively), which alter the normal 

maturation process of myeloid precursor cells. 

However, advancements of the past decade have uncovered an enormous molecular heterogeneity 

of the disease. In fact, genetic mutations can be found in more than 97% of the cases, independently of 

the presence of large chromosomal changes211,212.  In 2016 a report from Word Health Organization 

(WHO), classified AML based in genetic criteria along with morphological, immunophenotyping and 

clinical presentation to define five major disease entities(Table 2.2).: AML with recurrent genetic 

abnormalities, AML with myelodysplasia-related features; therapy-related AML; AML not otherwise 

specified; myeloid sarcoma; and myeloid proliferation related to Down syndrome213. The recognition of 

different combinations and accumulations of genetic abnormalities in AML, allowed better prognosis 

definition and adjustment of treatments to the specific AML subtype 211,214  
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Table 2.2 - Who classification AML subtypes 215.  

 

WHO classification of AML subtypes 

AML with recurrent genetic abnormalities 

• AML with t(8;21)(q22;q22); RUNX1–RUNX1T1 

• AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB–MYH11 

• APL with t(15;17)(q22;q12); PML–RARA  

• AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A 

• AML with t(9;11)(p22;q23); MLLT3–MLL 

• AML with t(6;9)(p23;q34); DEK–NUP214 

• AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1–EVI1 

• AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM 

• AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15–MKL1 

• Provisional entity: AML with mutated NPM1 

• Provisional entity: AML with mutated CEBPA  

• Provisional entity: AML with BCR-ABL1 

• Provisional entity: AML with mutated RUNX1 

AML with myelodysplasia-related changes* 

Therapy-related myeloid neoplasms 

AML not otherwise specified 

• AML with minimal differentiation 

• AML without maturation 

• AML with maturation 

• Acute myelomonocytic leukaemia 

• Acute monoblastic and monocytic leukaemia 

• Acute erythroid leukaemia 

• Acute megakaryoblastic leukaemia 

• Acute basophilic leukaemia 

• Acute panmyelosis with myelofibrosis 

Myeloid sarcomas 

Myeloid proliferations related to Down syndrome 

• Transient abnormal myelopoiesis 

• Myeloid leukaemia associated with Down syndrome 

Blastic plasmacytoid dendritic cell neoplasms 

CBFB, core-binding factor-β; CEBPA, CCAAT/ enhancer-binding protein-α; MKL1, megakaryoblastic leukaemia 

(translocation) 1; MLL, myeloid/lymphoid or mixed-lineage leukaemia (also known as KMT2A); MLLT3, MLL translocated 

to 3; MYH11, myosin heavy chain 11 smooth muscle; NPM1, nucleophosmin; NUP214, nucleoporin 214kDa; PML, 

promyelocytic leukaemia; RBM15, RNA-binding motif protein 15; RPN1, ribophorin I; RUNX1, Runt-related transcription 

factor 1; RUNX1T1, RUNX1 translocated to 1. *Includes specific recurrent chromosomal abnormalities. 

 

Classification/Genetics  

Observations in animal models that more than one cooperating mutations is necessary to develop 

AML led to the concept of a two-hit model of leukaemogenesis 216-218. According to this model, these 

mutations can be categorized in three functional groups: Class I, mutations which activates cell 

signalling pathways involved in the regulation of cell proliferation and survival; Class II, mutation in 

genes encoding transcription factors which regulate cell differentiation and self-renewal; and Class III, 

mutations in epigenetic modifiers which regulate the expression of several genes with effect on both 

cellular differentiation and proliferation. Impairment of normal haematopoiesis and consequent 

leukaemia development requires the conjugation of class I mutations with class II and/or III219,220. 

However, data from genome sequencing revealed a large number of functional categories, also including 
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cohesin complex and spliceosome mutation 211 (Table 2.3). The combination of mutations is highly 

variable, but some combinations can be specific, as for example, acquired mutation in GATA-binding 

protein 2 (GATA2) are always paired with mutations in CCAAT/enhancer-binding protein-α (CEBPA) 

suggesting that they are cooperative 221. Other combinations appear to be mutually exclusive, for 

example, the coincidence of the FMS-related tyrosine kinase 3 (FLT3) and RAS or of isocitrate 

dehydrogenase (IDH), tet methylcytosine dioxygenase 2 (TET2) and Wilms tumour 1 (WT1) mutations 

is uncommon, suggesting they are functionally related211. Somatic mutations in genes involved in 

epigenetic regulation, including genes involved in the regulation of DNA methylation and post-

translational histone modifications, such as DNMT3A, TET2, WT1, IDH1 and IDH2. These recurrent 

mutations are found in preleukaemic HSC, which are capable of multilineage differentiation and confer 

these cells a higher resistance to chemotherapy and increased probability of relapse during remission 222-

224. Recent studies show that these kinds of mutations increase with age in clonal haematopoiesis and 

are associated with higher risk of haematological malignancies and death225-227. 

 

Table 2.3 - Proposed Genomic Classification of AML 228 .  

Genomic Subgroup 

 

Frequency in 

the 

Study Cohort 

(N = 1540) 

no. of patients 

(%) 

Most Frequently Mutated Genes* 

gene (%) 

AML with NPM1 mutation 418 (27) 
NPM1 (100), DNMT3A (54), FLT3ITD (39), NRAS 

(19), TET2 (16), PTPN11 (15) 

AML with mutated chromatin, RNA-splicing 

genes, or both† 
275 (18) 

RUNX1 (39), MLLPTD (25), SRSF2 (22), 

DNMT3A (20), ASXL1 (17), STAG2 (16), NRAS 

(16), TET2 (15), FLT3ITD (15) 

AML with TP53 mutations, chromosomal 

aneuploidy, or both‡ 
199 (13) 

Complex karyotype (68), −5/5q (47), −7/7q (44), 

TP53 (44), −17/17p (31), −12/12p (17), +8/8q (16) 

AML with inv(16)(p13.1q22) or 

t(16;16)(p13.1;q22); CBFB–MYH11 
81 (5) 

inv(16) (100), NRAS (53), +8/8q (16), +22 (16), 

KIT (15), FLT3TKD (15) 

AML with biallelic CEBPA mutations 66 (4) 
CEBPAbiallelic (100), NRAS (30), WT1 (21), 

GATA2 (20) 

AML with t(15;17)(q22;q12); PML–RARA 60 (4) t(15;17) (100), FLT3ITD (35), WT1 (17) 

AML with t(8;21) (q22;q22); RUNX1–

RUNX1T1 
60 (4) t(8;21) (100), KIT (38), −Y (33), −9q (18) 

AML with MLL fusion genes; t(x;11)(x;q23)§ 44 (3) t(x;11q23) (100), NRAS (23) 

AML with inv(3)(q21q26.2) or 

t(3;3)(q21;q26.2); GATA2, MECOM(EVI1) 
20 (1) 

inv(3) (100), −7 (85), KRAS (30), NRAS (30), 

PTPN11 (30), ETV6 (15), PHF6 (15), SF3B1 (15) 

AML with IDH2R172 mutations and no 

other class-defining lesions 
18 (1) IDH2R172 (100), DNMT3A (67), +8/8q (17) 

AML with t(6;9)(p23;q34); DEK–NUP214 15 (1) t(6;9) (100), FLT3ITD (80), KRAS (20) 

AML with driver mutations but no detected 

class-defining lesions 
166 (11) FLT3ITD (39), DNMT3A (16) 

AML with no detected driver mutations 
62 (4) 

 
 

AML meeting criteria for ≥2 genomic 

subgroups 

56 (4) 

 
 

 
* Genes with a frequency of 15% or higher are shown in descending order of frequency. Key contributing genes in each 

class are shown in boldface type. 
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† Classification in this subgroup requires one or more driver mutations in RUNX1, ASXL1, BCOR, STAG2, EZH2, SRSF2, 

SF3B1, U2AF1, ZRSR2, or MLLPTD. In the presence of other class-defining lesions — namely, inv(16), t(15;17), t(8;21), 

t(6;9), MLL fusion genes, or complex karyotype or driver mutations in TP53, NPM1, or CEBPAbiallelic — two or more 

chromatin–spliceosome mutations are required. 

‡ Classification in this subgroup requires TP53 mutation, complex karyotype, or in the absence of other class-defining 

lesions, one or more of the following: −7/7q, −5/5q, −4/4q, −9q, −12/12p, −17/−17p, −18/18q, −20/20q, +11/11q, +13, +21, or 

+22. 

§ Multiple fusion partners for MLL were found, with the clinical implications depending on the specific fusion partner. 

2.3.4. Traditional treatments  

If eligible for intensive treatment, according to a modification of the widely used European 

LeukaemiaNet guidelines, newly diagnosed AML patients are divided in four risk groups based on the 

cytogenetic and molecular abnormalities. This classification has prognostic and recommended treatment 

indications, as well as recommendation to use or not allogeneic HSCT after first complete remission 

(CR) (Table 2.4).  

 

Table 2.4 – Therapeutic implication of current stratification of Molecular Genetic and Cytogenetic 

Alterations, according to ELN Recommendations*. Adapted from 215. 

 

* Three changes were made to the original recommendations reported by 229 First, cases of AML with mutated CEBPA 

are now restricted to cases with biallelic CEBPA mutations.4 Second, the molecular designation of inv(3)(q21q26.2) or 

t(3;3)(q21;q26.2) has been changed to GATA2–MECOM (EVI1).3 Finally, for MLL, the official gene symbol KMT2A (lysine 

[K]-specific methyltransferase 2A) has been adopted. 

Risk Profile Subsets 
Induction 

therapy 

Consensus 

regarding 

allogeneic 

HSCT after 

first CR 

Risk of 

relapse 

with or 

without 

HSCT 

Comments 

Favorable 

t(8;21)(q22;q22); RUNX1-RUNX1T1 

inv(16)(p13.1q22) or 

t(16;16)(p13.1;q22); CBFB-MYH11 

Mutated NPM1 without FLT3-ITD 

(normal karyotype) 

Biallelic mutated CEBPA (normal 

karyotype) 

Standard 

induction# 

or FLAG-

Ida+ 

Not 

recommended 

• 40–50% 

without  

• 15–20% 

with 

Consider HSCT if:  

Risk of TRM with 

HSCT is <10% (HCT-

CI:0); 

MRD is present after 

two courses of 

chemotherapy 

Intermediate 

I† 

Mutated NPM1 and FLT3-ITD 

(normal karyotype) 

Wild-type NPM1 and FLT3-ITD 

(normal karyotype) 

Wild-type NPM1 without FLT3-ITD 

(normal karyotype) 

Standard 

induction# 

or FLAG-

Ida+ 

Usually 

recommended 

50–70% 

without 20–

30% with 

Consider no HSCT if 

the risk of TRM with 

HSCT is >30% 

(HCT-CI: >4) 

Intermediate 

II 

t(9;11)(p22;q23); MLLT3-KMT2A 

Cytogenetic abnormalities not 

classified as favorable or adverse‡ 

Standard 

induction# 

or FLAG-

Ida+ 

Strongly 

recommended 

70–80% 

without  

30–40% 

with 

As in intermediate I 

Adverse 

inv(3)(q21q26.2) or 

t(3;3)(q21;q26.2); GATA2–MECOM 

(EVI1) 

t(6;9)(p23;q34); DEK-NUP214 

t(v;11)(v;q23); KMT2A rearranged 

−5 or del(5q); −7; abnl(17p); complex 

karyotype§ 

FLAG-Ida+ 

or clinical 

trial 

Strongly 

recommended 

90–100% 

without 40–

50% with 

CR rate is <50% with 

standard 

Induction and -

5/del5q.-7/del7q or 

complex 7 

Consider no HSCT if 

the risk of TRM is 

>40% (HCT-CI>7) 
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† This category includes all cases of AML with a normal karyotype except for those included in the favourable subgroup; 

most of these cases are associated with a poor prognosis, but they should be reported separately because of the potential different 

response to treatment. 

‡ Adequate numbers of most abnormalities have not been studied to draw firm conclusions regarding their prognostic 

significance. 

§ A complex karyotype is defined as three or more chromosomal abnormalities in the absence of one of the World Health 

Organization–designated recurring translocations or inversions — t(8;21), inv(16) or t(16;16), t(9;11), t(v;11) (v;q23), t(6;9), 

and inv(3)/t(3;3). About two thirds of patients with AML with a complex karyotype have a mutation of TP53, a deletion of 

TP53, or both. TP53 alterations in AML rarely occur outside a complex karyotype. 

 #Standard induction therapy consists of an anthracycline for 3 days combined with cytarabine for 7–10 days.  

+ FLAG-Ida consists of high-dose cytarabine, idarubicin, fludarabine and granulocyte colony-stimulating factor. 

HCT-CI, Haematopoietic Cell Transplantation Co-morbidity Index; ITD, internal tandem duplication; MRD, minimal 

residual disease; NK, normal karyotype  

 

Traditional treatment of AML is normally divided in induction, consolidation and maintenance 

phases. Eligible patients will first undergo induction therapy (cytotoxic chemotherapy) until they 

achieve CR, however, minimal residual disease often persists, and a relapse is highly likely to occur 

after induction phase is completed, so a round of consolidation therapy is usual applied after induction. 

Except for the cases when HSCT is used, consolidation therapy is usually in a similar or slightly lower 

intensity than induction therapy. During maintenance therapy, doses of the cytotoxic agents are normally 

lower than the previous phases. Usually it is applied only: after 3-4 cycles of induction and consolidation 

therapy in patients aged 60 or less, and after 2-3 cycles in older patients202.  The dose intensity of the 

cytotoxic therapy is also defined taking in account the efficacy/adverse effects ratio, which is strongly 

related with patient age. 

The typical induction therapy consists of 7 to 10 days of continuous infusion of cytarabine (also 

known as ARA-C), combined with 3 days of an anthracycline and is generally offered to patients with 

a favorable to intermediate prognosis and a low risk of treatment related mortality (TRM)230. Standard 

induction doses consist of 100-200 mg/m2 of cytarabine daily infusion, although higher doses have 

shown higher efficacy, this came with increased toxicity to the patients, thus only used in refractory 

disease 230-232. In leukaemia treatment, more specifically in AML, daunorubicin (60-90 mg/m2) or 

idarubicin (12 mg/m2) are the commonly used anthracyclines, both with similar CR and survival rates 

230,233,234. Higher doses of daunorubicin can be beneficial in patients with DNMT3A and KMT2A 

mutations, which represents a poor prognostic marker212. Typically, in patients younger than 65 years 

old, induction therapy has a CR rate between 60-80% 235, but 25% to 50% of the patients still present 

persistent cytological evidence of the disease after one cycle of induction therapy and require 

reinduction236. In these cases, treatment options include a second cycle of cytarabine combined with an 

anthracycline, higher doses of cytarabine alone or patients can also be administrated with a combination 

of fludarabine, cytarabine (ARA-C) and G-CSF (FLAG) and in some cases with the addition of 

idarubicin (FLAG-IDA), although it did not increase CR rate, it increased remission duration230,237-239. 

Patients older than 65 are more likely to present more adverse cytogenetic-risk profiles, are less likely 

to respond to chemotherapy (up to 40%-60% CR rates) and often more susceptible to treatment related 

toxicities. Despite the significantly worse prognosis, induction therapy still shows better survival rates 

when compares to supportive care and palliative chemotherapy and should be pursued when possible232. 

Taking in account the low success rate of conventional therapy in older patients, they are usually 

considered good candidates for investigational therapies. 
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Other cytotoxic agents have been studied as an alternative to traditional induction regimes. For 

example, the use of hypomethylating agents, traditionally used in the treatment of myelodysplastic 

syndrome (MDS), as recently arise as a potential candidate for the treatment of older patients as well as 

patients with adverse cytogenetic-risk profile or MDR-AML240. Also, the addition to induction therapy 

of Gemtuzumab ozogamicin, a humanized anti-CD33 monoclonal antibody (present in AML blast) 

combined with the cytotoxic agent calicheamicin, have shown to reduce the risk of relapse and improved 

survival in patients with favorable and intermediate risk profiles241,242. Although Gentumuzab 

ozogamicin is no longer available in USA and Europe, analogues of it are in clinical trials. More 

recently, a large randomized international study suggested that the addition of Midostaurin (a 

multikinase inhibitor) to induction and consolidation therapy and its use as a single agent during 

maintenance improved overall and event-free percentages243. 

While in remission, patients should be offered consolidation therapy to eliminate residual disease 

and reduce the risk of relapse. The standard consolidation therapy includes conventional chemotherapy 

and allogeneic haematopoietic stem cell transplantation (allo-HSCT) alone or most commonly in 

combination. The choice between them is based mainly on the leukaemic genetic risk profile and on the 

risk of death weighed against the likelihood of treatment failure or relapse 202,244-246.  In patients with 

favorable prognosis, chemotherapy is normally the first choice as HSCT shows no benefit in these 

patients when compared with chemotherapy in patients with a favourable cytogenetic-risk profile247,248. 

Consolidation chemotherapy protocols consist of an intermediate dose of cytarabine (2-4 cycles of six 

doses at 2–3 g/m2) which has been shown to be as efficient as high dose cytarabine or multi-agent 

protocols and have cure rates around 60%-70%231,237,249. In patients with intermediate or high-risk 

profile, allo-HSCT remains the most effective long-term therapy for AML. However, several patients 

never become eligible for transplant given co-morbidities, failure to achieve CR or lack of suitable donor 

250-252. Autologous HSCT normally does not improve the outcome, but it can be considered as an 

alternative consolidation therapy for selected patients 253. 

Haematopoietic stem cell transplantation 

The potentially lethal levels of chemotherapy during induction phase may compromise the function 

of normal haematopoiesis. Post-remission allogeneic HSCT provides an important rescue tactic for the 

replenishment of normal haematopoiesis and also to trigger an immunological antileukaemic response, 

the graft-versus-leukaemia effect245,254 (Figure 2.4).  

Before transplantation, immunosuppressive conditioning is necessary to permit the engraftment. 

Chemoradiotherapy is often chosen because of its immunosuppression plus anti-leukaemic effect. 

However, HSCT is not risk-free (e.g. Graft-versus-host disease – GVHD) and the choice of whether to 

perform HSCT or not after remission is dependent on balancing the reduction in relapse rate against the 

procedure related mortality and morbidity, being HSCT normally reserved for intermediate and adverse-

risk AML patients who otherwise are unlikely to achieve an extended complete remission244,246,247,255-259. 

The discovery of Human leukocyte antigen (HLA) system of MHC class I and II receptors, which 

engage T-cell antigen receptors, allowed to find histocompatible matching donors and recipients and 

open the doors to implement HSCT as a therapy260,261. The most common sources of HSC for transplant 

are the BM and mobilized PB. Their use was initially restricted to HLA-matched siblings but since the 

late 1980’s, HLA-matched unrelated donors have been used with similar outcomes. 
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Figure 2.4 - Haematopoietic stem cell transplantation strategies in AML. Allogeneic HSCT refers to the option 

in which a human leukocyte antigen-matched sibling or an unrelated adult donor voluntarily donates either bone 

marrow or peripheral blood stem cells to be infused in a recipient, who received prior conditioning with cytotoxic 

and immunosuppressive therapy to allow engraftment and prevent host-versus-graft and graft-versus-host 

reactions. Autologous HSCT refers to the option in which the stem cells from the patient are harvested and frozen 

to be thawed and re-infused after high-dose cytotoxic therapy to enable haematopoietic recovery. Figure and 

legend adapted from215.  

However, these donors are not identified as often as necessary, especially for patients from minority 

ethnic backgrounds262,263. As an alternative approach for patients lacking an HLA-matching donor, 

conditioning and immunosuppressive regimes have been applied to allow haploidentical HSCT with 

reduced GVHD, but these regimes can increase the probability of opportunistic infections and relapse264.  

Also, closely matched umbilical cord blood (UCB) units have been shown to be a good alternative 

source of HSCs265,266. However, the HSC number in a single UCB unit is insufficient for HSCT in 

adults267. The HSC number is crucial for the time required for engraftment and patient survival267-269. 

Due to lack of sufficient HLA-matched donors and HSC number from common sources, specially 

UCB270, still present serious limitations to HSCT eligibility in cancer or other haematological disorders 

treatment. 

Despite the low HSC numbers in UCB267 and delayed engraftment when compared to BM or PB, 

the ease of collection and banking, plus the possibility to perform UCB transplants (UCBT) in 

mismatched donors271 lead to an increased interest in finding strategies to enable UCBT to more patients. 

To achieve this, most studies have aimed to increase HSC number by ex-vivo expansion using molecular 



CHAPTER 2 - State of the Art 

33 

 

factors. But other efforts have also been made to improve UCBT, such as: HSC harvesting and 

purification methods272,273; HSC survivability274; HSC homing to the BM and engraftment275. 

To be able to achieve HSC expansion, symmetrical self-renewal divisions over unlimited 

differentiation are required. The balance in HSC self-renewal is modulated by cell-intrinsic factors (i.e. 

transcription factors, epigenetic modifiers and cell cycle regulators) or by extrinsic factors produced by 

both local niche and systemic environment.  

 

HSC expansion - Intrinsic Factors, e.g. HOXB4 

One of the first molecules to be described as able to expand HSC was HoxB4, a member of the Antp 

homeobox family, transcription factors with specific DNA-binding domains276. The ectopic expression 

of Hoxb4 led to a 40-1000-fold expansion of HSC in vitro and in vivo277-279. Furthermore, HSC 

expansion could also be achieved by extrinsic delivery of the recombinant fusion protein TAT-HOXB4, 

however the levels of expansion were much lower when compared with the ectopic protein 

expression280. The study of other transcription factors involved in haematopoiesis regulation allowed to 

identified other possible candidates to use in HSC expansion, such as other members of the HoxA and 

HoxB clusters (e.g. HoxA4, HoxA9, HoxB6)281-284 Gata2285 and Gfi1286. Ectopic expression of 

chromatin-associated factors has also shown to improve HSC expansion, specially proteins members of 

the Polycomb group family (PcG), such as Ezh2 and Bmil, which modulate HSC activity either by 

preventing stem cell expansion or by increasing HSC self-renewal287-289. Despite the high levels of HSC 

expansion achieved with ectopic expression, the introduction of genetic material is undesired in clinical 

protocol290 and the use of recombinant proteins is often limited by their stability in culture280. Therefore, 

transient activation of self-renewal by extrinsic factors or molecules that regulate the activity of intrinsic 

factors can be a good alternative. 

 

Extrinsic factors, e.g. cytokines and small molecules 

The first attempts to expand HSCs ex-vivo were made using combinations of haematopoietic 

cytokines identified to be produced in vivo by the HSC microenvironment, such as SCF, TPO, Flt3L, 

IL-6, IL-3, G-CSF291,292. However, the efficiency of these cytokines in HSC expansion remains 

controversial, as they often do not achieve the desired expansion and usually leads to HSC differentiation 

and/or exhaustion277,293-295. Nonetheless, a mix of SCF and Flt3L with IL-11 (mouse) or TPO (human) 

become the core cocktail of cytokines routinely used in vitro for haematopoietic stem and progenitor 

cell culture, supporting their survival, proliferation and maintenance in culture and is often 

complemented with other cytokines and other small molecules (Table 2.5) 291,296,297.  

 

 

 

 

 

 

 



CHAPTER 2 - State of the Art 

34 

 

Table 2.5 - Successful Protocols for HSC Expansion Ex Vivo.  

 

CB, cord blood; CRU, competitive repopulating unit; Dppa5, developmental pluripotency associated 5; Fbxw7, F-box and WD 

repeat domain containing 7, E3 ubiquitin protein ligase; IGF-2, insulin-like growth factor 2; IL-3, interleukin 3; LT, long-term; 

MPB, mobilized peripheral blood; MS-5, murine MS-5 stromal cell line; SP, side population; SR-1, StemRegenin1; THPO, 

thrombopoietin; TFs, transcription factors. 

 

Further studies were made in developmentally conserved signalling pathways with critical roles 

during ontogeny and fetal haematopoiesis, such as, wingless-type (Wnt)309, Notch (Jagged/Delta)310, 

Sonic hedgehog (Shh)/BMP311, FGF312, IGF and Angptls298,313, pleiotrophin299, and the TGFβ/smad4 

Factors Cells tested Species Supplement 
Culture 

period 
Assay Fold expansion 

Cytokines291 
CB 

CD34+38- 
H 

SCF, Flt3L, 

G-CSF, IL-3, 

IL-6 

4 days 
CFU and CRU (HSC 

frequency) 

15-fold CFU; 

fourfold 

chimera 

Cytokines292 
CB 

CD34+38- 
H 

Flt-3, SCF, IL-

3, 

IL-6, and G-

CSF 

5–8 days 
CFU, LTC-IC, CRU 

(HSC frequency) 

100-fold CFU; 

fourfold 

LTC-IC; twofold 

CRU 

Angiopoietin298 
SP CD45+ 

Sca-1+ 
M 

SCF, THPO, 

FGF-1, IGF-2 
10 days 

CRU (HSC 

frequency) 
24–30-fold 

Pleiotrophin299 

CD34- LSK, 

CB CD34+ 

38- 

M and 

H 

SCF, Flt3L, 

THPO 

 

7 days 
CRU frequency/LT 

engraftment 

Fourfold CRU; 

10-fold chimera 

HOXB4300 CB CD34+ H 

Co-culture on 

MS-5 mouse 

stromal cells 

4–5 

weeks 

LTC-IC assay, 

reconstitution 

analysis 

20-fold LTC-ICs; 

2.5-fold long-

term 

repopulation 

Fbxw7301 LSK M SCF, THPO 10 days 

Competitive 

reconstitution 

analysis 

>Twofold long-

term 

repopulation 

Dppa5302 
CD34-48- 

LSK 
M SCF, THPO 14 days 

Competitive 

reconstitution 

analysis 

6–10-fold 

PDH inhibitor 

(1- 

aminoethylphosphinic 

acid, 1-AA)303 

CD34-Flts- 

LSK 
M 

SF-O3 medium 

1.0% BSA, 

serum-free, 

SCF, THPO 

2–4 

weeks 

 

CFU/competitive 

reconstitution 

analysis 

 

Twofold CFUs; 

fivefold 

LT repopulation 

 

Mitochondrial 

phosphatase Ptpmt1 

inhibitor, alexidine 

dihydrochloride (AD)304 

LSK and in 

vivo 

treatment 

CD34+ 38- 

M 

H 

SCF, THPO, 

Flk-3 

 

7 days 

CFU and LT 

chimera 

34+38_ 

number/CFU 

 

Twofold CFUs; 

3–5-fold 

LT repopulation 

Twofold number; 

twofold CFUs 

GSK-3b inhibitor, 

CHIR99021305,306 

 

LSK and 

CB CD34+ 

LSK Flk- 

 

M and 

H 

M 

With 

rapamycin 

in cytokine-free 

X-VIVO 

medium 

SCF, THPO, 

and insulin 

7 days 

14 days 

 

HSC frequency/LT 

engraftment 

Competitive 

reconstitution 

analysis 

10–20-fold HSC 

number; 2–5-fold 

LT repopulation 

100-fold number; 

2–10-fold LT 

repopulation 

SR-1307 

CD34+ 

MPB 

UBC 

H 

SCF, Flt3L, 

THPO, IL-6 

 

7–21 

days 

Number/CFU/ 

competitive 

reconstitution 

analysis 

65-fold CFUs; 

17-fold enhanced 

chimera 

UM171308 

CD34+ 

MPB 

UBC 

H 
SCF, Flt3L, 

THPO 

7–21 

days 

Number/CFU/ 

competitive 

reconstitution 

analysis 

>100-fold LT-

HSC; 

35-fold enhanced 

chimera 
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signalling pathway. Adult HSCs have been shown to express receptors that can activate all these 

pathways, indicating that these pathways could be used for extrinsically control HSC fate in culture. 

More recently, powered by emergence of computational methods, small molecules have emerged as 

valuable tools for regulation stem cell fate, as they present several advantages such as easier 

manipulation, typically rapid and reversible effects, various and unlimited concentrations and structures, 

and rapid phenotype-based high-throughput screening and many of these factors are currently being 

used in clinical trials for UCB expansion and transplantation (Table 2.6) 295,314-316. 

 

Table 2.6 - Current Approaches to Ex Vivo Manipulation of UCB Stem Cells in Clinical Trials.  
 

Ex Vivo 

Treatment 

Biologic 

Rationale 

Ex Vivo 

Expansion 

Ex Vivo 

Processing 

Median Days 

to Myeloid 

Engraftment 

Long-term 

Engraftment 

by Treated 

UCB 

Immune 

Reconstitution 

Tetraethylene 

pentamine 

(SCF, FLT-3L, 

TPO, IL-6)317 

copper 

chelation 

blocks HSC 

differentiation 

TNC +++, 

CD34 +, 

CFUs ++ 

21 days 

granulocytes: 

30; 

platelets: 48 

 

not evaluated not evaluated 

Notch ligand 

Delta 1 

(fibronectin, 

SCT, 

FLT-3L, TPO, 

IL-6, IL-3)318 

provides HSC 

proliferative 

signal 

TNC +++, 

CD34 +++ 

 

16 days 

granulocytes: 

13; 

platelets: 38 

 

<5% not evaluated 

Mesenchymal 

stromal cells 

(SCF, FLT3L, 

TPO, G-

CSF)319 

 

MSCs provide 

signals 

for HSC 

expansion 

TNC +, 

CD34 ++, 

CFUs ++ 

 

14 days 

granulocytes: 

15; 

platelets: 42 

 

<10% not evaluated 

16,16-dimethyl 

prostaglandin 

E2 320 

 

facilitates HSC 

homing, 

proliferation, 

and self-

renewal 

N/A 2 hr 

granulocytes: 

18; 

platelets: 43 

 

83% delayed 

Nicotinamide 

(SCF, FLT-3L, 

TPO, IL-6) 321 

 

inhibits HSC 

differentiation; 

facilitates HSC 

homing 

TNC +++, 

CD34 ++ 

 

21 days 

granulocytes: 

13; 

platelets: 33 

 

60%–80% not evaluated 

Fucosylation322 
facilitates HSC 

homing 
 N/A 30 min 

granulocytes: 

17; 

platelets: 35 

50% not evaluated 

StemRegenin-1 

(SCF, FLT-3L, 

TPO, IL-6)323 

 

SR-1 

inhibition of 

aryl 

hydrocarbon 

receptor blocks 

HSC 

differentiation 

TNC +++, 

CD34 +++, 

CFUs +++ 

 

15 days 

granulocytes: 

15; 

platelets: 49 

 

65% delayed 

TNC, total nucleated cells; N/A, not applicable. 

2.3.5. Differentiation therapy/APL 

The notion that acute leukaemias arise not only from the uncontrolled proliferation but also halted 

differentiation of haematopoietic stem or progenitor cells has encouraged the pursue of treatments which 

stimulate the terminal differentiation and subsequent proliferation arrest of malignant leukaemic cells. 

A successful example of this is the differentiation therapy applied to patients with APL, a subtype of 
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AML. APL characterized by a balanced reciprocal translocation between chromosomes 15 and 17 

leading to the fusion of promyelocytic (PML) gene with the retinoic receptor α (RARα). This results in 

a PML-RARΑ fusion protein with oncogenic potential, has this protein is responsible for arresting the 

differentiation of myeloid precursors in promyelocytes and is able to induce leukaemia in animal models 
324,325. 

What was once a rapidly onset fatal disease, characterized by a harmful coagulopathy which could 

result in life threatening hemorrhages and more rarely thrombosis, became highly curable disease with 

the introduction of differentiation therapy, which increased the median of survival from 1 week to a 

stable CR (<90% rate) over 5 years 324,326. The first agent used in differentiation therapy was all-trans-

retinoic acid (ATRA) and later arsenic trioxide (ATO). These drugs are able to degrade the PML-RARΑ 

oncoprotein and induce the terminal differentiation of leukaemic promyelocytes in APL327,328. Although 

ATRA was initially used as a single agent in induction therapy with CR rates of up to 80%, the long-

term results were not satisfactory as a high relapse rate was observed, especially in high risk profile 

patients329-331. Currently, ATO plus ATRA without chemotherapy is offered as standard induction and 

consolidation therapy for low risk patients (white blood cells (WBC) count <10,000/µL)332. For patients 

with higher risk profile, although more data is still needed, standard treatment consists of ATO plus 

ATRA with the addition of an anthracycline ( reviewed in 333). 

Despite the success of the differentiation therapy in APL treatment, some complication can still 

occur in the first weeks of ATRA and/or ATO administration. The most common is the differentiation 

syndrome (DS-previously known as “retinoic acid syndrome”), with an incidence of 25-30%, DS is 

characterized by the increased differentiation of WBC and capillary leakage334. Prophylactic steroids 

can be administrated to prevent DS, especially in high-risk patients (WBC count>10,000/µL)335. Hepatic 

toxicity and cardiac arrythmia are also common in protocol where ATO is administered alone or in 

combination with ATRA. In more rare cases (3% incidence), Pseudotumour cerebri (PTC) can be 

observed in patients, mostly in children and adolescents332,336. 

 

2.4. RA in the niche 

The success of differentiation therapy raised the interest on the role of ATRA signalling pathways 

in normal and malignant haematopoiesis and possible use of ATRA in other AML subtypes. In fact, 

preclinical studies have gathered evidence that specific molecular abnormalities can increase ATRA 

sensitivity in non-APL AML patients’ cells. More specifically, in AML with: a FMS-like tyrosine kinase 

3/internal tandem duplication (FLT3-ID) 337; mutant nucleophosmin gene (NPM1)338-340; mutant 

isocitrate dehydrogenase 1 (IDH1)341; overexpression of ecotropic viral integration site 1 (EVI-1)342; 

and in MLL-positive AML343,344. 

ATRA is a member of retinoids, a class of signalling molecules and active metabolites of Vitamin 

A (retinol), which are essential for normal embryonic development in vertebrates and modulation of 

multiple biological processes, such as haematopoiesis, vision, reproduction, immune function and cell 

growth and communication 345-350.  

Dietary vitamin A can be obtained from plant sources (as provitamin A carotenoids, mostly β-

carotene) and animal sources as retinyl esters. Retinols are oxidized in the body first by alcohol 
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dehydrogenases (ADHs) into retinaldehyde (crucial for vision) and then by aldehyde dehydrogenases 

(ALDHs) into ATRA351. After being synthetized, ATRA is transported within the cells by CRABP 

(cytoplasmic retinoic acid binding protein352,353 and CRBP II (cytosolic retinoid binding protein), which 

can signal ATRA for degradation mediated by the bone marrow stroma’s expressed cytochrome P450 

retinoid-inactivating enzyme, CYP26354,355 or transport it to the nucleus. Within the nucleus, ATRA acts 

as a ligand for two families of nuclear hormone receptors, preferentially to the retinoic acid receptors 

(RAR), specific to the retinoid signalling pathway, and retinoid X receptor (RXR), which as higher 

affinity to 9-cis-RA than to ATRA and, can heterodimerize with other members of the nuclear hormone 

receptors356, such as vitamin D and thyroid hormone receptors357.  

Retinoid acid receptors are composed by three subtypes (α, β and γ), each subtype with at least 2 

different isoforms created by alternative splicing358,359. All are structurally similar and differ mainly on 

the tissue and development expression (for example, RARγ is expressed at higher levels in skin and 

RARα in haematopoietic cells)360. RARs can act as transcriptional modulators by forming homodimers 

or, mainly, heterodimers with RXR, which bind to specific retinoic acid response elements (RAREs) 

present in the promoter region of RA signalling target genes356. In the absence of ligands, RAR-RXR 

heterodimers repress transcription by forming complexes with nuclear receptor co-repressors with 

histone deacetylase activity, which promote chromatin condensation and subsequent transcriptional 

repression360-363. When ATRA (or other retinoids) interact with RARs, promotes a conformational 

exchange and silencing of the co-repressor complex and allows for the recruitment of transcriptional co-

activators, including histone acetyltransferases, which leads to transcriptional activation of retinoid 

target genes by chromatin decondensation360,363. 

Despite of the key role of RA signalling during vertebrate’s development and in the early embryonic 

haematopoiesis being well documented346,348,364-366, the role of ATRA in regulation of adult 

haematopoiesis, more specifically in haematopoietic stem and progenitor cell biology remains 

controversial.  

Some studies have reported increased proliferation of human haematopoietic progenitor cells367-369, 

while others report an inhibitory effect on both proliferation and differentiation of human and murine 

haematopoietic progenitor cells, upon ATRA treatment370-374.  Furthermore, murine models have shown 

that HSC expansion can be achieved either by activation of the RA pathway375 or its inhibition via 

retroviral-mediated expression of dominant negative RARα376. These contradictory effects of ATRA 

may be due to combination of the following: cells targeted by ATRA377, differential expression and 

activity of RARs329,378,379 and metabolic state in such cells380, and regulation of intrinsic RA 

concentration by the microenvironment355,381.  

While initial studies were done using either mice fed with a Vitamin A deficient diet382 with a pan-

RAR-antagonist383, the emergence of RAR knockout murine models and specific agonists and antagonist 

for the different RAR subtypes, allowed a better understanding of RA signalling in haematopoiesis. 

Purton et al demonstrated that ATRA as pleiotropic effect on murine haematopoiesis by showing that 

ATRA is a potent inducer of terminal differentiation in normal promyelocytes (linage negative, ckit 

positive, sca-1 negative LKS- cells) but has the opposite effect in more primitive HSC (LSK+) cells377. 

Furthermore, it was observed that expression of RARs is not the same in purified populations of murine 

haematopoietic cells. The more primitive population of HSC (LKS+) express RARα1, RARα2, RARβ2, 

RARγ1, and RARγ2384. Due to this, most studies have focused on the role of RARα and RARγ in RA 
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signalling during haematopoiesis. The strongest evidence for the involvement of RARs in 

haematopoiesis has come from the knowledge gained with APL, demonstrating the importance of RARα 

in myelopoiesis385,386. Activation or overexpression of RARα shows an increase in granulocytes 

expression379,384. Surprisingly, RARα knock-out mice, despite the early lethality, show no defects in 

myelopoiesis387,388. Also, overexpression or activation of RARγ promotes the self-renewal and 

expansion of HSC 379,384. On the other hand, mice deficient for RARγ are anemic389, show reduced HSCs 

numbers with significantly increased granulocyte/macrophage progenitors and develop a 

microenvironment induced myeloproliferative syndrome (MPS) 155,384. Interestingly, transplantation 

studies indicate that this disorder is likely mediated through a defect in the microenvironment that 

supports HSC activity rather than an autonomous defect in the HSCs themselves. Collectively, these 

studies indicate a key role of RARγ signalling in the homeostasis of the haematopoietic in response to 

RA.  

Retinoic acid is also a well-known modulator of the cell cycle, causing an accumulation of cells in 

G0/G1 phase and a decrease in the S phase population390. Accordingly, ATRA treatment in vitro has 

also been shown to promote cell-cycle arrest in G0/G1 phase in HSC371,377. In a more recent study, it 

was shown in vitro and in vivo that ATRA and Vitamin A are responsible to maintain primitive HSC in 

a dormant state and protecting them from entering in cell-cycle under stress conditions. This reduced 

metabolic state of HSCs promoted their maintenance in long-term self-renewal and low proliferation 

and was associated with decreased Cdk6 levels, expression of transcription factors essential for HSC 

maintenance, such as Hoxb4, reduced ROS generation and low c-myc levels380  

 

2.5. Novel therapies 

The deeper understanding of the molecular, epigenetic and metabolic abnormalities responsible for 

the development of haematopoietic malignancies and their resistance to conventional therapy, allied 

with the development of new molecular and nanotechnology tools, allowed the development of new 

strategies to treat leukaemia. More recent studies try to target directly LSC, by: using antibody based 

therapy specific for LSC cell surface markers; engineering chimeric antigenic receptor(CAR) T/NK 

cells; using nanoplataforms for accurate delivery of anti-leukaemic compounds; or more recently, direct 

genetic correction of molecular abnormalities, made possible with the discovery of CRISP-CAS9 

molecular tool. Targeting of LSC can be indirect, by disrupting the metabolic environment that favours 

LSC expansion and resistance (e.g. hypoxia); or epigenetic manipulation of the malignant niche  

 

2.6. Nanomedicine 

Since 1980s, with the first FDA of a nanoparticle (NP) formulation, for cancer treatment391, 

nanotechnologies gained increased interest from the scientific and medical community. 

Nanomedicine is defined as the use of nanotechnology, materials with size ranging from 1 to 100 

nm in health and medicine, although of nano-sized materials with several hundred nanometres 

can be considered as long they have a relevant biological effect392. These nanocarriers have unique 
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characteristics that allows its use for the improvement of drug delivery, diagnosis and imaging, 

synthetic vaccine development and miniature medical devices393-398. Current problems in cancer 

treatment399 (e.g. low specificity, rapid drug clearance, biodegradation and limited targeting) 

could be potentially addressed by the use of NP platforms. Their nanoscale size, high surface-to-

volume ratios, favourable drug release profiles, and targeting modifications, can allow them to 

better reach target tumour tissue and release drugs in a stable, controlled manner392. Furthermore, 

NPs are able to incorporate multiple features allowing to have diagnostic, tracking, targeting and 

drug delivery all combined in a single nanoformulation. Currently, a wide variety of NP platforms 

(e.g. lipo-based, polymer-based, inorganic, viral and drug conjugates) are being investigated for 

cancer diagnosis and treatment, with several of them already approved for clinical use (Table 

2.7). 
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Table 2.7 - Examples of clinical-stage nanomedicines for cancer therapy.   

Therapy 

modality 

Generic name 

and/or proprietary 

name 

Nanotechnolog

y 

platform 

Active 

pharmaceutical 

ingredients 

Cancer type Status 

Chemotherapy: 

non-targeted 

delivery 

Liposomal doxorubicin 

(Doxil)400 

Pegylated 

liposome 
Doxorubicin 

HIV-related Kaposi sarcoma, ovarian cancer, 

and multiple myeloma 

Approved by 

FDA (1995) 

EMA (1996) 

Liposomal daunorubicin 

(DaunoXome) 400 
Liposome (non-

PEGylated) 
Daunorubicin HIV-related Kaposi sarcoma 

Approved by 

FDA (1996) 

Liposomal vincristine 

(Marqibo) 400 

Liposome(non-

PEGylated) 
Vincristine sulfate 

Philadelphia chromosome negative acute 

lymphoblastic leukaemia 

Approved by 

FDA (2012) 

Liposomal irinotecan 

(Onivyde or MM-398)401-

404 

Pegylated 

liposome 
Irinotecan 

Post-gemcitabine metastatic pancreatic cancer 

(2nd line) 

Small cell lung cancer, metastatic pancreatic 

adenocarcinoma, pediatric solid tumors 

Approved by 

FDA (2015) 

Phase I, II, 

III (2017) 

Liposomal doxorubicin 

(Myocet) 400 
Liposome Doxorubicin Metastatic breast cancer 

Approved in 

Europe 

EMA (2000) 

and Canada 

Mifamurtide (Mepact) 400 
Liposome (non-

PEGylated) 

Muramyl tripeptide phosphatidyl-

ethanolamine 
Nonmetastatic, resectable osteosarcoma 

Approved in 

Europe 

EMA (2009) 

Nab-paclitaxel 

(Abraxane) 400,405 
Albumin NP Paclitaxel 

Metastatic Breast, advanced non-small-cell 

lung and metastatic pancreatic cancer 

Approved by 

FDA(2005) 

and by EMA 

(2008) 

SMANCS400 
Polymer protein 

conjugate 

Styrene maleic anhydride 

Neocarzinostatin (SMANCS) 
Liver and renal cancer 

Approved in 

Japan (1994) 

Polymeric micelle 

paclitaxel (Genexol-PM) 
400,406-408 

PEG-PLA 

Polymeric 

micelle 

Paclitaxel 

Breast cancer and NSCLC  Lung cancer, 

Ovarian cancer 

Gynecologic cancer, hepatocellular 

carcinoma, advanced breast cancer, non-small 

cell lung cancer 

Approved in 

South Korea 

(2007) 

Phase I/II 

2016* 
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Liposomal cisplatin 

(Lipoplatin) 409 

Pegylated 

liposome 
Cisplatin NSCLC Phase III 

NK-105410 
Polymeric 

micelle 
Paclitaxel Metastatic or recurrent breast cancer Phase III 

Liposomal paclitaxel 

(EndoTAG-1)411-414 
Liposome Paclitaxel 

Pancreatic cancer, liver metastases and HER2 

negative and triple-negative breast cancer 
Phase II 

Nab-rapamycin (ABI-

009) 415,416 
Albumin NP Rapamycin 

Advanced malignant PEComa and advanced 

cancer with mTOR mutations 
Phase II 

CRLX 101417-419 Polymeric NP Camptothecin 

NSCLC, metastatic renal cell carcinoma and 

recurrent ovarian, tubal or peritoneal cancer 

rectal, fallopian tube, lung (small cell and non-

small cell) primary peritoneal, stomach, 

gastroesophageal, and esophageal cancers 

Phase  I/II 

(2016) 

Chemotherapy: 

targeted 

delivery 

MM-302 420 
HER2 targeting 

liposome 
Doxorubicin HER2-positive breast cancer Phase II/III 

BIND-014421,422 
PSMA-targeting 

polymeric NP 
Docetaxel NSCLC and mCRPC Phase II 

MBP-426 423 
TfR targeting 

liposome 
Oxaliplatin 

Gastric, oesophageal and gastro-oesophageal 

adenocarcinoma 
Phase I/II 

Anti EGFR 

immunoliposomes loaded 

with doxorubicin 424,425 

EGFR targeting 

liposome 
Doxorubicin Solid tumours,  Breast cancer 

Phase I/ II 

(2016) 

Chemotherapy: 

stimuli-

responsive 

delivery 

ThermoDox 426 Liposome Doxorubicin Hepatocellular carcinoma Phase III 

Chemotherapy: 

combinatorial 

delivery 

Liposomal cytarabine–

daunorubicin (CPX-351 

or Vyxeos) 427 

Liposome Cytarabine and daunorubicin (5:1) High-risk acute myeloid leukaemia 

Phase  I 

(2014) 

 Phase III 

CPX-1 428 Liposome Irinotecan and floxuridine (1:1) Advanced colorectal cancer Phase II 

Hyperthermia 

NanoTherm400 Iron oxide NP NA Thermal ablation glioblastoma 

Approved in 

Europe 

EMA (2010) 

AuroLase 429,430 
Silica core with 

a gold nanoshell 
NA 

Prostate, head and neck cancer, and primary 

and metastatic lung tumours 

Pilot study 

Phase I 2016 

Radiotherapy NBTXR3431 
Hafnium oxide 

NP 
NA Adult soft tissue sarcoma Phase II/III 
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Gene or RNAi 

therapy 

SGT53 432,433 
TfR targeting 

liposome 

Plasmid encoding normal human 

wild-type p53 DNA 

Recurrent glioblastoma and metastatic 

pancreatic cancer 
Phase II 

PNT2258434 Liposome 
DNA oligonucleotide against BCL-

2 

Relapsed or refractory non-Hodgkin 

lymphoma and diffuse large B-cell lymphoma 
Phase II 

SNS01-T 435 
Polyethylenimin

e NP 

siRNA against eIF5A and plasmid 

expressing eIF5A K50R 
Relapsed or refractory B cell malignancies Phase I/II 

Atu027436 Liposome siRNA against protein kinase N3 Advanced or metastatic pancreatic cancer Phase I/II 

TKM-080301437 Lipid NP siRNA against PLK1 

Neuroendocrine tumours, adrenocortical 

carcinoma and advanced hepatocellular 

carcinoma 

Phase I/II 

DCR MYC 438 Lipid NP 
Dicer-substrate siRNA against 

MYC 
Hepatocellular carcinoma Phase I/II 

MRX34439 Liposome miR 34 mimic 
Primary liver cancer, solid tumours and 

haematological malignancies 
Phase I 

CALAA-01440 
TfR targeting 

polymeric NP 

siRNA against ribonucleotide 

reductase M2 
Solid tumours Phase I 

ALN-VSP02441,442 Lipid NP siRNAs against KSP and VEGFA Solid tumours Phase I 

siRNA EPHA2 DOPC443 Liposome siRNA against EPHA2 Advanced cancers Phase I 

pbi shRNA STMN1 LP 
444 

Lipid NP shRNA against stathmin 1 Advanced and/or metastatic cancer Phase I 

Immunotherapy 

Tecemotide445 Liposome MUC1 antigen NSCLC Phase III 

dHER2 + AS15446 Liposome 
Recombinant HER2 (dHER2) 

antigen and AS15 adjuvant 
Metastatic breast cancer Phase I/II 

DPX-0907447 Liposome Multi-tumour associated antigens 
HLA-A2-positive advanced stage ovarian, 

breast and prostate cancer 
Phase I 

Lipovaxin-MM448 Liposome Melanoma antigens Malignant melanoma Phase I 

JVRS 100449 Lipid NP Plasmid DNA Relapsed or refractory leukaemia Phase I 

CYT 6091450 
Colloidal gold 

NP 
TNF Advanced solid tumours Phase I 

 

EGFR, epidermal growth factor receptor; eIF5A, eukaryotic initiation factor 5A; EPHA2, ephrin type A receptor 2; FDA, US Food and Drug Administration; KSP, kinesin spindle protein (also 

known as KIF11); mCRPC, metastatic castration resistant prostate cancer; miR, microRNA; mTOR, mammalian target of rapamycin; MUC1, membrane bound mucin 1; NA, not applicable; nab, 

nanoparticle albumin bound; NSCLC, non small cell lung cancer; PEComa, perivascular epithelioid cell tumours; PEG, poly(ethylene glycol); PLK1, polo like kinase 1; PSMA, prostate specific 

membrane antigen; RNAi, RNA interference; shRNA, short hairpin RNA; SMANCS, poly(styrene co maleic acid) conjugated neocarzinostatin; TfR, transferrin receptor 

 

.
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2.6.1. Proprieties 

Depending on their material composition, size, shape, surface charge and chemistry, NPs offer a 

wide variety of physico-chemical and biological proprieties which can be tailor made to treat specific 

tumours. Size is important for travel the bloodstream and to bypass biological barriers (e.g. blood brain 

barrier) to reach the desired location and cellular uptake. While smaller particles are more easily 

internalized by cells and able to accumulate more easily in the leaky blood vessels of tumours, known 

as the enhanced permeability and retention (EPR) effect, they can also extravasate to normal tissue. On 

the other hand, bigger NPs are less likely to accumulate in normal tissue, but their bloodstream 

distribution is highly variable. Thus, optimization of particle size can be important to improve specific 

uptake in tumour tissue451. The shape of NPs can influence fluid dynamics and cellular uptake, with 

spherical nanocarriers being the most common used shape, as their synthesis and testing is less 

challenging than non-spherical varieties452. The charge of NPs is also important for their stability, 

distribution and cellular uptake. Positively charged particles were shown to target tumour vessels more 

efficiently453. Also, positively charged NPs are more likely to interact with the negatively charged lipids 

of cellular membranes and, when inside of endosomes, to disrupt them by activating the proton pumps 

and increase the osmotic pressure inside the endosome, culminating in the swelling/bursting of the 

endosome, thus avoiding lysosomal degradations of the drug, also called the “proton-sponge effect”454. 

 

2.6.2. Composition 

Both organic and inorganic materials have been used in the synthesis of NPs (Figure 2.5), both with 

pros and cons. In general, organic NPs have better drug loading capacity and biocompatibility and have 

been the most explored nanocarriers for cancer treatment, including: dendrimers, which are highly 

branched, allowing the delivery of cargo and produced by controlled polymerization with a maximum 

of 10 nm of size; lipid-based NPs, such as liposomes and micelles that may carry a hydrophobic cargo 

and typically have 50–100 nm of size; polymeric NPs, produced in a size range from 10 to 400 nm from 

synthetic, natural, hydrolytically, or enzymatically degradable polymers onto which a cytotoxic drug 

can be covalently attached, dissolved, encapsulated, or entrapped; and more recently, natural NPs, such 

as exosomes, have also been used455-458 On the other hand, inorganic NPs offer advantages in terms of 

chemical proprieties (e.g. conjugation) and in vivo quantification.  These nanomaterials include carbon-

based NPs (e.g. carbon nanotubes, graphene) which feature unique electrical proprieties, quantum dots 

(QDs), which have been mainly explored for optical imaging since they show narrow and tuneable 

emission spectra, and metal NPs (e.g. gold, silver and iron oxide), which are easy to synthetize and 

functionalize. Gold NPs (AuNPs) have been used for drug and gene delivery, thermal ablation, 

radiotherapy augmentation and also diagnostics, due to their high sensitivity. Iron oxide NPs, beside the 

possibility for surface functionalization, they feature unique magnetic proprieties, which can be used as 

contrast agent for magnetic resonance imaging (MRI), hyperthermia and drug delivery. 
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Figure 2.5 - Examples of organic and inorganic nanoparticles used in nanomedicine. Figure adapted from459   

2.6.3. Drug delivery 

The use of nanocarriers for drug delivery offers several advantages to conventional drug 

administration routes, such as increased drug stability and bioavailability, increased specificity and 

decrease of possible side effects. In turn, these advantages can translate to an increased success of the 

clinical application of many molecules, such as small molecules, proteins and nucleic acids used in gene 

therapy (e.g. siRNA, miRNA, lncRNA; CRISP-CAS9 system). 

The first generation of NP was mostly aimed to increase the stability of hydrophobic drugs, which 

can be rapidly eliminated from the bloodstream. The use of hydrophilic NPs to encapsulate hydrophobic 

drugs may improve they solubility, increasing their bioavailability in vivo and thus a more effective 

delivery can be achieved using NP, without the need to increase the concentrations of the drug 

administrated and consequent increased toxicity392,399,451,460. Furthermore, many biomolecules have 

negative charge (e.g. nucleic acids) at physiological pH, which may represent a limitation in their use 

for intracellular delivery, as negatively charged molecules are less likely to be internalized by cells461. 

Coating NPs with poly(ethylene glycol) (PEG), a hydrophilic and non-ionic polymer, was shown to 

increase NP solubility and stability451 without disrupting the function of charged molecules462. Masking 

hydrophobicity of NPs and carried molecules, prolongs their circulation in the blood and subsequently 

the likelihood of reaching their target, as it decreases the activity of the reticulo-endothelial system 

(RES), also known as the mononuclear phagocyte system (MPS)463. MPS recognizes hydrophobic 

materials as foreign and initiate a local inflammation response, increasing NP clearance from the blood 

stream464. 

Most nanocarriers are administered systemically, so its important make sure NPs reach their 

target efficiently without accumulating in other tissues and only release their cargo when they reach the 

tumour microenvironment. Therefore, efforts have been made by researchers to increase the control of 

NP targeting and drug release beyond the more simplistic passive targeting and drug release (Figure 

2.6). Drug delivery systems can rely on intrinsic and biological proprieties (e.g. pH, enzymes, redox 

gradient or EPR) to passively reach and release the cargo to target environment465. However, passive 
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targeting does not eliminate the potential for accumulation of NPs in tissues with fenestrated blood 

vessels, such as the liver and spleen392. Furthermore, the environment of the disease site can be highly 

heterogeneous, differing between patients, which makes difficult to control and predict the NP 

pharmokinetics466-469. Modifications of the NP surface with ligands allows a more precise, active 

targeting. These ligands have high specificity to receptors and other specific ligands expressed at the 

surface of tumour cells470. Such ligands include transferrin, folic acid, enzymes, engineered antibodies, 

and macromolecules like proteins and carbohydrates392,451. However, these systems still lack control of 

the dose of drug release. 

 

 

 

Figure 2.6 - Types of targeting for NP delivery to tumour tissue. (A) Passive targeting relies on the leaky 

vasculature that is exhibited by tumours, allowing NPs to travel through the fenestrations and reach tumours. (B) 

Active targeting can be used when NPs have ligands on their surface that can recognize and bind receptors that are 

overexpressed on tumour cells. (C) Triggered release allows NPs to congregate if exposed to an external stimulus 

such as a magnetic field or light. Figure and legend adapted from 471. 

Triggerable nanoformulation 

Actively triggered systems are probably the most useful regarding the improvement of the 

therapeutic effect of drug delivery nanotechnology, as it allows a more precise control of targeting 

without the need of specific ligands (i.e. application of stimulus at desired area/tissue), time of drug 

release (spatio-temporal control) and/or dose. Triggered drug delivery events can be achieved with 

several external stimuli such as: ultrasound, magnetic, thermic, chemical, electric or light (Table 2.8).  

Light can penetrate the human body ~1mm with 440nm wavelength, up to more than 4mm with 

wavelengths above 650nm472,473, and offers some advantages relatively to other stimuli, such as: 

possibility of activating multiple drug systems using specific wavelengths; step-wise drug release from 

a single nanoformulation, using ligands responsive to different wavelengths; more precise targeting drug 

release at specific areas with a resolution determined by laser spot; and a light-trigger is user friendly, 

since the operator can easily change parameters such as intensity and wavelength of light474,475.  
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Table 2.8 - Triggerable NPs examples.  

 

DEACM, (7-diethylaminocoumarin-4-yl)methyl; MNPs, magnetic nanoparticles; PdPc(OBu)8, 1,4,8,11,15,18,22,25-

octabutoxyphthalocyaninato-palladium-(II); PLGA, poly(lactic acid-co-glycolic acid); PNIPAM, poly(N-

isopropylacrylamide); ssDNA, single-stranded DNA. 

 

Stimulus 
Mechanism (effector molecule or material, 

if applicable) 

Drug delivery systems (main parameter 

or trigger in parentheses) 

Light 

Photocleavage reactions (molecules with 

photolabile groups, such as o-nitrobenzyl or 

coumarin-4-yl-methyl groups)  

Coumarin-functionalized nanoparticles 

(420 or 800 nm light) 476 

Photoisomerization (azobenzenes and 

spiropyrans)  

Spiropyran-functionalized nanoparticles 

(365 nm light) 477 

Upconversion (for example, photosensitizers 

and annihilators for triplet–triplet 

annihilation)  

DEACM-caged micelles (530 nm light) 478 

Photodynamic reaction (photosensitizers, for 

example, PdPc(OBu)8)  

Photosensitizer-loaded liposomes (730 nm 

light) 479 

Photothermal effect (plasmonic nanoparticles, 

such as gold nanoparticles)  

Gold nanorods attached to liposomes (808 

nm light) 480 

Gold nanocages (790 nm light) 481 

Magnetic 

field 

Heating (magnetic nanoparticles, such as 

nanoparticles of magnetite, maghemite and 

ferrites) 

PNIPAM-based nanogels (alternating 

magnetic field of 220–260 kHz) 482  

Hydrogels composed of MNPs and 

thermoresponsive microgels (200 kHz 

magnetic field) 483 

Mechanical deformation (MNPs) 
Liposomes attached to chains of MNPs (10 

kHz magnetic field) 484 

Magnetic guidance (MNPs) 

PLGA-based nanoparticles loaded with 

paclitaxel and superparamagnetic iron 

oxides (static magnetic field) 485 

Ultrasound 

Cavitation 

Microbubble–liposome complexes (pulsed 

ultrasound with an amplitude of 1.9 MPa) 
486 

Liposomes (continuous-wave ultrasound 

with intensity >100 mW cm−2) 487 

Phase transition 

Phase-transition droplets (high-intensity 

focused ultrasound with an amplitude of 11 

MPa) 488 

Heating 
Liposomes (pulsed high-intensity (1,300 W 

cm−2) focused ultrasound) 489 

Electric 

field 

Electrokinetic flow 
Polyelectrolyte hydrogels (constant 1.0 

mA current for 1–10 min) 490 

Redox reaction 
Conductive polymers (3 V potential for 

150 s) 491 

Redox reaction and electrokinetic flow 

Conductive polymer nanoparticles 

embedded in hydrogel (−1.5 V and 0.5 V 

potentials) 492 

Chemical 
Binding interaction 

Hydrogel containing ssDNA 493 

Aptamer-functionalized hydrogels 

(complementary nucleic acid sequences) 
494 

Hydrogels containing antibiotic-binding 

units (novobiocin) 495 

Chemical ligation Antibody–drug conjugates (tetrazine) 496 
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Light-triggered drug delivery systems  

Absorbed light can induce chemical changes in administered or endogenous compounds such as: 

photochemical reactions (i.e. photocleavage or photoswitching, or by generation of reactive oxygen 

species in photodynamic therapy); emission of light (e.g. fluorescence); or the transfer of energy  to 

other forms (e.g. heat or acoustic waves)497. Most common wavelengths of light used in light triggered 

systems are within the ultraviolet (UV) and near infrared regions (NIR) of the light spectrum. NIR 

radiation can penetrate deeper in the body498,499 and has been used in the clinic for more than 30 years. 

Therefore, NIR exposure safe limits have already been established500,501. Despite being a safer type of 

irradiation, NIR low-energy radiation has reduced capacity to break chemical bonds (e.g. between a drug 

and its carrier)498, limiting its application as a trigger in light-sensitive nanoformulations. On the other 

hand, UV light is a high-radiation energy, able to break chemical bonds but it has a lower penetration 

capacity in biological tissues473 and prolonged exposure of cells and tissues to UV light may induce 

deleterious effects (e.g. DNA damage and ROS production)502,503. Nevertheless, short exposure to UV 

light has been used in the clinic to treat various diseases (e.g. skin disorders and ocular conditions)504 

and its limited body penetration can be circumvented through the use of optical fibre and endoscopic 

apparatus498,505,506. Also, it should be considered that in cancer therapy, more harmful forms of radiation 

are used (i.e. radiotherapy). 

The wavelength of the light determines its uses in photo-triggered nanoformulations. Higher energy 

lights (e.g. UV) have sufficient energy to cleave chemical compounds (i.e. photolabile or photocaging 

groups) such as o-nitrobenzyl, coumarin-4-yl-methyl, p-hydroxyphenacyl and 7-nitroindoline 

derivatives507. Photocleavage can be used to drive destabilization of hydrophobic/hydrophilic balance 

of NPs and consequent release of its cargo508, release drugs by cleaving the link between drug and NP509 

or by removing protective moieties from ligands at NP surface, allowing their binding to cells510. UV 

light can also be used to induce reversible photoisomerization of photochromic groups such as 

azobenzenes and spiropyrans. When a photochromic group is embedded in a nanoformulation, 

photoisomeration can induce changes in the geometry, polarity or hydrophobicity of the groups can lead 

to reorganization or disassembly of the NPs, followed by drug release477,511. 

NIR-triggered nanoformulations rely on photochemical reactions such as upconversion and 

plasmonic effect. Upconversion has been explored to take advantage of the deep tissue penetration of 

NIR with the high energy of UV, by combining the energy of multiple NIR photons to achieve a higher 

energy state or to create a single UV photon. This can be achieved by a two-photon absorption process, 

in which chemical groups that are normally sensitive to UV light, such as o-nitrobenzyl and coumarin 

derivatives, simultaneously absorb two photons of NIR light to achieve a chemical reaction507. Another 

way to achieve upconversion is by using higher energy states rather than higher photon energy. For 

example, polymeric micellar nanoparticles were designed with a photosensitizer in their cores that, when 

irradiated with green light, transfers its energy to annihilator molecules, which then undergo triplet–

triplet annihilation upconversion. The upconverted energy can then be transferred by Förster resonant 

energy transfer (FRET) to cleave and release a hydrophobic photocleavable group, reactivating the 

activity of a cell-binding peptide478,512. 

Nobel metal NPs (e.g. AuNPs) can respond to NIR by producing heat (i.e. photothermal effect). 

Under NIR irradiation, the free electrons in metal NPs collectively oscillate in phase with the electric 

field of the incident radiation, a phenomenon known as surface plasmon resonance (SPR). The SPR 
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spectrum is dependent on the geometry of the nanostructures, as explained by the Mie-Gans theory513,514 

and allows plasmonic NPs to efficiently convert photon energy to heat, increasing the temperature in 

their immediate vicinity, leading to drug release events515. For example, the heat produced can induce 

the release of oligonucleotides from the NP by dehybridization516, by triggering drug-release from 

nanoformulation composed of thermally responsive polymers, such as Poly(N-isopropylacrylamide) 

(PNIPAM)517,518, or by using the heat produced by gold nanorods to destabilize the liposomal lipid 

bilayers present in lipidic NPs (LNPs), with a consequent phase transition and drug release480,519.  

 

2.6.4. Targeting the BM  

When drug administration is systemic, drug availability is often quite low at the BM, due to rapid 

metabolization and clearance. Most injected drugs are either cleared by the body’s metabolic and 

excretory system or accumulate in other highly perfused organs before reaching the BM. Thus, drugs 

are always administered in high doses and/or frequency to achieve the therapeutic effect at the BM, 

which can lead to unwanted systemic side effects520. Although the combination of leaky vasculature 

with poor lymphatic drainage has shown to promote accumulation of NPs due to EPR, little is known 

about EPR at the BM compartment521. Moreover, the existence of fenestrae (size between 85 nm and 

150 nm) at the endothelium of BM vascular sinusoids can represent a limitation to NPs sized over 150 

nm522. However, several studies have demonstrated that the BM is the main organ for the specific uptake 

of bioparticles (i.e. senescent cells, lipoproteins and nuclei from erythroid precursor cells) by the MPS523-

526, suggesting that phagocytic activity in the bone marrow can be potentially used for NP drug delivery. 

In fact, early formulation studies using liposome-based drug delivery systems have demonstrated that 

negatively charged LNPs accumulate more in the BM, with increased BM macrophage uptake527-531. 

Selective uptake of LNPs by macrophages seems to occur through the scavenger receptor on BM’s 

macrophages, as polyanions such as dextran sulphate and polyinosinic acid have been reported as 

ligands for this receptor532,533. 

To overcome the problem of low accumulation at the BM, some nanotechnologies have been 

developed for leukaemia treatment and BM targeting534, with some of them already in clinical trials 

(Table 2.9). 

In this case, NPs have been conjugated with specific ligands (e.g. CD45, CD20, CD19, E-E-

selectin)535,536, or have been activated by intrinsic or extrinsic cues at the BM leukaemic niche537-540. 
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Table 2.9 - Rationales and applications of bone marrow-targeted delivery systems.  

 

Carrier type Targeting Drug Application 

liposome541,542 

anionic low-
cholesterol 
liposome 
promotes 

accumulation 
in BM 

cytarabine: daunorubicin 

increase drug 
accumulation in 

leukemia cells inside 
BM and enhance 

efficacy in AML mice 

liposome543 
folate binds to 

FR-β 
doxorubicin 

folate-modified 
liposomes increase 

median survival 
times of AML mice 

SLN 544  n.a. ATRA 

In vitro acute 
leukemia (HL60, 

Jurkat and THP1 cell 
lines) 

LNP 545 n.a. Mcl1 siRNA 

In vitro mantle cell 
lymphoma [JeKo-1 

(normal) and 
MAVER-1 

(aggressive) cell 
lines] 

LNP 546 
CD45.2 

antibody 
AntagomiR-126 

In vitro/in vivo AML 
(human primary 

cells; murine model) 

lipid nanocapsule 546 
Healthy 

primary T-cells 
(live vector) 

Topoisomerase I poison 
SN-38 

In vivo lymphoma 
(murine model) 

micellar NPs protected by 
porous silicon (pSi) coating 536 

E-selectin 
thioaptamer 
(ESTA) (bone 

marrow-
directed 
aptamer) 

Parthenolide (PTL) 
In vivo AML (patient-

derived murine 
xenografts) 

Nanopolymer 535 CD19 antibody DOX 

In vitro/in vivo ALL 
(REH and RS4; 11 
cell lines: human-

derived murine 
xenografts) 

MSN (pH-controlled delivery) 
547 

Rituximab 
(CD20 

antibody) 
DOX and rituximab 

In vitro/in vivo B-cell 
lymphoma (Raji and 

Daudi cell lines; 
murine model) 

PEG-PLGA nanoparticle548 
alendronate-
HA binding in 
bone matrix 

bortezomib 

pretreatment 
inhibits myeloma 

growth better than 
free drug in 

myeloma mice 
model 

PEG-PLA micelle549 
alendronate-
HA binding in 
bone matrix 

ponatinib, SAR302503 

extend survival time 
of BaF3/T315I cells 

inoculated CML 
mice 
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porous silicon particle550 
E-selectin 

specific 
thioaptamer 

parthenolide 
impairment of LSCs 
in AML secondary 

transplantation mice 

nanostructured lipid carrier551 

dual targeting 
via 

alendronate-
HA and folate-
FR-β bindings 

mitoxantrone 

deliver drugs to LSCs 
in bone marrow for 
refractory leukemia 

therapy 

QD-CdTe 552 n.a. Wogonin 

In vitro/in vivo 
multidrug-resistant 
leukemia (K562-A02 
cell line; leukemia-

bearing mice) 

MNP-Fe3O4 553 n.a. Wogonin 
In vitro multidrug-
resistant leukemia 
(K562-A02 cell line) 

MNP-Fe3O4 554 n.a. Cytarabine 

In vitro acute 
leukemia (HL60 and 

KG1 cell lines) 
Burkitt’s lymphoma 

(Raji cell line) 

AuNP or AuNP 
controlled drug release via 

presence of BIRC5 mRNA) 555 

BIRC5 dsDNA 
oligonucleotide 

Dasatinib 

In vitro/in vivo CML 
(K562 cell line; 
K562-derived 

murine xenografts) 

AuNP556,557 n.a. 
Lestaurtinibmidostaurin 

sorafenib quizartinib (FLT3 
inhibitors) 

In vitro AML (THP1 
and OCI-AML3 cell 

lines) 

AuNP 539 Folic acid Fludarabine phosphate 
In vitro AML (KG1 

cell line) 

AuNP 558 n.a. 
BCR-ABL1 ssDNA 

oligonucleotide (e14a2) 
In vitro CML (K562 

cell line) 

AgNP 559 
Rituximab 

(detection of 
CD20) 

Rituximab 
In vitro Burkitt’s 

lymphoma (Daudi 
and Raji cell lines) 

DNPs 560 
Idiotype-
peptide 

specific BCR 
BCL2 siRNA 

In vitro lymphoma 
(murine A20 cell 

line) 

NP-albumin-bound PTX 561 
Rituximab 

(CD20 
antibody) 

PTX and rituximab 

In vitro/in vivo B-cell 
lymphoma (Daudi 
cells; human B-cell 
lymphoma murine 

model) 
  

HA, hydroxyapatite; FR-β, folate receptor-β; AuNP, gold nanoparticle; CLL, chronic lymphocytic leukemia; PTK7, 

protein tyrosine kinase 7; FRET, fluorescence energy transfer; QD, quantum dot; SERS, surface-enhanced Raman scattering; 

ISH, in situ hybridization; FFPE, formalin-fixed paraffin embedded tissues; XIAP, X-linked inhibitor of apoptosis protein; 

CTC, circulation tumor cell; AF750, alexafluor 750; CML, chronic myeloid leukemia; DOX, doxorubicin; polyArg, peptide 

sequence with nine arginines; PTX, paclitaxel; BCR, B-cell receptor; LNP, lipid NP; MSN, mesoporous silica NP; ABX, 

ambraxane. 

 

2.6.5. Cells as carriers 

Despite the huge advances in the development of nanoformulations, their therapeutic efficiency is 

restricted by inefficient avoidance of MPS or targeting. As an alternative strategy, cell-mediated drug 
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delivery strategies have been explored. This concept emerged from a pioneering study in the 1970s that 

successfully encapsulated β-glucosidase and β-galactosidase into red blood cells (RBCs) for the 

treatment of Gaucher’s disease562. Since then, RBCs, leukocytes and stem cells (Table 2.10), have been 

studied in cell-mediated drug delivery due to their long circulation, specific tropism to diseased tissue 

and ability to cross biological barriers, such as blood brain barrier563. In fact, leukocytes and stem cells 

are already used for tumour immunotherapy and tissue regeneration in clinical trials564-567. 

 

Table 2.10 - Stem cells as a vehicle to transport nanoparticles (NPs): physical–chemical properties of 

NPs.  

 

Formulation 
Drug 

(conc.) 

NP 

size 

(nm) 

NP 

zeta 

(mV) 

Intracellular 

retention of 

NPs (days) 

NP 

degradation 

Response 

to 

remote 

trigger 

Stem cells 

as 

transporter 

Phototriggerable 

polyplex NPs 400 

Retinoic 

acid (150 

g per mg 

of NPs) 

160 +22 Up to 6 days Yes Yes LSCs 

Poly(lactic acid) 

(PLA) NPs and 

lipid nanocapsules 

(LNCs) 568 

Coumarin 

136 

(PLA) 

88 

(LNC) 

−2.1 

(PLA) 

−3.7 

(LNC) 

Up to 7 days Yes No MSCs 

Assembly of 

superparamagnetic 

NPs with 

biodegradable 

polymers 569 

Paclitaxel 110 - - - Yes ADSCs 

Porous hollow 

silica NPs 570 
Purpurin18 

150– 

200 
- Up to 5 days - Yes MSCs 

Mesoporous silica 

NPs571 
Doxorubicin 190 +23.3 Up to 5 days – No MSCs 

pH-sensitive NPs 
572 

Docetaxel 100 – 

Conjugation 

to the cell 

membrane 

(up to 7 

days) 

- - NSCs 

Ultrasound-

responsive 

copolymer 

covalently grafted 

to mesoporous 

silica NPs573 

Doxorubicin 150 +23 Up to 6 days - Yes MSCs 

Poly(lactic-

coglycolic acid) 

NPs574 

Doxorubicin 150 −37 Up to 1 day – No MSCs 

Gold nanorods 

conjugated with 

CXCR4 

antibody575 

No 50:10 – Up to 3 days No Yes iPSCs 

NSCs, neural stem cells; HSCs, hematopoietic stem cells; MSCs, mesenchymal stem cells. 
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Red Blood Cells 

RBC are natural carriers of oxygen and nutrients to all parts of the body and are the most readily 

available and abundant cells. Besides their high number, they also possess other attractive characteristics 

to increase the efficiently of drug delivery such as long-life span and widespread circulation; they protect 

encapsulated drugs, thus can be used as drug reservoir for a sustained drug release in the blood; and they 

are completely biodegradable, non-toxic and show very low to no immunogenic response576. RBCs can 

be loaded with NPs by hypotonic dialysis, an encapsulation process involving reversible hypotonic 

swelling of the RBCs, which transiently opens pores in the membrane allowing drugs or NPs to diffuse 

into the cells and when changed back to a isotonic medium, pores are sealed and the cargo 

entrapped577,578. However, this process can induce structural and chemical changes on RBCs, affecting 

their normal function and can be recognized by MPS579,580. More recently, a novel encapsulation process 

was developed to overcome these obstacles. By conjugating the drug with a cell penetrating peptide via 

disulphide linkage, RBCs could be loaded without affecting their natural structure and functionality. 

Once inside RBCs, the cell penetrating peptide is detached from the drug by degradation of the 

disulphide bond, due to the presence of high levels of cytoplasmatic glutathione found in RBCs581. This 

technique was successfully applied to target acute lymphoblastic leukaemia (ALL) and increase L-

asparginase half-life in mouse models582. 

 

Leukocytes 

Leukocytes are a more attractive cell type than RBCs to be used as NP carriers. They can be used 

as drug depots for a sustained and prolonged drug release, with the added advantage of their natural 

ability to home into inflammation tissues563,583,584. The process of inflammation triggers the mobilization 

of leukocytes from the BM or its vicinity into blood circulation, with a specific migration to diseased 

sites. This migration is mediated by the overexpression of cell adhesion molecules on the surface of the 

EC layer, which facilitates the initial process of leukocyte rolling, attachment to endothelial layer and 

transmigration to the inflammation site585,586. This process was first explored by producing microspheres 

with leukocyte adhesion ligands attached to their surface. The microspheres successfully mimicked the 

leukocyte migration behaviour into inflammation sites587-589. Later, leukocytes were directly used as 

carriers in Parkinson’s disease model. Bone marrow derived macrophages were able to carry and cross 

blood brain barriers to deliver catalase NPs, with increased accumulation in the brain563. 

The inflammatory response has been shown to play an important role in all stages of tumour 

development583,590, with evidence showing that tumour cells produce high levels of chemoattractants, 

which can recruit a large number of leukocytes, mainly T-cells and macrophages591,592. In one study, 

drug loaded NPs were attached to the surface of T-cells and promoted tumour reduction and prolonged 

survival of mice when compared with free NP administration593. In another study, monocytes were used 

as NP carriers for co-delivery of echogenic polymer/C5F12 bubbles and doxorubicin-loaded polymer 

vesicles towards hypoxia regions of malignant tumours594. 
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Stem cells  

Over the last decade, stem cells have emerged as a promising therapeutic option for a wide range of 

diseases. As leukocytes, stem cells exhibit an intrinsic tropism to injury, inflammation and tumour 

sites595-598, with other additional advantages comparing to other cell types, as stem cells can secret 

trophic factors promote the recovery of the damaged tissue and potentially differentiate to a wide variety 

of functional cells and consequently help in the repopulation of their target site. Moreover, MSCs and 

HSCs have high bioavailability and can be harvested readily from bone marrow of healthy unaffected 

individuals or isolated from UCB units599-604. MSCs have been used as NP carriers to target brain 

tumours568,605 and in regenerative medicine, for example in the treatment of ischemic hindlimbs, where 

MSC loaded with NPs conjugated with VEGF were able to promote vascularization and tissue 

regeneration606, MSCs have also been used as carriers for anti-cancer therapy. In one study, MSC 

transfected with liposomes containing a constructed vector, were able to inhibit tumour growth by way 

of lymphoma cell apoptosis induction through the bystander effect when co-cultured with Raju cells 
604,607. 

HSCs are also good candidates to target NPs to the HSC niche at the bone marrow in regenerative 

medicine and to treat haematological malignancies. NPs can modulate HSC paracrine activity and their 

engraftment in the BM. For example, protamine-sulfate coated PLGA NPs encapsulating an MRI agent 

have the capacity to downregulate the immune response of HSCs, by decreased expression of 

proinflammatory cytokines (e.g. interferon (IFN)-γ, IL-8, macrophage inflammatory protein (MIP)-1 

and TNF-α)608. In another study, HSCs were chemically decorated with NPs containing Wnt activator, 

enabling continuous pseudo autocrine stimulation of the transplanted HSCs, which translated into a 6-

fold increase in HSC engraftment, without affecting their multilineage differentiation potential593. NPs 

can also be used to target HSCs into the BM niche or to recruit other cells to the niche. For example, 

PLGA NPs were surface modified with bisphosphonate to provide them with a bone-binding capacity548. 

The bisphosphonates are calcium-ion-chelating molecules that, after systemic administration, deposit in 

bone tissue, particularly at the sites of high bone remodelling. In another study, CXCL12 loaded chitosan 

NPs were able to induce BM MSCs migration in vitro609. 
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3.1. Abstract 

Leukaemia cells that are resistant to conventional therapies are thought to reside in protective niches. 

Here, we describe light-inducible polymeric retinoic acid (RA)-containing nanoparticles (NPs) with the 

capacity to accumulate in the cytoplasm of leukaemia cells for several days and release their RA 

payloads within a few minutes upon exposure to blue/UV light. Compared to NPs that are not activated 

by light exposure, these NPs more efficiently reduce the clonogenicity of bone marrow cancer cells from 

patients with AML and induce the differentiation of RA-low sensitive leukaemia cells. Importantly, we 

show that leukaemia cells transfected with light-inducible NPs containing RA can engraft into bone 

marrow in vivo in the proximity of other leukaemic cells, differentiate upon exposure to blue light and 

release paracrine factors that modulate nearby cells. The NPs described here offer a promising strategy 

for controlling distant cell populations and remotely modulating leukaemic niche. 

3.2. Introduction 

The differentiation of leukaemia cells is a therapeutic strategy often used in the clinic to eradicate 

blood cancers. The concentration of the agent used for inducing leukaemia cell differentiation and the 

spatio-temporal control of its application are important variables for the success of this therapeutic 

approach610. Induction of leukaemia cell differentiation by RA is a therapeutic strategy that has been 

used with great success in the treatment of APL611,612. RA activates nuclear RA receptors (RARs) that 

induce cell growth arrest and differentiation613. Despite its clear therapeutic efficacy, approximately 

25% of patients receiving RA will develop serious complications, such as “differentiation syndrome”1. 

Hence, there is a need for more effective formulations to deliver RA into leukaemia cells while 

preventing RA side effects. In addition, leukaemia cells resistant to conventional therapies reside in 

microenvironmental niches in the bone marrow that are difficult to access by therapeutic interventions2. 

New strategies are required to address these problems.   

NPs that disassemble in response to light614-616 offer a promising approach for reducing the side 

effects of conventional therapies and increasing access of therapeutic agents to the target cells. Recently, 

light-inducible NPs have been reported to target solid tumours due to their specific accumulation in 

tumour vasculature after intravenous injection617. However, such an approach is not applicable to 

leukaemia. The hypotheses of the present work are: (i) light-inducible NPs containing RA may be a 

more effective strategy for differentiating leukaemia cells because they release high and more effective 

concentrations of RA in a short period of time (within minutes) after NP disassembly, and (ii) light-

inducible NPs containing RA accumulated in the cytoplasm of leukaemia cells may offer a unique 

opportunity to remotely differentiate these cells in leukaemic niches in the bone marrow, which in turn 

may interfere with the differentiation profile of leukaemia cells in a paracrine manner.  

Here, we describe light-inducible polymeric NPs containing RA that effectively disassemble within 

cells after light activation. These NPs accumulate in the cytoplasm of leukaemia cells for more than 6 

days. They are internalized primarily through a clathrin-mediated mechanism and at minor extent by 

macropinocytosis. They escape in few hours the endolysosomal compartment and accumulate in cell 

cytoplasm. We show that these NPs are more efficient and quicker at inducing transcription from the 

RARE-luciferase locus than RA in solution. We further show that these NPs can be activated to release 
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RA in vivo in a highly controlled manner. Finally, we demonstrate that leukaemia cells transfected with 

these cells can home in the bone marrow in the same niche as other leukaemia cells, differentiate after 

blue laser activation and modulate the activity/phenotype of the resident leukaemia cells. 

3.3. Results and discussion 

3.3.1 Nanoparticle preparations and in vitro photo-disassembly 

To prepare light-inducible polymeric NPs, poly(ethyleneimine) (PEI) was initially derivatized with 

4,5-dimethoxy-2-nitrobenzyl chloroformate (DMNC), a light-sensitive photochrome (Figure 3.A). PEI 

was selected as the initial NP block because it facilitates the cellular internalization of NPs and their 

subsequent escape from endosomes618,619, while DMNC was selected because it responds rapidly to light 

(Figure 3.B) and its degradation products are relatively non-cytotoxic620. PEI-DMNC was then added 

to dextran sulphate (DS) to form NPs by electrostatic (PEI:DS) and hydrophobic (DMNC:DMNC) 

interactions. To stabilize the NP formulation, zinc sulfate was added619,621. NPs with an average diameter 

of 108.1  9.9 nm and a zeta potential of 27.4  1.6 mV were obtained (Figure 3.2 A and B). To 

demonstrate that the NP formulation could be photo-disassembled, a suspension of NPs was exposed to 

UV light for up to 10 min. The number of NPs (as assessed by Kcps) decreased to below half of the 

initial number after 1 min of UV exposure, confirming NP disassembly (Figure 3.2B). The disassembly 

was likely due to a change in the NP’s hydrophilic/hydrophobic balance after DMNC photo-cleavage. 

Importantly, a conventional blue laser (405 nm, 80 mW) (Figure 3.2D) or a blue confocal laser (405 

nm, 30 mW) (Figure 3.2E) can replace the UV light to induce the photo-disassembly of NPs. The 

response of the NPs to a blue laser was mediated by DMNC coupled to PEI, as NPs without DMNC did 

not respond to the laser (Figure 3.2B). 
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Figure 3.1 - Characterization of PEI derivatized with DMNC. (A) Schematic representation for the photo-

disassembly of RA+NPs. (B) Effect of UV light (365nm, 100Watts) in the absorbance properties of PEI-DMNC 

(1mg/mL in DMSO), PEI (1mg/mL in DMSO) and DMNC (250 µg/mL in DMSO). The experimental degree of 

substitution of PEI-DMNC was 10% as determined by spectrophotometry, using a calibration curve of DMNC and 

by (C) 1H NMR spectra in DMSO-D6 of (a) PEI-DMNC conjugate, (b) DMNC and (c) PEI. For DMNC, the 

absorption maximum at 355nm reverted back to baseline levels after 10 min of UV exposure, indicating the photo-

cleavage of DMNC and a new absorption peak was observed at 320nm, due to the formation of 4,5-dimethoxy-2-

nitrobenzyl alcohol. For PEI-DMNC, there was a decrease in intensity of the 355nm peak and a concomitant 

increase in the 320nm peak; however, our results suggest that not all the attached DMNC molecules were photo-

cleaved. 

We further evaluated the feasibility of triggering intracellular NP disassembly. For that purpose, 

human vein umbilical endothelial cells (HUVECs) were transfected with quantum dots 525-labelled 

NPs for 4 h (Figure 3.2E and F), and a small region of the cell housing NPs was excited by a blue laser 

(405 nm) under a confocal microscope. Under these conditions, NP fluorescence increases compared to 

a reference region not excited with UV light. This increase is due to NP disassembly and a resultant 
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decrease in the quenching of the quantum dots immobilized in the NPs. Overall, our results show that 

we can disassemble NPs by light, either in vitro or within cells.  

 

 

Figure 3.2 - Properties and disassembly of light-triggerable NPs. (A) TEM of the light-triggerable NPs. Bar 

represents 100 nm. (B, C, D) Size, zeta potential and number of NPs (Kcps) of an aqueous suspension of NPs. (B) 

UV light (365nm, 100W) activation of NPs exposed up to 10 min. (C, D) Blue laser (405 nm, 80 mW) activation 

of NPs with (D) and without (C) DMNC photochrom, exposed up to 20 min. A suspension of NPs (100 μL, 100 

μg, in water) was exposed to a UV (up to 10 min) or a blue laser (up to 20 min). Then, the NP suspension was 

diluted up to 50 μg/mL in water and the size, zeta potential and number of NPs (Kcps) in the suspension was 

evaluated by dynamic light scattering. Results are expressed as mean±s.e.m (n = 5). (E and F) Confocal images 

showing light-disassembly of quantum dots 525 (Qdot525)-labeled NPs. (E) A section of a NP aggregate (area 

delimited in the figure) was bleached continuously by a laser at 405 nm as confocal images were collected every 

20 s. The images show the disassembly of the bleached area of the NP aggregate. Fluorescence intensity of the 

area bleached by the laser and reference area (i.e. not activated by the laser) overtime. Our results show that 

fluorescence intensity increases after light exposure due to the disassembly of the NP and the decrease in the 

quenching of Qdot fluorescence after NP disassembly. (F) Confocal imaging of HUVECs after exposure for 4 h 

to QDot525-labelled NPs. A small section of the cell (region 1, created by a mask) was then exposed to blue light 

laser cycles (405 nm) in a Zeiss confocal microscope and the intensity of fluorescence at 525 nm monitored. In 

parallel, the fluorescence of another section of the cell (region 2) not excited with the laser was monitored as a 

control. Our results show that the fluorescence intensity in region 2 maintains overtime while in region 1 the 

intensity increases. Blue dots and line presents the blue light laser-exposed area of Qdot525-labelled NPs; orange 

dots and line presents the control unexposed area of Qdot525-labelled NPs. Dashed areas show cell membrane and 

nucleus. 
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3.3.2. Loading and controlled release of Retinoic acid. 

To evaluate the light-inducible polymeric NPs as a method for the controlled release of RA, a 

solution of RA with PEI-DMNC was assembled with DS in aqueous solution to form NPs (RA+NPs). 

Under these conditions, the carboxyl groups of RA tend to form electrostatic interactions with the amine 

groups of PEI14. The resultant NP formulation contained approximately 150 µg of RA per mg of NP, an 

average diameter of 160 nm and a zeta potential of 22 mV. The release profile of the NP formulation 

containing [3H]RA was monitored by scintillation after NP exposure to UV light or a blue laser for up 

to 10 min (Figure 3.3A). Up to 50 ng of RA was released per µg of NP after 10 min of activation. In 

the absence of light, up to 10 ng of RA was released per µg of NP after 8 days (Figure 3.3B).   

 

 

Figure 3.3 - Release of RA from Light-triggerable RA+NPs. (A) Release of [3H]-RA from an aqueous 

suspension of RA+NPs after exposure to UV or a blue laser. (B) Passive release of RA from RA+NPs without 

light activation. In (A) the NPs were prepared using [3H]-RA, diluted to 10 µg/mL NP suspension and then 

exposed to UV or blue laser up to 10 min. The released RA was measured in the supernatant by scintillations 

counts, after centrifugation (14000g, 3 min) of the of RA+NPs. In (B) RA+NPs (2.5 mg) were placed in PBS (0.5 

mL) and incubated under mild agitation at 37 °C. At specific intervals of time, the nanoparticle suspension was 

centrifuged (at 14.000 g for 3min) and 0.4 mL of the release medium removed and replaced by a new one. The 

reserved supernatant was stored at 4°C until the RA content in release samples was assessed by spectrophotometry 

at 350 nm. Concentrations of RA were determined by comparison to a standard curve. Results are expressed as 

mean±s.e.m (n=3). 

 

3.3.3. Cytotoxicity of nanoparticles and light activation in leukaemic and non-

leukaemic human cells 

Next, we asked whether leukaemia cells could uptake light-inducible NPs. According to our 

dynamic light scattering studies, RA+NPs are positively charged when resuspended in different culture 

media and relatively stable for at least 24 h (Figure 3.4).  
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Figure 3.4 - Stability of RA+NPs suspended in water or cell culture media. (A) Zeta potential of RA+NPs 

suspended in water, serum-free RPMI (medium used for leukaemia cells) or EBM medium (medium used for 

HUVECs). It should be noted that the transfection of the cells with RA+NPs was always performed in serum-free 

media. Diameter (nm) and counts (Kcps) of RA+NPs suspended in water (B), RPMI medium (C) or EBM medium 

(D). A suspension of RA+NPs (2 mL, 25 μg/mL) was prepared and diameter, counts and zeta potential determined 

by dynamic light scattering method (DLS) using a Zeta Plus Analyzer (Brookhaven). Results are expressed as 

mean±s.e.m (n = 3). 

RA+NPs had no substantial effect on cell metabolism, as evaluated by an ATP assay for 

concentrations up to 20 µg/mL in human leukaemic cell lines (Figure 3.5A) and in case of non-

leukaemic cells no cytotoxicity was observed for NP concentrations up to 10 µg/mL (Figure 3.5B), also 

confirmed by AnnexinV/PI assay (Figure 3.5C). For ATP and AnnexinV/PI assays Human bone 

marrow APL NB4 cells, human myelomonoblastic U937 cells (expressing a chimeric PLZF/RARα 

fusion protein622,623 and showing impaired sensitivity to RA624,625, HUVECs and human dermal 

fibroblasts were exposed to NPs for 4 h, washed to remove excess NPs not taken up by the cells, either 

exposed or not to UV light for 10 min, and finally cultured for an additional 20 h. Because the activation 

of RA+NPs by UV or blue light can induce double-stranded DNA breaks, we used HUVECs to evaluated 

the effect of this radiation on the phosphorylation of histone H2A (γH2AX), an early biomarker of DNA 

damage626. Our results indicate that neither UV nor blue light exposure for 10 min had a significant 

impact on DNA damage (Figure 3.5D and E).  
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Figure 3.5 - Cytotoxicity of RA+NPs and light activation. (A) Cytotoxicity of RA+NPs against human 

leukaemic cell lines NB4 and U937 cells. Cells were cultured in medium supplemented with light-sensitive 

RA+NPs for 4 h, washed, exposed or not to a UV light for 10 min, and then cultured for 20 h. Cell cytotoxicity 

was evaluated by an ATP kit. (B, C) Cytotoxicity of RA+NPs against HUVECs or human dermal fibroblasts. Cells 

were cultured in medium supplemented with light-sensitive RA+NPs for 4 h, washed, exposed or not to a UV light 

for 5 min, and then cultured for 20 h. Cell cytotoxicity was evaluated by an ATP kit (B) or Annexin V/PI staining 

(C) followed by flow cytometry analyses. In this case, the concentration of RA+NPs was 10 μg/mL. Live cells 

were negative for Annexin V and PI staining. In A, B and C results are expressed as mean±s.e.m (n = 3). (D) 

HUVECs were exposure to 10 min or 60 min of UV light (left panel) or blue light (right panel) and allowed to 

recover for 6 h. Cells were then fixed and stained to identify γH2AX-containing foci, as biomarker for nuclear 

sites of DNA damage in affected cells. Bar corresponds to 10 μM. (E) Time-dependent increase of γH2AX after 

UV light (365 nm, 100 W) or blue light (405 nm, 80 mW) irradiation. Quantitative analysis of foci intensity were 

quantified using ImageJ software and normalized to the control condition. Results are expressed as Mean ± SEM. 

The calculations were performed in 5 different images for a total of ca. 250 cells (ca. 50 cells per image). 
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3.3.4. Characterization of the internalization kinetics and pathways of RA+NPs 

The intracellular accumulation of RA+NPs was monitored by flow cytometry and inductively 

coupled plasma mass spectrometry (ICP-MS) (Figure 3.6). Our results show that NP internalization 

peaked at 6 h (Figure 3.6A and B) and the intracellular concentration was dependent on the initial NP 

loading (Figure 3.6C). No significant differences were observed in the internalization profiles between 

cells. Importantly, 60-100% of the leukaemia cells retained NPs in culture for at least six days, as 

confirmed by flow cytometry (Figure 3.6D and E). This corresponded to the retention of 25-50% of 

the initial mass of the NPs during 8-10 cell doublings, as obtained by ICP-MS analyses (Figure 3.6F). 

Altogether, NPs were efficiently internalized by human leukaemia cells and accumulated intracellularly 

for several days.  

 

Figure 3.6 - Cellular uptake and dilution of RA+NPs in human leukaemic cells. (A) Uptake of TRITC-labeled 

RA+NPs (10 μg/mL) in leukaemia cell lines (NB4 and U937) as determined by FACS. Cells were cultured in 

medium supplemented with NPs for the time defined in the graph, washed and characterized by flow cytometry. 

The results are expressed as mean±s.e.m (n = 3). (B-C) Quantification of RA+NP internalization in leukaemia cell 

lines as determined by ICP-MS analysis (Zn quantification). Cells were incubated with 10 μg/mL NPs (B and C) 

or 100 μg/mL NPs (C) up to 24 h. After each incubation period, the cells were extensively washed with PBS 

followed by the addition of an aqueous solution of nitric acid (1 mL, 69% (v/v)). The concentration of intracellular 

levels of Zn was quantified by ICP-MS. The concentration was normalized per cell. The estimation of NPs was 

done based on standard solutions. The results are expressed as mean±s.e.m (n=3). (D, E) Dilution of TRITC 

labeled RA+NPs with cell culture. NB4 (D) and THP-1 (E), were transfected with RA+NPs in serum-free media 

for 4h, washed with PBS to remove non-internalized RA+NPs and cultured in complete media for additional 4h, 

3 days and 6 days. After each incubation time cells were washed, counted (to monitor cell doublings) and NP 

dilution evaluated by flow cytometry (D, E) and by ICP-MS (F). The results are expressed as mean±s.e.m (n=3). 
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To identify the pathways of RA+NP internalization, U937 cells were incubated in the presence of 

endocytosis chemical inhibitors at non-cytotoxic concentrations. Fluorescent-labelled RA+NPs were 

then added, and the internalization monitored by flow cytometry. Whenever possible, molecules that 

enter by a specific internalization pathway were used as positive controls to show the efficacy of our 

inhibitors (Figure 3.7A). Dynasore treatment (clathrin-mediated endocytosis (CME) inhibitor) reduced 

the uptake of RA+NPs by 90% compared to control cells (Figure 3.7B). To further confirm the 

endocytosis mechanisms involved in RA+NP internalization, U937 cells were transfected with siRNAs 

to downregulate key components of different endocytosis pathways (Figure 3.7C). We observed a 

~60% and ~70% reduction in NP uptake upon downregulation of clathrin heavy chain (CLTC), and low-

density lipoprotein receptor (LDLR), respectively, confirming a role for CME. The knockdown of 

macropinocytosis regulators Rac1 and CTBP1 led to a ~40% and ~50% decrease in RA+NPs uptake, 

respectively, suggesting that macropinocytosis was also involved in RA+NP internalization (Figure 

3.7C).  

 

 

 

Figure 3.7 - Internalization mechanisms of RA+NPs in Zn-induced U937 cells. (A) Transport of FITC-labeled 

transferrin (1 μg/mL) known to selectively enter cells via clathrin-mediated endocytosis. Dynasor at concentration 

of 80 μM inhibits the internalization of transferrin in U937 cells. Cells were exposed to culture medium with and 

without dynasor for 30min, exposed to FITC-labeled transferrin for 3 min, at 4 ºC, and finally characterized by 

FACS. Results are expressed as mean±s.e.m (n = 3). Statistical analyses were performed by an unpaired t-test. **** 

Denotes statistical significance (P<0.0001). (B) Uptake of TRITC-labeled RA+NPs by U937 cells in the presence 

of several endocytosis inhibitors. Filipin III inhibits cholesterol dependent internalization mechanisms, 

ethylisopropylamiloride (EIPA) inhibits macropinocytosis, nocodazole inhibits microtubule dependent pathways, 

cytochalasin D inhibits all pathways dependent on actin (including macropinocytosis), dansylcadaverine and 

dynasor inhibits clathrin-mediated endocytosis and polyinosinic acid inhibits scavenger receptors. Results are 

expressed as mean±s.e.m (n = 3). (C) Uptake of TRITC-labelled RA+NPs after silencing of key regulators on 

endocytosis by transfection of siRNAs in U937 cells. Results are expressed as mean±s.e.m (n = 3). Statistical 

analyses were performed between control and the remain experimental groups using one-way ANOVA followed 

by a Newman-Keuls post-test. *P<0.05, ***P<0.001, ****P<0.0001.      

3.3.5. Intracellular trafficking and endolysosomal escape of NPs 

To elucidate the intracellular trafficking of our NPs, we used adherent cells (HUVECs) to allow for 

this characterization by confocal microscopy. The intracellular trafficking of our NPs was assessed first 

by performing a LysoTracker staining to see the general distribution of FITC-labelled RA+NPs in the 

endolysosomal system. During the first few hours, there was an increase in the intracellular signal of 
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FITC-labelled RA+NPs and a clear drop in the intensity of LysoTracker, suggesting an increase in the 

pH of the endolysosomal vesicles by the presence of intracellular PEI (a strong base), as well as possible 

vesicle disruption, as the FITC-labelled NP signal was increased in the cytoplasm (Figure 3.8A). At 

later time points (12 h) of incubation with FITC-labelled NPs, the intensity of LysoTracker reached 

control levels, suggesting that the endolysosomal system regained its normal characteristics. Our results 

further show that most of the NPs (~80% of NP fluorescence) escape endolysosomes within a few hours 

(Figure 3.8B). At 6 h, most of the FITC-labelled NPs were distributed throughout the cytoplasm (~80% 

of the fluorescence) (Figure 3.8B), and those that accumulated in the endolysosomal compartment were 

located in vesicles positive for Rab5 (early/late endosomes) and Rab7 (endosome/lysosomes) (Figure 

3.8C and D). This is consistent with a rapid escape of the NPs from endosomes after uptake by the cell, 

likely due to their buffering capacity which gives rise to osmotic swelling and endosome rupture619.  

 

 

 

Figure 3.8 - Intracellular trafficking of FITC-labelled RA+NPs. (A) HUVECs were incubated with FITC-

labeled RA+NPs (1μg/mL) for 4h, washed extensively, cultured in EGM-2 cultured in normal conditions for 1, 2 

or 8 additional hour/s, respectively, and stained with LysoTracker DND-99 before cell fixation to monitor the NPs 

trafficking through the endolysosomal compartment overtime. (B) Fluorescence of NPs in the cytoplasm measured 

by confocal microscopy. Scale bar represents 10μm. Results are expressed as mean±s.e.m (n = 5). (C, D) Early 

endosome were stained with EEA1 antibody, early/late endosomes were stained with Rab5 antibody and late 

endosome/lysosomes were stained with Rab7 antibody. (C) Quantification of FITC-labelled RA+NPs co-localized 

with EEA1, Rab5 and Rab7. Results are expressed as mean±s.e.m (n = 70-100 cells). At 5 h, there is a clear 

accumulation of FITC-labeled NPs within vesicles that are mostly Rab5 and/or Rab7 positive with very low EEA1 

co-localization. The high co-localization with Rab5 and the size of the vesicles containing NPs (see D) suggests 

that macropinocytosis is also an entrance route for these NPs. (D) Representative images of the intracellular 

distribution of FITC-labelled RA+NPs at time 5 h in relation to early/late endosomes stained with Rab5 antibodies 

(left image), and late endosome/lysosome stained with Rab7 antibody (right image). 
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Next, we asked whether RA+NPs would be effluxed by leukaemia cells overtime. It is known that 

tumour cells express high levels of P-glycoprotein (P-gp), a membrane transporter that is responsible 

for the efflux of drugs627 and NPs628. Therefore, we used flow cytometry to study the effects of the P-gp 

antagonist, verapamil628, on the intracellular accumulation of RA+NPs in Zn-induced U937-B412 cells 

expressing P-gp (Figure 3.9A). Our results show that the intracellular accumulation of RA+NPs in U937 

slightly decreases from 4 h to 12 h (Figure 3.9B), in contrast to the control, ultra-small paramagnetic 

iron oxide (USPIO). The intracellular accumulation of USPIO was highly dependent on the inhibition 

of P-gp (Figure 3.9C). Overall, our results indicate that RA+NP endocytosis takes place primarily 

through a clathrin-mediated mechanism and at minor extent by macropinocytosis. It is likely that both 

endocytic pathways are interconnected, as has been demonstrated recently for lipid NPs21, 22. Our results 

further show that the internalization of RA+NPs occurs quickly, and within the first 2 h, a significant 

percentage of NPs tend to escape the endolysosomal compartment, while the ones that do not escape 

accumulate in early/late endosomes. 

 

 

 

Figure 3.9 - Effect of inhibition of P-gp in the accumulation of NPs. Expression of P-gp in Zn-induced U937 

cells as evaluated by flow cytometry. (A) Representative flow cytometry gating strategy of TRITC positive cells. 

Percentage of positive cells was calculated based in the isotype control. (B) TRITC-labeled RA+NPs (10 μg/mL) 

or (C) TRITC-labeled USPIO NPs (100 μg/mL) intracellular accumulation in Zn-induced U937 cells in the 

presence of the P-gp antagonist verapamil. Cells were exposed to culture medium with verapamil, TRITC-labeled 

NPs for 4 h, cultured for additional 8 h and finally characterized by flow cytometry. In A, B and C, results are 

expressed as Mean ± SEM, n=3. Statistical analyses were performed using a One-Way Anova followed by a 

Newman-Keuls posttest. *P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001. 

3.3.6. Differentiation of leukaemic cells by photo-release of RA from NPs  

Previously, liposomes629 and block copolymer NPs630 have been used for the release of RA in 

myeloid leukaemia cell lines. However, no significant differences were observed between liposome/NP 

formulations and soluble RA in their capacity to induce leukaemia cell differentiation. Therefore, we 

evaluated the capacity of light-inducible RA+NPs to prompt the differentiation of human CD34+ primary 

leukaemia cells isolated from the bone marrow aspirates of AML patients, taken at diagnosis. We 

evaluated their clonogenic potentials in short term (blast colony-forming units, CFU) and long term 

(long-term culture-initiating cell, LTC-IC) assays following treatment with RA or RA+NPs (Figure 

3.10A). Our results indicate that light-inducible RA+NPs were more effective than soluble RA at 

decreasing the number of CFUs (Figure 3.10B). Our results further indicate that RA+NPs activated by 
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light are more effective in decreasing the number of CFUs (Figure 3.10C) and LTC-ICs (Figure 3.10D) 

than non-activated RA+NPs. We extended the previous studies to different leukaemia cell lines, 

including U937, NB4 and THP-1 (Figure 3.10E, G and K).  

The differentiation process was monitored by the expression of myeloid maturation marker CD11b, 

a protein involved in the regulation of leukocyte adhesion and migration. For equivalent concentrations 

of RA, U937 (Figure 3.10E) or NB4 (Figure 3.10G) cells treated with RA+NPs more readily 

differentiated into myeloid cells than cells treated with soluble RA, likely due to the higher efficiency 

of the NPs to deliver RA intracellularly (Figure 3.10J). The differences in the intracellular accumulation 

of RA are likely explained by the differences in RA uptake mechanism. The RA is a hydrophobic small 

molecule with limited water solubility (63 mg/L 631) and thus in vivo, it is transported by proteins called 

cellular retinoic acid-binding proteins (CRABP) both in extracellular and intracellular compartments632. 

The expression of CRABP is relatively low in undifferentiated leukaemic cells633 and thus the transport 

of soluble RA to inside of the cell might be limited. In contrast, the transport of RA+NPs occurs by 

endocytosis which might facilitate the intracellular accumulation of RA. 

U937 (Figure 3.10F), NB4 (Figure 3.10H) or THP-1 (Figure 3.10K) cells treated with light-

activated RA+NPs showed a higher capacity for myelocytic differentiation than cells treated with non-

activated RA+NPs. In the case of NB4 cells, RA released from light-inducible RA+NPs promoted a 

higher percentage of cells expressing CD13highCD11b+ and CD13lowCD11b+ (Figure 3.11A and B) than 

soluble RA. 
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Figure 3.10 - Effect of RA+NPs on human leukaemia cells. Effect of RA+ NPs on human leukaemia cells. 

(A) Schematic representation of the methodology used. (B) Differentiation of CD34+ AML cells isolated from the 

bone marrow aspirates of patients with AML cultured with light-activated RA+NPs or soluble RA. (C, D) 

Differentiation of CD34+ AML cells with RA+NPs (10 μg/mL) or blank (RA-NPs) NPs (10 μg/mL, exposed or 

not to UV light, by a CFU (C) or LTC-IC (D) assays. Results are expressed as a mean percentage of control plates 

containing only AML cells. (E, F) Myelocytic differentiation of human Zn-induced U937-B412 cells cultured with 

light-activated NPs or soluble RA at day 3 (E) or cultured with RA+NPs with or without light activation (F). (G, 

H) Myelocytic differentiation of human NB4 cells cultured with light-activated NPs or soluble RA at day 3 (G) or 

cultured with RA+NPs with or without light activation for 1 or 3 days (H). (I) Intracellular release of RA as 

evaluated by a RARE luciferase cell line. NB4-RARE cells were cultured with soluble RA (3 μg of RA per ml) 

for the entire duration of the experiment, or light-activatable RA+NPs (5 μg/mL; 0.6 μg of RA per mL). Cells were 

exposed to NPs for 1 h, washed with PBS and resuspended in cell media. Some samples were exposed to UV light 

for 5 min. The cells were then cultured for 24 h before luciferase luminescence reading. (J) [3H]-RA uptake by 

NB4 cells. NB4 cells were cultured with soluble [3H]-RA (0.3 and 3 μg/mL) for the entire duration of the 

experiment, or light-activatable [3H]-RA+NPs (1 and 10 μg/mL) for 4 h and then the cells were washed and 

cultured in cell medium for additional 20/68 h before scintillation counting. (K) Myelocytic differentiation of 

human THP-1 cells. THP-1 cells were cultured with soluble RA (3 μg of RA per mL) in culture medium for the 

entire duration of the experiment, or light-activatable RA+NPs (10 μg of NPs/mL, i.e., 1.2 μg of RA per mL), or 

light-activatable NPs without RA (10 μg of NPs/mL). From B to K, results are expressed as mean±s.e.m. (n=3). 

In C, D, F, H,K, statistical analyses were performed by an unpaired t-test while in i were performed by one-way 

ANOVA followed by a Newman–Keuls post-test. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001. 
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NB4 cells differentiated by light-inducible RA+NPs have a different morphology from 

undifferentiated cells, showing polylobular nuclei, decreased nuclear:cytoplasmic ratios and decreased 

cytoplasm staining, as characterized by a May-Grunwald Giemsa staining (Figure 3.11C). 

 

 

 

Figure 3.11- Differentiation profile of NB4 cells after treatment with soluble RA or RA+NPs. NB4 cells were 

incubated in serum-free RPMI-1640 with RA+NPs (1 or 10 μg/mL; RA+NPs_1 and RA+NPs_10, respectively) 

for 4 h. Then, cells were washed three times with PBS to remove NPs not internalized, activated by UV light 

(365nm, 100W) during 5 min, and cultured in complete medium for additional 3 days. Alternatively, NB4 cells 

were cultured in complete medium for 3 days having soluble RA (0.3 or 3 μg/mL; RA_0.3 and RA_3, respectively). 

(A) Flow cytometry analysis of differentiated NB4 cells cultured for 3 days. Cells were initially gated in an 

FSC/SSC plot (in red; attached to the scatter plot) and then gated for the expression of CD45 (in red; attached to 

the scatter plot). Percentages of positive cells were calculated based in the isotype controls and are shown in each 

scatter plot. Results are expressed as mean±s.e.m. (n=3). (B) Percentages of CD13highCD11b- CD13highCD11b+, 

CD13lowCD11b- and CD13lowCD11b+ in NB4 cells differentiated for 72 h. Results are expressed as mean±s.e.m. 

(n=3). (C) Representative May-Grunwald Giemsa stains of NB4 cells cultured for 72 h after exposure to RA+NPs 

(10 μg/mL; therefore 1.2 μg/mL of RA) or soluble RA (3 μg/mL). Bar corresponds to 20 μ m. 

The efficiency of the RA+NPs in delivering RA inside NB4 cells and inducing a RA-dependent 

signalling pathway was also confirmed using a NB4-RARE reporter cell line. The RA-dependent 

induction of a RARE element driving the transcription of the firefly luciferase gene was used to evaluate 

the kinetics of RA-induction using RA+NPs or RA in solution. Our results showed that RA+NPs were 
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able to induce high levels of luciferase activity shortly after light activation (Figure 3.10J). RA+NPs 

were more efficient and quicker at inducing transcription from the RARE-luciferase locus than RA in 

solution. 

 

3.3.7. Transcriptional regulation of retinoic acid during differentiation 

Next, we monitored the effects of soluble RA and RA released from RA+NPs in the transcriptional 

regulation of 96 genes involved in the differentiation program of NB4 and U937 cells634,635 (Figure 3.12 

and Figure 3.13). In the case of NB4 cells, CD52, CDKN1A (also known as the p21 gene) and TNFα 

are recognized as direct targets of RA 634; CD52 and CDKN1A are upregulated and TNFα is 

downregulated in response to RA. Our results show that the upregulation of CDKN1A and CD52 mRNA 

transcripts was significantly higher in cells treated with RA+NPs compared to those treated with soluble 

RA for 8 h and 24-48 h, respectively (Figure 3.14). 

 

 

Figure 3.12 - Heat map of the differentiation pattern of NB4 cells after exposure to soluble RA or light-

activatable RA+NPs. Cells were treated with RA+NPs (1 or 10 μg/mL) for 4 h, washed, activated with UV light 

(365 nm, 100 W) for 5 min, and then cultured for up to 48 h. In case of cells treated with soluble RA (0.3 or 3 
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μg/mL), cells were cultured in media containing soluble RA for the entire period of culture. Cells were then lysed 

and gene expression profile monitored by qRT-PCR using a Fluidigm equipment. A red-blue color scale was used 

to reflect standardized gene expression, with red indicating higher expression and blue indicating lower expression. 

Surprisingly, our clustering analysis indicate that NB4 treated with RA+NPs for the first 24 h were more related 

to the non-treated cells than soluble RA. Yet this effect is inverted for 48 h. Therefore, our data suggests that the 

most significant alterations in NB4 cells after treatment with RA+NPs occurs between 24 and 48 h. 

 

 

Figure 3.13 - Heat map of the differentiation pattern of Zn-induced U937 cells after exposure to soluble RA 

or light-activatable RA+NPs. Cells were treated with RA+NPs (1 or 10 μg/mL) for 4 h, washed, activated with 

UV light (365 nm, 100Watts) for 5 min, and then cultured for up to 48 h. In case of cells treated with soluble RA 

(0.3 or 3 μg/mL), cells were cultured in media containing soluble RA for the entire period of culture. Cells were 

then lysed and gene expression profile monitored by qRT-PCR using a Fluidigm equipment. A redblue color scale 

was used to reflect standardized gene expression, with red indicating higher expression and blue indicating lower 

expression. Our clustering analysis indicate that Zn-induced U937 cells treated with 10 μg/mL, but not 1 μg/mL, 

of RA+NPs were more distant to the non-treated cells than soluble RA. This effect was observed for all the times 

investigated. Therefore, in contrast to NB4 cells, our clustering analyses indicate that Zn-induced U937 cells were 

more sensitive to RA released from RA+NPs at least at high concentrations (10 μg/mL). 
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On the other hand, the downregulation of TNFα occurred more slowly in cells treated with RA+NPs 

than in those treated with soluble RA. Other RA-responsive genes were also evaluated by qRT-

PCR634,636. The number of mRNA transcripts for IL-8 and Ly6E genes was higher in cells treated with 

RA+NPs than in those treated with soluble RA for 8-24 h and 24-48 h, respectively. In addition, the 

number of mRNA transcripts for CCR2 and CEBPα genes were lower in cells treated with RA+NPs than 

in those treated with soluble RA for 8-48 h and 8 h, respectively. Importantly, no significant variation 

in mRNA transcripts for RARα, RARβ and RARγ (Figure 3.12 and Figure 3.14) was found between 

all experimental groups. Therefore, our results suggest that the differentiation profile induced by 

RA+NPs is similar to that observed for soluble RA; however, the magnitude of the effect in the initial 

stages (up to 24 h) is higher in cells treated with RA+NPs. 

 

 

 

Figure 3.14 - Genes modulated by RA during differentiation of NB4 cells as assessed by qRT-PCR analyses. 

Results are expressed as mean±s.e.m (n=3). In each run, the expression of each gene was normalized by GAPDH 

gene. Gene expression in each experimental group was normalized by the corresponding gene expression observed 

in nontreated NB4 cells. 

 

3.3.8. Effect of time and irradiation rounds on RA+NPs induced differentiation 

Recent studies report that lipid-based NPs are able to release siRNA cargo in the cytosol only during 

a limited window of time, when the NPs reside in a specific compartment that shares early and late 

endosomal characteristics637,638. Therefore, we evaluated the impact of temporal activation of RA+NPs 

on the differentiation of NB4 and U937 cells. The effect of the intracellular release of RA was evaluated 

in terms of cell differentiation into the myeloid lineage (expression of CD11b at day 3) (Figure 3.15A).  
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Figure 3.15 - Effect of time in the activation of RA+NPs within the cells. (A) Zn-induced U937-B412, NB4 or 

NB4-RARE-luciferase reporter cells were cultured with RA+NPs (1 μg/mL) for variable period of times (1 up to 

24 h), washed with PBS, resuspended in cell culture media, exposed to UV light (365 nm, 100 Watts) for 5 min, 

and cultured for 12 h (luciferase measurements) or 72 h (flow cytometry analyses). Results are expressed as 

mean±s.e.m (n = 3). (B) Zn-induced U937-B412, NB4 or NB4-RARE-luciferase reporter cells were cultured with 

RA+NPs (1 μg/mL) for 4 h, washed with PBS, resuspended in cell culture media, exposed to UV light for 5 min 

at variable periods of time (0 up to 44 h), and cultured for 12 h (luciferase measurements) or 72 h (flow cytometry 

analyses). Results are expressed as mean±s.e.m (n = 3). In NB4-RARE, the activation of RA-dependent signalling 

pathway was measured by luminescence while in U937 B412 and NB4, cell differentiation was evaluated by the 

expression of CD11b by flow cytometry. 

Cells that were incubated with RA+NPs for 4 to 8 h and subsequently activated by light showed the 

highest differentiation into the myeloid lineage. Interestingly, cells incubated with RA+NPs for 1 h 

showed an already high level of differentiation, indicating that NP uptake is rapid, and their endosomal 

escape is efficient. Then, we asked whether cells exposed for the same time (4 h) to NPs but activated 

at different times (up to 44 h) during the intracellular trafficking of RA+NPs would have differences in 

their differentiation pattern (Figure 3.15B). Our results show that even after 44 h following NP 

internalization, the NPs can be activated and the resultant delivery of RA in the cytosol can be relatively 

efficient. Similar results were obtained when the effect of temporal intracellular RA release was 
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evaluated by the induction of the NB4-RARE reporter cell line (Figure 3.15B). Overall, these results 

show that the NPs can be accumulated in the intracellular environment and activated after a few days, 

without losing their capacity to promote cell differentiation. Importantly, a single activation procedure 

seems to be sufficient to activate RA release from the NPs because no significant increase in efficiency 

was observed when multiple rounds of light activation were performed (Figure 3.16). 

 

 

 

Figure 3.16 - Effect of multiple light activation in the differentiation of Zn-induced U937-B412 cells. (A) 

Schematic representation of the methodology. Cells were cultured with RA+NPs (10 μg/mL) for 4 h, washed with 

PBS, resuspended in cell culture media, exposed to multiple 5 min-cycles of UV light (365 nm, 100 Watts) during 

the 72 h of culture. (B) Myelocytic differentiation at 72 h, as assessed by the expression of CD11b (by flow 

cytometry), of human leukaemia Zn-induced U923-B412 cells. Results are expressed as mean±s.e.m (n = 3). 

Statistical analyses were performed using a One-Way Anova followed by a Newman-Keuls post-test. *P<0.05 and 
**P<0.01. 

 

3.3.9. In vivo differentiation of NB4 cells transfected with RA+NPs 

 Next, we evaluated if RA+ NPs can function in vivo. We investigated whether leukaemic cells 

loaded with RA+NPs could be activated in vivo after subcutaneous transplantation. We selected a 

Matrigel plug subcutaneous model because we know what the attenuation of the blue laser through the 

murine skin is (Figure 3.17A) and we could easily remove the cells from the Matrigel plug and evaluate 

their differentiation by flow cytometry. Initially we evaluated whether the in vivo environment could 

interfere with the differentiation program of leukaemic cells after ex vivo activation.  
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Figure 3.17 - Blue laser (405 nm) attenuation through murine skin or calvaria. NOD/SCID mice were 

euthanized followed by hair shaving and removal of dorsal and ventral skin as well as calvaria bone. Both tissues 

were kept in cold PBS until further analyses. For the laser attenuation studies, 2 cm x 2 cm skin or 0.5 cm x 0.5 

cm calvaria were placed in a plastic petri dish on top of a thermal power sensor (Thorlabs, s310c). Both tissues 

were then irradiated with a 405 nm laser at 80 mW during 1 min. Laser attenuation values were calculated by 

normalizing against laser power values obtained with the empty petri dish. The thickness of the skin and bone was 

measured by a caliper. (A) Blue laser attenuation as a function of skin thickness. Results are expressed as 

mean±s.e.m (n = 2-6 per each thickness interval). (B) Blue laser attenuation in calvaria bone (≈ 260 μM). Laser 

attenuation in calvaria bone is lower than the skin likely due to the high transparency of the bone. Results are 

expressed as mean±s.e.m (n = 4). 

 

Human NB4 cells were cultured with RA+NPs for 4 h, washed and activated ex vivo by exposure to 

a 405 nm blue laser (80 mW) for 5 min, embedded in Matrigel and then injected into a cylindrical 

poly(dimethylsiloxane) (PDMS) construct that was previously implanted subcutaneously in NOD/SCID 

recipients (Figure 3.18A). The PDMS cylinder was used to restrict cell position inside the animal. After 

five days, human cells were isolated from the implants and CD11b expression measured by flow 

cytometry (Figure 3.18B).  

Consistent with our in vitro data, CD11b expression was statistically higher in NB4 cells treated ex 

vivo with light-activated RA+ NPs than in cells treated with RA+ NPs without light activation (Figure 

3.18B). The experiment was repeated with in vivo activation. One day after implantation, the recipients 

were exposed to a 405 nm blue optical fibre for 5 min at the implant site (Figure 3.18C). After three 

days, the recipients were sacrificed, the human cells were isolated and CD11b expression was assessed. 

CD11b expression was higher in NB4 cells from mice that had been exposed to the blue laser, 

demonstrating that internalized RA+ NPs can be activated to release RA in vivo in a highly controlled 

manner (Figure 3.18C).  
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Figure 3.18 - In vivo differentiation of NB4 cells exposed to light-activatable RA+NPs. (A) Schematic 

representation of the in vivo experimental set up. Cells were treated with blank or RA+NPs (both at 10 μg/mL) for 

4 h, washed and then activated or not with a blue optical fibre (405 nm, 80mW) for 5 min. Cells were then 

resuspended in a 1:1 (v/v) Matrigel solution and subcutaneously injected in a PDMS cylinder construct implanted 

in the dorsal region of mice. After 5 days, cells were removed from the construct and characterized by flow 

cytometry, for CD11b expression. (B) Representative flow cytometry plots for mice recipient cells (left), human 

leukaemia NB4 cells (middle) and a mixture of mice recipient cells with human leukaemia NB4 cells (right) and 

percentage of CD11b+ cells in human leukaemia NB4 cells collected 5 days after subcutaneous injection. (C) 

Schematic representation of the in vivo experimental set up. Cells were treated with RA+NPs (10 μg/mL) for 4 h, 

washed and then encapsulated in a 1:1 (v/v) Matrigel solution and subcutaneously injected in a PDMS cylinder 

construct implanted in the dorsal region of mice. After 24 h, some experimental groups were activated in vivo with 

a blue optical fibre for 5 min. Plot shows the percentage of CD11b+ cells in human leukaemia NB4 cells collected 

3 days after the in vivo activation. In B, C, results are expressed as mean±s.e.m. (n=3–4). Statistical analyses were 

performed by one-way Anova followed by a Newman–Keuls post-test. **P<0.01, ***P<0.001, ****P<0.0001. 
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3.3.10. Bone marrow homing and engraftment of THP1 treated with RA+NPs 

  

Leukaemia cells that resist therapy reside in microenvironmental niches in the bone marrow that are 

difficult to reach by conventional therapy2. Therefore, we investigated whether leukaemia cells 

transfected with RA+NPs could engraft into the bone marrow and localize at nearby resident leukaemia 

cells. For this purpose, we transplanted leukaemia cells into immunodeficient CB17-Prkdcscid/J 

(NOD/SCID) mice treated with anti-CD122 to deplete innate immune cells (NS122). Green fluorescent 

protein (GFP)-labelled THP-1 cells, a human APL cell line (NB4 cells were unable to engraft), were 

injected into sub-lethally irradiated mice in the tail vein, followed by the injection of THP-1 cells 

transfected with RA+NPs after 24 h (Figure 3.19A). After 1-2 days, animals were sacrificed and the 

cells in the animal’s calvaria (cranium) were characterized by ex vivo imaging (Figure 3.19B). Both 

cells (GFP-labelled and NP-labelled THP-1 cells) could engraft in the bone marrow of the animals and 

were detected after one or two days. Therefore, NP-labelled THP-1 cells (delivery cells) could enter the 

same niche as the GFP-labelled cells (target cells).   

 

Figure 3.19 - Leukaemia cells transfected with RA+NPs can home at leukaemia niches. (A) Schematic 

representation of the protocol. Human GFP-labelled THP-1 cells were employed as the target cells and human 

THP-1 cells without GFP label were employed as delivery cells. On day 0, the target cells were injected into the 

NOD/SCID mice by intravenous injection through the tail vein. On day 1, the delivery cells loaded with RA+NPs 

were injected intravenously through the tail vein. After 24 (n=3) or 48 h (n=3) of the delivery cell injection, the 

mice were euthanized, the craniums collected and examined with a confocal microscope. (B) Both target and 

delivery cells were observed in mice craniums at 24 and 48 h. Bar scale means 100 µm. (C) Delivery cells close 

(<100 µm) or distant (>100 µm) to target cells were quantified. According to our results, the delivery cells can 

enter into the same niche as the target cells. Results are expressed as mean±s.e.m. (n=3). 
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3.3.11. Modulation of cell differentiation at the bone marrow niche 

Next, we investigated whether we could differentiate the NP-labelled human THP-1 cells (delivery 

cells) at the bone marrow niche (more specifically at the calvaria), and whether they could modulate 

nearby cells (Figure 3.20A).  

 

Figure 3.20 - In vivo activation of leukaemic THP-1 differentiation program by light at the bone marrow. 

(A) Schematic representation for the activation of human THP-1 cells transfected with RA+NPs in the bone marrow 

niche leading to the modulation of leukaemia cells. (B) Percentage of human CD45+ cells in the long bones as 

evaluated by flow cytometry. NOD/SCID mice were injected intravenously with THP-1 cells transfected with 

RA+NPs through the tail vein. After 6 days, animals (n=6) were either irradiated by a blue laser (5 min, 405 nm, 

80mW) or not in the calvaria (n=6). Three days after irradiation, mice were killed and the long bones were 

collected. Cells in the long bones were characterized by flow cytometry for the expression of human CD45 epitope. 
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The engraftment of THP-1 cells was slightly higher in the non-treated than light-activated animals, but not 

statistically different. Percentages of positive cells were calculated based in the isotype controls and are shown in 

each scatter plot. Results are mean±s.e.m. (n=3). (C-E) Differentiation of human CD45+ cells into CD11b+ cells, 

as evaluated by immunofluorescence, in the calvaria of animals irradiated or not with a blue laser. B, bone; BM, 

bone marrow. In D, results are mean±s.e.m. (n=3). ***P<0.001. (F) Expression of CRABP2 in cells of calvaria of 

animals irradiated or not with a blue laser. Scale in, C, E, F means 200, 50 and 100 µm. 

Blue laser attenuation studies in the calvaria bone using a photometer showed an attenuation of  

75% (Figure 3.17B). Human THP-1 cells transfected with RA+NPs were injected intravenously into 

CB17-Prkdcscid/J (NOD/SCID) mice, and six days after injection, the cranium was exposed to a blue 

laser for 5 min. Seventy-two hours after blue laser irradiation, the engraftment of human CD45+ cells in 

the long bones of non-irradiated and blue laser-irradiated mice was 47.7  13.0 and 39.8  3.5%, 

respectively (Figure 3.20B). No statistical difference was found for the engraftment in both groups. Ex 

vivo staining of mice calvaria showed that human CD45+ cells in the non-irradiated mice did not express 

CD11b, while ~80% of the human CD45+ cells in blue-irradiated mice expressed CD11b (Figure 3.20C-

E). In addition, cells surrounding CD45+CD11b+ cells in irradiated mice expressed CRABP, a RA 

protein transporter, while negligible levels of CRABP were found in non-irradiated mice (Figure 

3.20F). Therefore, THP-1 cells differentiated by a blue laser had the capacity to modulate the cells in 

the vicinity. This is likely due to RA secreted (including exosomes containing RA) by the THP-1 cells, 

as observed in vitro using the NB4 cell line (Figure 3.21). Overall, our results show that leukaemia cells 

transfected with RA+NPs could (i) engraft into the bone marrow and localize near to resident leukaemia 

cells, (ii) differentiate after blue laser activation and (iii) modulate the activity/phenotype of the resident 

leukaemia cells. It is possible that the cells that reach the bone marrow are the ones that are less affected 

by the passive diffusion of RA (i.e., RA release without light activation) within the cells. Therefore, the 

cells that engraft are likely the ones that have less leaky RA+NPs and thus are undifferentiated leukaemic 

cells (CD11bnegative phenotype). 

 

 

Figure 3.21 - Paracrine effect of cells treated with RA+NPs. (A) Schematic representation of the assay. NB4 

cells (3,000,000/mL) were grown in RPMI supplemented with 10% (v/v) FBS, penicillin and streptomycin. Cells 

were treated with RA+NPs (10 μg/mL) for 4 h, washed with PBS to remove the NPs that were not internalized, 

activated by a blue laser for 5min, and then cultured for 18 h under hypoxia conditions (0.5% O2) in exosome-

depleted medium. A separate group of cells was treated with RA (3 μg/mL) for 22 h in hypoxia conditions (0.5% 
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O2) in exosome-depleted medium. Then, in both groups, cells were centrifuged at 10.000g (4ºC; 30 min) and part 

of the supernatant (named in the plot as "Sup") added to NB4 RARE cells (100,000/mL; 1 mL of the Sup). 

Alternatively, in both groups, cells were centrifuged in multiple steps (please see methods) to remove exosomes 

(named in the plot as "exo") and added to NB4 RARE cells (100,000/mL; 5 μg/mL de exosomes per mL of media) 

plated in a 24 well plate. After 24 h, the luciferase assay was performed according to instructions of the luciferase 

kit (britelite™). (B) Activation of NB4 RARE reporter cell line with the factors secreted by the NB4 cells for 22 

h cultured with soluble RA or RA+NPs. Results are expressed as mean±s.e.m (n = 3). Statistical analyses were 

performed using a One-Way Anova followed by a Newman-Keuls post-test. * P<0.05, ** P<0.01, *** P<0.001 and 
****P<0.0001. 

3.4. Conclusions 

In conclusion, we have developed a light-inducible polymeric NP for the spatio-temporal release of 

RA within leukaemia cells. We showed the efficiency of RA release both in vitro and in vivo. The 

efficiency is due to a combination of several factors, including (i) high concentration of intracellular 

RA, (ii) high endolysosomal escape (80% of the NPs escape the endolysosomal compartment in the first 

5 h), (iii) prolonged intracellular accumulation of the NPs (more than six days in leukaemia cells) and 

(iv) rapid disassembly of the NPs once activated by UV or blue light (within minutes). We further 

showed that cells transfected with light-inducible NPs can be activated after six days while maintaining 

the same inductive properties. This gives an opportunity to use cells for activation at specific sites in the 

human body and differentiate cells in their proximity. Although the present study uses a RA delivery 

system as a proof of concept, a similar approach could be implemented for other drugs relevant to 

therapeutic or regenerative medicine.  

The present research reports a blue laser/UV-inducible NP. The platform was designed for initial 

proof of concept regarding the modulation of leukaemic cell niches in the bone marrow. Recent studies 

have explored UV/blue laser approaches to trigger in vivo the presentation of bioligands with spatial 

temporal control to regulate cell adhesion, inflammation, and vascularization of biomaterials639 and to 

detect protease activity at sites of disease640. However, the in vivo applications of this light trigger are 

limited, as the optical properties of biological tissue cause attenuation and scattering of light rays, 

reducing their penetration depth. The recent advances in developing NPs activated by near-infrared 

light641 may provide a better option for enhancing light penetration in tissues. For example, up-

conversion nanocrystals that convert near infrared light into visible light (blue light) may be an 

interesting possibility for the photo-cleavage of linkers to which RA is chemically bound642. 

We have used leukaemic cells as a programmable delivery system that recognizes the leukaemic 

niches and modulate them after light activation. The aim of the study was to show the feasibility in 

remotely induce the differentiation of leukaemic cells in the bone marrow and not to demonstrate the 

exhaustion of cancer cells, as this will be difficult using the blue laser activation process. The concept 

here is different from previous studies that have used therapeutic NPs coated with aptamers to direct 

them to the bone marrow550. Although the results achieved are interesting, the side effects of the systemic 

administration of the NPs containing a powerful anti-leukaemic agent remain to be determined. In the 

present study we have used cancer biology to fight cancer. We have used leukaemia cells loaded with a 

clinical-approved AML differentiating agent able to home to leukaemic niches in the bone marrow. 

Although not explored in the current study, normal haematopoietic stem cells may also be used as a 
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nanoparticle carrier as they are able to home to leukaemic niches180, which we explore in the next 

chapter. 

 

 

3.5. Materials and Methods 

Preparation and characterization of PEI conjugated with DMNC. DMNC (48.5 mg, Sigma) 

was slowly added to a solution of PEI in DMSO (2 mL containing 50 mg/mL PEI, Sigma) containing 

triethylamine (24.5 L, Sigma), and the reaction flask cooled to 0 ºC by immersion on ice. Then, the 

reaction was allowed to proceed for 24 h at 25 ºC with stirring. At the end, the PEI-DMNC conjugate 

was purified by dialysis (Spectra/Por® 1 Regenerated Cellulose dialysis membrane, MWCO 6000-8000 

Da, Spectrum) against DMSO overnight at room temperature. Reaction yields above 54 % were 

obtained. For NMR characterization, PEI-DMNC (in DMSO) was precipitated in water, washed, freeze-

dried, and then dissolved (10 mg/mL) in DMSO-d6 and 1H NMR spectra were acquired using a Bruker 

Avance III 400 MHz spectrometer. 

 

Preparation of NPs. Non-activatable NPs were prepared by the electrostatic interaction of PEI 

(polycation) with dextran sulfate (DS, polyanion) in water, at room temperature, as previously described 

by us619. Briefly, an aqueous DS solution (1 mL, 10 mg/mL) was added drop-by-drop to an aqueous 

solution of PEI (5 mL, 10 mg/mL) and stirred for 5 min. Then, an aqueous solution of ZnSO4 (0.6 mL; 

1 M) was added and stirred for 30 min. The NP suspension was then dialyzed (Spectra/Por® 1 

regenerated cellulose dialysis membrane, MWCO 6000-8000 Da, Spectrum) for 24 h, in the dark, 

against an aqueous solution of mannitol (5 %, w/v), lyophilized for 1 day and stored at 4 ºC before use. 

Light-activatable NPs were prepared by adding a PEI-DMNC solution (66.7 L, 150 mg/mL, in 

DMSO) to an aqueous solution of DS (5 mL, 0.4 mg/mL) and stirred for 5 min. Then, an aqueous 

solution of ZnSO4 (120 L, 1 M) was added and stirred for 30 min. The NP suspension was then dialyzed 

(Spectra/Por® 1 Regenerated Cellulose dialysis membrane, MWCO 6000-8000 Da, Spectrum) for 24 h, 

in the dark, against an aqueous solution of mannitol (5 %, w/v), lyophilized for 1 day and stored at 4 ºC 

before use. In some cases, PEI-DMNC was labelled with Qdot525. For that purpose, an aqueous solution 

of 1-ethyl-3-(3-dimethyllaminopropyl)carbodiimide hydrochloride (EDC; 500 L of EDC (10 mg/mL, 

aqueous solution at pH 6.0)) was added to a suspension of Qdots525 (0.16 mmoles, in 310 L of PBS). 

After 5 min, PEI-DMNC solution (200 L, 25 mg/mL in DMSO) was added to the previous solution 

and allowed to react for 1 h, in the absence of light, at room temperature.  

For the preparation of RA-containing NPs (RA+NPs), a RA solution (24 L, 50 mg/mL, in DMSO) 

was added to a solution of PEI-DMNC (66.7 L, 150 mg/mL in DMSO) and maintained at room 

temperature for 30 min, under stirring. The solution was then carefully added to an aqueous solution of 

DS (5 mL, 0.4 mg/mL) and stirred for 5 min. The NPs in suspension were treated with an aqueous 

solution of ZnSO4 (120 L; 1 M) for 30 min. RA that was not encapsulated in the NPs was removed by 

centrifugation (12,000 g for 3 min). The NP suspension was then dialyzed (Spectra/Por® 1 Regenerated 

Cellulose dialysis membrane, MWCO 6000-8000 Da, Spectrum) for 24 h, in the dark, against an 

aqueous solution of mannitol (5%, w/v), lyophilized for 1 day and stored at 4 ºC before use.  
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For the preparation of fluorescently labelled NPs, NPs (2 mg) were resuspended in 0.1 M 

carbonate/bicarbonate buffer (1 mL, pH 8.3) followed by the addition of FITC or TRITC (5 µL in 

DMSO, 3-fold molar excess). The NP suspension was stirred for 1 h in the absence of light and then 

dialyzed (Spectra/Por® 1 regenerated cellulose dialysis membrane, MWCO 6000-8000 Da, Spectrum) 

for 24 h against an aqueous solution of mannitol (5 %, w/v), lyophilized, and stored at 4 ºC before use. 

 

Characterization of the NPs. The diameter of the NPs was measured by photon correlation 

spectroscopy (PCS) using quasi-elastic light scattering equipment (Zeta-Pals™ Zeta Potential Analyzer, 

Brookhaven Instruments Corp., Holtsville, NY) and ZetaPlus™ Particle Sizing Software (version 4.03). 

To measure NP diameter, the NP suspension (2 mL, 50 g/mL in water for molecular biology) was 

added to a cuvette and allowed to stabilize for 10 min. The sample was then vortexed for 5 s and 

subjected to NP size analysis in the ZetaPlusTM for 3 min (3 times; all data were recorded at 90º). After 

each reading the cuvette was again vortexed for 5 s and exposed to UV light (365 nm) or blue light (405 

nm) for a certain period of time (see above). The values of NP diameter and NP counts were recorded. 

The average diameters described in this work are number-weighted average diameters. The zeta 

potential of NPs was determined in a 1 mM KCl pH 6 solution, at 25 °C (2 mL, 50 g/mL). All data 

were recorded with at least 5 runs (in triplicate) with a relative residual value (measure of data fit quality) 

of 0.03. The diameter of NPs was also confirmed on a FEI-Tecnai G2 Spirit Bio Twin at 100 kV. NP 

suspensions (in H2O) were placed on a 200-mesh copper grid coated with a carbon support film (Taab 

Labs Ltd.) and dried overnight.  

 

Release of RA from RA+NPs. [3H]RA solution in DMSO was used for the preparation of NPs, 

using a 1:20 ratio of labelled to unlabelled RA (1 nCi/g RA). The initial RA cargo in the NPs was 

quantified using 2/3 of the original NP suspension (1 mg/ml). To quantify the controlled release of the 

RA, a suspension of [3H]RA-NPs (10 g/mL) was prepared and irradiated with UV light (365 nm) or 

blue light (405 nm). For each time point (0s, 30s, 60s, 180s, 300s, 600s) the NP suspension was 

centrifuged at 14.000g for 3 min, the supernatant collected and mixed with liquid scintillation fluid (1 

mL; Packard Ultima Gold) and the scintillations counted in a TriCarb 2900 TR Scintillation analyser 

(Perkin Elmer).  

 

Cell culture. HUVECs (Lonza) were cultured in EGM-2 medium (Lonza) in a CO2 incubator at 37 

ºC, 5% CO2 in a humidified atmosphere, with media changes performed every other day. Cells were 

passaged every 2-5 days and used for experiments between passage 4 and 6. Human bone marrow acute 

promyelocytic leukaemia NB4 cells, kindly provided by Dr. Arthur Zelent (Institute of Cancer Research, 

Royal Cancer Hospital), were cultured in RPMI-1640 (Gibco) supplemented with 10 % fetal bovine 

serum (Gibco) and 100 U/mL PenStrep (Lonza). Human myelomonoblastic cell lines U937-MT and 

U937-B412, kindly provided by Dr. Estelle Duprez (Centre de Recherche en Cancérologie de Marseille, 

France), were maintained at exponential growth in RPMI-1640 medium supplemented with 10% fetal 

bovine serum and 100 U/mL of PenStrep. For PLZF/RARA induction cells were stimulated with 0.1 

mM ZnSO4 for at least 24 h. Human acute monocytic leukaemia cell line THP-1 (DSMZ no. ACC16) 

was cultured in RPM1-1640 media supplemented with HEPES (10 mM), sodium pyruvate (1.0 mM) 

and 2-mercaptoethanol (0.05 mM).   
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NP cytotoxicity studies. NPs were suspended in a solution of milli-Q water with PenStrep (5 

L/mL of 10000 U/mL stock solution, Lonza) and Fungizone (2.5 g/mL, Sigma-Aldrich) for 30 min, 

centrifuged (14,000 g for 10 min), and finally resuspended in serum free cell culture medium. K562, 

NB4 and U937 cells (0.1  106 cells/condition) were incubated in serum free RPMI-1640 for 4 h in a 

96-well plate containing variable amounts of PEI-DMNC:DS NPs. Once the incubations were 

terminated the cells were washed gently with medium to remove NP excess, and half of the samples 

were exposed to UV light (365 nm, 100 Watts) for 10 min. The cells were then cultured for 20 h in 100 

L of complete medium (RPMI-1640 medium supplemented with 10 % fetal bovine serum and 100 

U/mL PenStrep). A CellTiter-Glo® luminescent cell viability assay (ATP, Promega, USA) was 

performed according to the recommendations of the vendor. 

 

Assessment of histone γH2AX phosphorylation (DNA damage) induced by UV light or blue 

light irradiation. HUVEC cells (passage 4) were cultured on 1% gelatin-coated slides until 

subconfluency in EGM-2, followed by exposure to UV light (365 nm, 100 Watts) or blue light (405 nm, 

80 mW) up to 60 min. Control conditions did not receive any light radiation. Following treatment, the 

medium was replaced by fresh medium and the cells were incubated for additional 6 h on normal culture 

conditions. The cells were then fixed with 4% paraformaldehyde (Electron Microscopy Sciences) for 10 

min at room temperature and then washed with PBS. The cells were then permeabilized with 1 % (v/v) 

Triton-X, blocked with PBS + 2 % BSA and stained for 1 h with anti-human primary γH2AX antibody 

(clone: N1-431, BD Biosciences). Detection was done with secondary antibody anti-mouse Cy3 

conjugate (Jackson ImmunoResearch). Cell nuclei were stained with 4’,6-diamidino-2-phenylindole 

(DAPI) (Sigma), and the slides were mounted with mounting medium (Dako) and examined with a Zeiss 

inverted fluorescence microscope. Quantitative analysis of foci intensity were quantified using ImageJ 

software and normalized to the control condition. The calculations were performed in 5 different images 

for a total of ca. 250 cells (ca. 50 cells per image). 

 

NP internalization studies. NP internalization was monitored by inductive coupled plasma mass 

spectrometry (ICP-MS). In this case, the intracellular levels of Zn were measured before and after cell 

exposure to NPs. NB4 and U937 cells (0.1  106 cells/well) were plated in 24 well plates and incubated 

in serum free RPMI-1640 from 1 to 24 h with variable amounts of PEI-DMNC:DS NPs. After 

incubations, NPs that were not internalized by the cells were washed (three times with PBS) and the 

cells were centrifuged; followed by the addition of an aqueous solution of nitric acid (1 mL, 69 % (v/v)). 

The samples were analysed by ICP-MS for the concentration of intracellular levels of Zn. The 

concentration of Zn was normalized per cell. The estimation of NPs was done based on controlled 

standard solutions. 

 

Mechanism of NP uptake. U937 cells were cultured on 24 well plates (1  105 cells/well) and 

inhibited by one of the following chemicals during 30 min before adding a suspension of TRITC-

labelled NPs (5 μg/mL): EIPA (50 μM), dynasor (80 μM), dansylcadaverine (100 μM), cytochalasin D 

(10 μM), nocodazole (50 uM), filipin III (100 μM) and polyinosinic acid (100 μg/mL). The inhibitor 

concentrations were based in values reported in literature and further validated by us to have no cytotoxic 

effect over the period of the assay (6 h), as confirmed by ATP assay. The incubation of the cells with 
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NPs for different times was performed in the presence of the inhibitor. As controls, we used cells without 

NPs and cells incubated with NPs without inhibitor. At the end of each time point, cells were centrifuged 

at 1300 rpm, 20 ºC for 5 min with PBS, washed one time with cold trypan blue solution (200 L; 600 

g/mL), re-washed 3 times with cold PBS and then resuspended in PBS containing 2.5 % FBS (500 L) 

for flow cytometry analysis. A total of 10,000 events were obtained per measurement. To validate the 

inhibitory activity of dynasor we performed uptake studies of FITC-labelled transferrin, known to 

selectively enter cells via clathrin-mediated endocytosis. Briefly, U937 cells were cultured on 24 well 

plates (1  105 cells/well) and treated or not with dynasor (80 μM, 30 min pre-incubation), followed by 

addition of 1 g/mL FITC-labelled transferrin (Life Technologies). The transferrin was allowed to bind 

for 3 min at 4 ºC. Cells were then evaluated as before.  

The NP uptake mechanism was also studied on U937 cells by silencing specific proteins of clathrin-

mediated endocytosis (CLTC and LDLR), caveolin-mediated endocytosis (CAV1), GEEC-CCLIC 

pathways (CDC42) and macropinocytosis (RAC1 and CTBP1) by siRNA (Thermo Fisher). Transfection 

was performed in a 24 well plate with 0.5  105 cells in antibiotic-free complete medium with 100 nM 

siRNA and 1.5 μL of Lipofectamine RNAiMAX (Life Technologies) transfection reagent for 24 h. After 

this initial period, the transfection medium was replaced by complete medium and the cells incubated 

for another 48 h. Then, cells were cultured with TRITC-labelled NPs (5 g/mL) for 6 h. Once the 

incubations were terminated, the cells were centrifuged at 1300 rpm, 20 ºC for 5 min, with PBS, washed 

one time with cold trypan blue solution (200 L; 600 g/mL), re-washed 3 times with cold PBS and 

then resuspended in PBS containing 2.5 % FBS (500 L) for flow cytometry analysis. Non-transfected 

cells or cells transfected with lipofectamine but without siRNAs (MOCK) were used as controls. In all 

flow cytometry analysis, a total of 10,000 events were recorded per run. All conditions were performed 

in triplicate. 

 

Intracellular trafficking analyses of NPs. HUVEC cells (passage 4) were cultured on 1 % gelatin-

coated slides until subconfluency in EGM-2. The cells were then incubated with FITC-labelled NPs (1 

μg/mL) for 1 or 4 h, washed extensively, exposed or not to UV light (365 nm, 100 Watts) and cultured 

in normal conditions for up to 12 h. For LysoTracker staining, at time points 2, 6 and 12 h, the cells 

were incubated with LysoTracker Red DND-99 (50 nM, Invitrogen). After 30 min of incubation, the 

coverslips were washed extensively with PBS, followed by cell fixation with paraformaldehyde (4%, 

Electron Microscopy Sciences) for 10 min at room temperature and then washed with PBS. Cell nuclei 

were stained with 4’,6-diamidino-2-phenylindole (DAPI) (Sigma), and the slides were mounted with 

mounting medium (Dako) and examined with a Zeiss LSM 50 confocal microscope. 

Co-localization analysis was performed by culturing HUVEC cells (passage 4) on 1 % gelatin-

coated slides until subconfluency in EGM-2. Cells were treated with 1 μg/mL FITC-labelled NPs for 1 

or 4 hours, washed extensively and cultured in normal conditions for 1 or 1/8 additional hour/s, 

respectively. Then the cells were fixed with 4 % paraformaldehyde (Electron Microscopy Sciences) for 

10 min at room temperature, blocked with 2 % (w/v) BSA, and when necessary, permeabilized with 0.5 

% (v/v) Triton-X. Cells were then stained for 1 h with anti-human primary antibodies against EEA1 

(clone: C45B10, Cell Signalling), rabankyrin-5 (Rab 5, ANKFY1 (D-15), Santa Cruz Biotechnology), 

or rabankyrin-7 (Rab 7, clone: D95F2, Cell Signalling). In each immunofluorescence experiment, an 

isotype-matched IgG control was used. Binding of primary antibodies to specific cells was detected with 
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anti-rabbit or anti-goat IgG Cy3 conjugate (Jackson ImmunoResearch). Cell nuclei were stained with 

4’,6-diamidino-2-phenylindole (DAPI) (Sigma), and the slides were mounted with mounting medium 

(Dako) and examined with a Zeiss LSM 50 confocal microscope. Co-localization analysis was done in 

ImageJ through assessment of the percentage of overlapping objects. Two objects are considered to be 

co-localizing when their intensity profile is overlaping more than 40 %. For this analysis the number 

(percentage of FITC-labeled NPs foci that are positive for EEA-1/Rab-5/Rab-7) and the intensity 

volume (percentage of FITC-labeled NPs in the EEA-1/Rab-5/Rab-7-positive compartments) were used. 

This approach was found to be more adequate than classical co-localization tools in ImajeJ or other 

softwares that measure pixel co-occurrence and correlation analyses, because it allowed us to (i) 

discriminate between background and vesicle/NP-foci fluorescence and (ii) interpret the results in terms 

of percentage of NP-foci that are localized to vesicles in another channel of interest. 

 

NP dilution during cell proliferation. NP dilution with cell growth was monitored over 6 days by 

inductive coupled plasma mass spectrometry (ICP-MS) by the quantification of intracellular levels of 

Zn. NB4 and THP-1 cells (0.5 × 106 cells/mL) were plated in 6 well plates and incubated in serum free 

RPMI-1640 with 20 µg/mL of RA+NPs. After 4 h incubation, NPs that were not internalized by the cells 

were washed three times with PBS and the cells were left to grow at 0.2 × 106 cells/mL in complete 

medium for additional 4 h, 3 days and 6 days, maintaining always an exponential growth. After each 

incubation, cells were counted, collected by centrifugation and resuspended in nitric acid (1 mL, 69 % 

(v/v) for ICP analysis. The concentration of Zn was normalized per cell. The estimation of NPs was 

done based on Zn quantification in 20 µg of NPs. In some experiments, cells were transfected with 

RA+NPs labelled with TRITC, and their fluorescence monitored by flow cytometry overtime, to evaluate 

NPs distribution within the cells. 

 

Exocytosis analyses of NPs. To determine exocytose of NPs, NP uptake assays were performed in 

the presence of P-gp antagonist verapamil or the endosome disruption agent chloroquine. U937 cells 

were cultured on 24 well plates (1  105 cells/well) and chloroquine (100 μM, no pre-incubation) and 

verapamil (100 μM, 60 min pre-incubation) conditions were tested. The chemical agents concentrations 

were based on values reported in the literature and further validated by us to have no cytotoxic effect 

over the period of the assay (12 h). After the pre-incubation with the chemical agents, TRITC-labelled 

PEI-DMNC:DS NPs (10 μg/mL) or TRITC-labelled poly-L-lysine USPIO NPs (100 μg/mL) were added 

to the cells, maintaining the chemical agents concentration. As controls we used cells incubated without 

NPs and cells incubated with NPs without chemical agents. At the end of each experiment, the cells 

were centrifuged at 1300 rpm, 20 ºC for 5 min with PBS, washed one time with cold trypan blue solution 

(200 L; 600 g/mL), re-washed 3 times with cold PBS and then resuspended in PBS containing 2.5 % 

FBS (500 L) for flow cytometry analysis. A total of 10,000 events were recorded per measurement, 

and all conditions were performed in triplicate. 

 

[3H]RA internalization studies. [11, 12-3H(N)]-Retinoic acid, 50.4 Ci/mmol, was purchased from 

Perkin Elmer. [3H]RA solution for cell culture assays was prepared on the day of experiments by 

dissolving [3H]RA in DMSO with unlabelled RA in a 1:1000 ratio to a final concentration of 10 M of 

RA. [3H]RA solution in DMSO for the preparation of NPs was prepared on the day of experiments using 
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a 1:4000 ratio of labelled to unlabelled RA. Experiments were initiated by the adding the [3H]RA 

solution (1 M and 10 M; representing less than 1% in volume of the total cell culture medium) or 

[3H]RA-NP suspension (1 g/mL and 10 g/mL) to cultures (60,000 cells/condition, 24-well plate, 1 

mL) of NB4 or U937 cells. In case of soluble RA, cells (NB4 or U937; 60,000 cells/condition, 24-well 

plate) were cultured with medium containing [3H]RA (1 M and 10 M; 1 mL of medium) for 24 or 72 

h, washed with PBS (2 times), harvested, lysed with lysis buffer (100 L) and kept on ice until 

scintillation counting procedure. In case of RA-containing NPs, cells (same conditions as for soluble 

RA) were cultured with [3H]RA-NPs (1 g/mL and 10 g/mL) for 4 h, washed with PBS and cultured 

for additional 20 or 68 h in the respective culture medium. Cells were then collected to eppendorfs, 

washed with PBS, centrifuged (1500 rpm, 5 min), lysed with lysis buffer (see above) and kept on ice 

until scintillation counting procedure. The lysed samples (100 L) were mixed with liquid scintillation 

fluid (1 mL; Packard Ultima Gold) and the scintillations counted in a TriCarb 2900 TR Scintillation 

analyser (Perkin Elmer).  

 

Time-activation of NPs within cells. NB4 and Zn-induced U937-B412 cells (6.0  104 

cells/condition) were plated in 24-well plates and transfected with RA+ NPs (1 g/mL) for different time 

periods (1, 2, 4, 6, 8, 12 and 24 h). The cells were then washed by centrifugation (1300 rpm, 5 min) to 

remove non-internalized NPs, and immediately exposed to UV light (365 nm, 100 Watts, 5 min). In a 

second experimental setup, NB4 and Zn-induced U937-B412 cells (6.0  104 cells/condition) were 

plated in 24-well plates and transfected with RA+ NPs (1 g/mL) for 4 h. The cells were then washed 

by centrifugation (1300 rpm, 5 min) to remove non-internalized NPs, cultured in normal conditions and 

exposed to UV light (365 nm, 100 Watts, 5 min) at different time points (0, 4, 8, 20 and 44 h). The effect 

of the intracellular release of RA was evaluated in terms of differentiation of the cells into the myeloid 

lineage (as assessed by the expression of CD11b) at day 3, as assessed by flow cytometry. All conditions 

were performed in triplicate.  

NB4-RARE cells (2.5  104 cells/condition) were plated in v-shaped 96-well plates and transfected 

with RA+ NPs (1 g/mL) for different time points (1, 2, 4, 6, 8, 12 and 24 h). The cells were then washed 

by centrifugation (1300 rpm, 5 min) to remove non-internalized NPs, and immediately exposed to UV 

light (365 nm, 100 Watts, 5 min). For the second experimental setup, NB4-RARE cells (2.5  104 

cells/condition) were plated in v-shaped 96-well plates and transfected with RA+ NPs (1 g/mL) for 4 

h. The cells were then washed by centrifugation (1300 rpm, 5 min) to remove non-internalized NPs, 

cultured in normal conditions and exposed to UV light (365 nm, 100 Watts, 5 min) at different time 

points (0, 4, 8, 20 and 44 h). The cells were then cultured for 12 hours after each condition light 

activation in RPMI-1640 medium supplemented with 10 % fetal bovine serum and 100 U/mL PenStrep. 

After these procedures luciferase luminescence was quantified as described above for the luciferase 

assays. All conditions were performed in triplicate. 

 

Multiple activation of NPs within cells.  Myelocytic differentiation of Zn-induced U937 cells was 

assessed by the quantification of CD11b expression by flow cytometry. U937-B412 cells (6.0  104 

cells/condition) were cultured with ZnSO4 (0.1 mM) in culture medium up to 24 h prior to experiment 

to induce the expression of promyelocytic leukaemia zinc finger/RARα (PLZF/RARα). Then cells were 
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transfected with RA+ NPs (1 g/mL) for 4 h, washed, placed in normal culture medium and then different 

activated by UV light (365 nm, 100 Watts, 5 min). Cells without light activation were used as control. 

The following conditions were tested: i) single light activation at 4 h; ii) light activations at 4 h and 6 h; 

iii) light activations at 4 h, 6 h and 8 h and iv) light activations at 4 h, 6 h, 8 h and 10 h. After 3 days, 

expression of CD11b on U937 cell surface was measured by staining with a fluorescent (PE)-conjugated 

anti-CD11b mAb (BD Biosciences) using flow cytometry. All conditions were performed in triplicate. 

 

NB4 differentiation assay. Myelocytic differentiation of NB4 cells was assessed by quantifying 

CD11b+, CD11b+CD45+CD13high or CD11b+CD45+CD13low populations using flow cytometry. NB4 

cells (between 6.0  104 and 10  104 cells/condition) were plated in 24-well plates and cultured with 

soluble RA (3 µg/mL) or light-activatable RA+ NPs (10 µg/mL) for 3 days. The NPs were suspended in 

serum free medium and added to cells for 4 h. The cells were then washed by centrifugation (1300 rpm, 

5 min) to remove non-internalized NPs, and half of the samples were exposed to UV light (365 nm, 100 

Watts, 5 min). The cells were then cultured up to 3 days in RPMI-1640 medium supplemented with 10 

% fetal bovine serum and 100 U/mL PenStrep with half medium changes every 3 days.  

 

NB4 RARE cell line generation. The cignal lenti RARE reporter kit (CLS-016L SABiosciences) 

was used for the establishment of a RA reporter NB4 cell line. For that purpose, rectronectin solution 

(15 g/cm2, 30 g, 500 L on PBS, Takara) was plated in a 24-well plate 2 hours prior to cell seeding. 

The plate was kept at room temperature and was washed one time, immediately before seeding, with 

PBS. NB4 cells (1  105) were plated in 175 L of RPMI-1640 medium (Gibco) supplemented with 0.5 

% FBS and 100 U/mL PenStrep and to this condition 125 L of cignal lentiviral particles were added to 

a total experimental volume of 300 L. After a gentle swirl of the plate the cells were incubated 20 hours 

at 37 ºC in a humidified incubator with 5 % CO2 atmosphere. In the following day, cells were washed 

and allowed to recover in the incubator for 24 hours cultured in 500 L of fresh RPMI-1640 medium 

supplemented with 10 % FBS and 100 U/mL PenStrep. After that, 2 g/mL of puromycin (Invitrogen) 

was added to the culture medium for selection of transduced cells. Evaluation of selection efficiency in 

puromycin-containing medium was performed every 3 days for a period of 5 weeks. 

 

NB4 RARE luciferase assay. To assess the biological effect of RA in RAR-regulated signalling 

pathway activity, luciferase reporter assay was performed. NB4-RARE cells (2.5  104 cells/condition) 

were plated in v-shaped 96-well plates and cultured with soluble RA (10 M) or light-activatable RA+ 

NPs (5 g/mL). The NPs were suspended in serum free medium and added to cells for 1 h. The cells 

were then washed by centrifugation (1300 rpm, 5 min) to remove non-internalized NPs, and half of the 

samples were exposed to blue light (405 nm, 80 mW, 5 min). The cells were then cultured for 12/24 

hours in RPMI-1640 medium supplemented with 10 % fetal bovine serum and 100 U/mL PenStrep. 

After these incubation times, the conditions were centrifuged (1500 rpm, 3 min), excess medium 

carefully aspirated and the cells washed with 100 L of PBS. After a new centrifugation and removal 

of PBS, 60 L of cell lysis buffer (8 mM of magnesium chloride; 1 mM DL-Dithiothreitol; 1 mM 

Ethylenediaminetetraacetic acid; 25 mM of 1 M Trizma Base with 1 M Sodium phosphate monobasic; 

15 % Glycerol; and 1 % Triton X-100), was added to each condition. The plate was kept on ice, under 
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agitation for 15 min to allow complete lysis and then the plate was placed on -80 ºC for the amount of 

time necessary for the samples to freeze. After these steps, the plate was removed from the -80 ºC, put 

on ice and allowed to defrost at slow rate.  

For the preparation of the luminescence reading, 40 L of ATP (100 M, Sigma) was added to 

1960 L of reading buffer solution (8 mM of magnesium chloride; 1 mM DL-Dithiothreitol; 1 mM 

Ethylenediaminetetraacetic acid; 25 mM of 1 M Trizma Base with 1 M Sodium phosphate monobasic; 

and 15 % Glycerol) to a final concentration of 2 M ATP. On a second tube, 2 mL of D-Luciferin 

working solution (167 M, Sigma) was prepared protected from light. The injection system of the 

luminometer was primed until ready. Following that step, the luminometer software was programmed 

to set the temperature to 37 ºC, and under stirring for the duration of the experiment accept 50 L of 

sample per condition in a 96-white plate, inject 100 L of ATP working solution 3 seconds after reading 

cycle begins; inject 100 L of D-Luciferin working solution 4 seconds after reading cycle begins and 

read the luminescence 5 seconds after reading cycle begins. The luciferase luminescence was quantified 

in a microplate luminometer reader LumiStar Galaxy (BMG Labtech). All conditions were performed 

in triplicate. 

 

NB4 RARE differentiation by cell conditioned medium obtained from NB4 cells exposed to 

RA or RA+NPs. NB4 cells (3106/mL) were grown in RPMI supplemented with 10% (v/v) FBS, 

penicillin and streptomycin. Cells were treated with RA+NPs (10 g/mL) for 4 h, washed with PBS to 

remove the NPs that were not internalized, activated by a blue laser for 5 min, and then cultured for 18 

h under hypoxia conditions (0.5% O2) in exosome-depleted medium. A separate group of cells was 

treated with RA (3 g/mL) for 22 h in hypoxia conditions (0.5% O2) in exosome-depleted medium. 

Then, in both groups, cells were centrifuged at 10.000 g (4ºC; 30 min) and part of the supernatant (named 

in the plot as "Sup") added to NB4 RARE cells (100,000/mL; 1 mL of the Sup). Alternatively, in both 

groups, cells were centrifuged in multiple steps643 to remove exosomes (named in the plot as "exo") and 

added to NB4 RARE cells (100,000/mL; 5 μg/mL de exosomes per mL of media) plated in a 24 well 

plate. After 24 h, the luciferase assay was performed according to instructions of the luciferase kit 

(britelite™).  

 

U937 differentiation assay. Myelocytic differentiation of U937 cells was assessed by the 

quantification of CD11b expression by flow cytometry. U937-B412 cells (6.0  104 cells/condition) 

were cultured either with or without ZnSO4 (0.1 mM). To induce the expression of promyelocytic 

leukaemia zinc finger/RAR (PLZF/RAR) in U937-B412 cells they were treated for 24 h with ZnSO4 

(0.1 mM). Then cells were treated with soluble RA or light-activatable RA+ NPs (transfection for 4 h 

followed by light activation for 5 min) for 3 days. After 1 and 3 days, expression of CD11b on U937 

cell surface was measured by staining with a fluorescent (PE)-conjugated anti-CD11b mAb (BD 

Biosciences) using flow cytometry. All conditions were performed in triplicate. 

 

AML differentiation assay.  AML bone marrow mononuclear cells isolated by Ficoll-Histopaque 

(GE Healthcare) gradient centrifugation, enriched using the MACS CD34 isolation kit (Miltenyi Biotec) 

and cryopreserved were kindly provided by Dr. Rajeev Gupta (Department of Haematology, UCL 

Cancer Institute). The AML cells were isolated from an 85 years old man patient with AML 
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34+117+33+13+DR+ 35% blasts and a 70 years old woman with RAEB2/evolving AML 34+117+33+ 

12% blasts. Both samples had formal karyotyping/extended FISH panels. Briefly, neither patients were 

PML-RARA: one was standard risk (normal karyotype with a small trisomy 8 subclone), and the other 

was high risk with complex karyotype. The isolated CD34+ AML cells were maintained in StemSpan 

SFEM medium (Stemcell Technologies) supplemented with a human cytokine cocktail containing SCF 

(50 ng/mL, Stemcell Technologies), TPO (15 ng/mL) and Flt-3L (50 ng/mL, PeproTech) plus PenStrep 

(10,000 U/mL, Lonza) and Fungizone (25 mg/mL, Sigma) up to 3 days. Prior to the colony-forming cell 

(CFC) and long-term culture-initiating cell (LTC-IC) assays, AML cells were incubated for 4 h in Ex-

Vivo (Lonza) serum free medium, with and without blank NPs or RA+ NPs in a 24 well plate. After that 

time, the cells were washed to remove loosely bound NPs. For CFC assays (2.0 x 105 cells/condition) 

AML cells were plated in triplicate in MethoCult H4230 medium (3 mL, StemCell Technologies) 

supplemented with SCF [50 ng/mL], IL-3 [10 ng/mL], and Flt-3L [50 ng/mL], all human, plus PenStrep 

(10,000 U/mL, Lonza) and Fungizone (25 mg/mL, Sigma) in 6-well plate. In some conditions, RA+ NPs 

accumulated within the cells were activated by a UV light (365 nm, 100 W, 5 min). Cultures were scored 

after 14 days for the presence of clusters and colonies containing >20 cells using an inverted microscope. 

LTC-IC assays were performed in triplicate in a 6-well plate gelatinized for 2 h prior to adding the 

feeders. The feeder layer was composed of a 1:1 mixture of irradiated (80 Gy) SL/SL (1.5  104 

cells/condition) and M210B4 mouse fibroblasts (1.5  104 cells/condition), kindly provided by Dr. 

Rajeev Gupta (Department of Haematology, UCL Cancer Institute). AML cells (1  106 cells/condition) 

were plated in Myelocult H5100 medium (StemCell Technologies), supplemented with Flt-3L [50 

ng/mL], hydrocortisone [10-6 M] (StemCell Technologies) and PenStrep (10,000 U/mL, Lonza) and 

fungizone (25 mg/mL, Sigma). For some conditions UV light (365 nm, 100 Watts, 5 min) was used to 

trigger RA release. After the cells were inoculated, weekly half medium changes were performed (with 

Flt-3L [100 ng/mL]) for the duration of the culture. After 5 weeks, all cells were harvested and placed 

into methylcellulose based assay for the detection of AML-CFC as described above. 

 

High-throughput gene expression assay. Gene expression was evaluated by real time PCR in 

NB4 cells and U937-B412 cells previously stimulated with ZnSO4 (0.1 M), using a 96.96 microfluidic 

chip (Fluidigm Corporation). Cells were exposed to either soluble RA (1 and 10 µM) or light-activatable 

RA+NPs (0.1, 1 and 10 µg/mL) for 8 h, 24 h or 48 h. From each sample (n=3) a maximum of 0.45 × 106 

cells were collected for RNA extraction using RNeasy Micro Kit. Afterwards, samples were processed 

using Fluidigm standard protocols. Briefly, cDNA was obtained from 50 ng of RNA using Reverse 

Transcription Master Mix (Fluidigm Corporation). Then samples were pre-amplified for 12 cycles, to 

increase the number of copies of target DNA, with Fluidigm PreAmp Master Mix (Fluidigm 

Corporation) and a pool of all the primers tested in the chip. Prior to qPCR reactions the pre-

amplification reaction was treated with Exonuclease I to eliminate the carryover of unincorporated 

primers. Finally, samples and genes pre-mix are prepared separately accordingly to manufactures 

instructions using SsoFast EvaGreen Supermix with Low ROX (Bio-Rad Laboratories) and loaded into 

the chip. A pneumatically operated desktop instrument (IFC Controller HX) was used to mix samples 

and genes pre-mix in the qPCR chamber reaction of the chip. After this procedure, the chip was analysed 

using Biomark HD (Fluidigm Corporation) for the thermal cycling and real time fluorescent readings. 

A melting curve was performed after 30 cycles, for quality control. DeltaCt was calculated using Real 
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Time PCR Analysis Software 4.1.3 (Fluidigm Corporation) and data was further analysed with Cluster 

3.0 and Java Trew View to produced gene expression heatmaps and hierarchical clustering. 

 

Generation of a THP-1- GFP cell line. Viral particles for GFP-expression were produced in 293T 

cells using a standard protocol. Briefly, 293T cells were transfected with GFP DNA construct (30 µg) 

and pCL-Eco (DNA:pCL-Eco; 15 µg) both solubilised in a DNA-CaCl2 mixture (1 mL). Transfection 

efficiency was evaluated by fluorescence microscopy. After 72 hours viral particles were collected and 

THP-1 cells were infected (2 x 105 cells/ml in a 6-well plate with 4μg/ml polybrene). 

 

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Total 

RNA was extracted and purified using RNeasy Micro Kit (Qiagen) and immediately stored at -

80ºC. Total RNA was quantified in a NanoDrop ND-1000 Spectrophotometer (NanoDrop 

Technologies, Inc., USA) by spectrophotometry at 260 nm. The cDNA was reverse transcribed 

from 0,5 μg of total RNA, using TaqMan Reverse Transcription Reagents kit (Invitrogen) according 

to the manufacturer’s instructions. The cDNA obtained was stored at -20ºC until further analysis 

by qRT-PCR using SYBR Green technology and qRT-PCR analyses were performed using the ABI 

PRISM 7500 Fast System (Applied Byosystems). Quantification of target genes was performed 

relative to GAPDH gene according to the equation: 2[–(Ct sample –Ct GADPH)]. The mean minimal cycle 

threshold values (Ct) were calculated from quadruplicate reactions. The list of the primers can be 

found in  

 

In vivo study: subcutaneous implantation. The animal work has been conducted according to 

relevant national and international guidelines and approved by the Bioethics Committee of University 

of Salamanca. On the day before injecting the cells, PDMS cylindrical constructs (internal = 1.0 cm; 

external = 1.5 cm) were implanted subcutaneously on NOD/SCID mice (Jackson Laboratory) 

maintained in pathogen-free conditions with irradiated chow. For the ex-vivo activation studies in the 

day of the experiment, NB4 cells were suspended in serum free medium with (i) no NPs, (ii) with empty 

NPs (10 g/mL) or RA+ NPs (10 g/mL) for 4 h. At the end, cells were washed by centrifugation (1300 

rpm, 5 min), and the ones treated with RA+ NPs were either activated or not with a blue laser (405 nm, 

80 mW) for 5 min. NB4 cells (5  106 cells per PDMS construct) were injected subcutaneously in the 

center of the PDMS construct embedded in Matrigel (200 μL, BD Biosciences). Five days after injection 

of the cells, animals were sacrificed by cervical dislocation and cells within the cylindrical construct 

were collected and characterized by flow cytometry. For the in vivo activation studies in the day of the 

experiment, NB4 cells were suspended in serum free medium with (i) no NPs, (ii) with RA+ NPs (10 

g/mL) for 4 h. At the end, cells were washed by centrifugation (1300 rpm, 5 min), and 5  106 NB4 

cells per PDMS construct were injected subcutaneously in the center of the PDMS construct embedded 

in Matrigel (200 μL). One day after injection, experimental groups were either activated or not with a 

blue optical fibre (405 nm, 80 mW) for 5 min. Three days after injection of the cells, animals were 

sacrificed by cervical dislocation and cells within the cylindrical construct were collected and 

characterized by flow cytometry.  
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In vivo study: bone marrow modulation. NOD.CB17-Prkdcscid /J (NOD/SCID) female mice 

(n=12) aged 6-8 weeks were employed in this experiment. Before cell injection, mice received 1.5 Gy 

of total body irradiation from a 137Cs source and were also treated with 200 μg of mouse anti-CD122 

monoclonal antibody (NS122) by intraperitoneal injection. Human THP-1 cells were incubated with 20 

μg/mL of RA+NPs in RPMI medium for 4 hours, followed by extensive wash with PBS to remove non-

internalised NPs. The cells were then resuspended in RPMI medium with 10% FBS and left in the culture 

incubator overnight. On the following day, the cells loaded with RA+NPs were collected and 1  107 

cells /mouse in 200 µL PBS were injected into the NOD/SCID mice intravenously, through the tail vein. 

After 6 days, the mice were randomly divided into two groups: one of the groups was blue laser 

irradiated (n=6) and the other group was not irradiated (n=6). In the blue laser irradiated group, each 

mouse was anesthetized with 3.5% chloral hydrate in PBS and the craniums were exposed to a blue laser 

(405 nm, 80 mWatts) for 5 min. The mice in the non-irradiated group received the same treatment 

without blue laser activation. After 48 or 72 h, the mice were sacrificed, and the long bones/ craniums 

were collected. The long bones including the femurs, tibias and pelvis were crushed in PBS containing 

1% bovine serum albumin (BSA, sigma) and 2 mM EDTA (Invitrogen). The samples were then filtered 

with 70 μm cell strainer and treated with ACK solution to lyse red blood cells. The resulting cells were 

stained using PE conjugated anti-human CD45 antibody (eBioscience). The results were measured by 

flow cytometry and the data were analysed with FlowJo software.  

The mouse craniums were collected for the ex vivo staining examination followed by the traditional 

protocol. Briefly, the mouse craniums were cut into four pieces along the sutures producing one frontal, 

two parietals and one occipital bone. Only parietal bones were used in this experiment. Bone pieces 

were fixed in 4% paraformaldehyde for 30 min, washed twice with PBS, blocked with 2% BSA-0.01% 

Triton X-100 in PBS (BSA buffer) for 1 hr, and incubated with primary antibodies (diluted 1:100 in 

BSA buffer) overnight at 4ºC. After washing with BSA buffer for 2 hr, bones were incubated with 

secondary antibodies (diluted 1:200 in BSA buffer) for 2 hr, washed with BSA buffer for 2 hr, and nuclei 

were stained using DAPI. The primary antibodies included mouse anti-human CD45 antibody (BD) and 

rabbit anti- human CD11b antibody (Abcam). The secondary antibodies included goat anti-mouse 555 

(Invitrogen) and goat anti-rabbit 488 antibodies. The bone pieces were finally examined with a confocal 

microscope (Nikon Eclipse Ti) under FITC/TRITC/DIC signal channel. Images were analysed in 

ImageJ. Analyse Particles was used after thresholding to quantify positive signals and measure the total 

area occupied by these particles. 

 

In vivo study: CRABP2 expression on mouse cranium. NOD.CB17-Prkdcscid /J (NOD/SCID) 

female mice aged 6-8 weeks were employed in this experiment. The mouse craniums were collected 

from the last experiment. In this experiment, we also collected the mouse craniums without any 

treatment as the control. The ex vivo staining examination was followed by the traditional protocol. 

Briefly, the mouse craniums were cut into four pieces along the sutures producing one frontal, two 

parietals and one occipital bone. Only parietal bones were used in this experiment. Bone pieces were 

fixed in 4% paraformaldehyde for 30 min, washed twice with PBS, blocked with 2% BSA-0.01% Triton 

X-100 in PBS (BSA buffer) for 1 h, and incubated with primary antibodies (anti-CRABP2 antibody, 

ab74265, diluted 1:100 in BSA buffer) overnight at 4ºC. After washing with BSA buffer, bones were 

incubated with secondary antibodies (goat anti-rabbit 488 antibodies, diluted 1:200 in BSA buffer) for 
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2 h and then washed with BSA buffer. Nuclei were stained using DAPI. The bone pieces were finally 

examined with a confocal microscope (Nikon Eclipse Ti) under DAPI/FITC/DIC signal channel. Images 

were analysed in ImageJ. Analyse Particles was used after thresholding to quantify positive signals and 

measure the total area occupied by these particles. Comparison between CD11b, CD45 and CRABP2 

positive areas was used as a proxy of the release of RA by NPs and paracrine effect in the parietal bones 

of irradiated and non-irradiated mice. 

 

Statistical analysis. Statistical analyses were performed with GraphPad Prism software. For 

multiple comparisons, a two-way ANOVA followed by a Holm-Sidak post-test was performed. Results 

were considered significant when P< 0.05. Data are shown as mean ± s.e.m. unless other specification. 
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4.1. Abstract 

Great advances have been made in this century in the development of drug delivery systems for 

AML therapy, which improves the application of previously used drugs in clinical practice and also 

opens new venues for new biomolecules to be used in therapy. The use of stem cells as carriers in cell-

mediated drug delivery strategies is an attractive emerging approach to overcome the current limitations 

of conventional medicines. Stem cells can act not only as “shields” for therapeutic agents, but also as 

specific targeting agents by themselves due to their natural tropism for specific tissues, organs and sites 

of injury594,455, with the added advantage of being able to cross biological barriers, such as anatomical 

(e.g. blood brain barrier)563 or physiological barriers (e.g. tumour site heterogeneity). In this chapter we 

further investigate the functional effect of cell-mediated targeted delivery of photo-triggerable NPs to 

the BM niche on MLL-AF9 AML mouse model. We also explored different options regarding cell type 

used as carriers and type of molecule delivered by photo-triggerable NPs. 

Our results indicate that RA can activate different differentiation pathways depending on whether it 

is delivered extra-cellularly, or intracellularly by activation of RA+NPs. RA+NPs can induce AML 

differentiation towards monocytic/macrophage lineage not only in vitro but also in vivo. Also, we have 

shown in vitro evidence that soluble RA and more significantly, activation of RA+NPs, stimulate 

antitumoral M1 macrophage activation. This macrophage induced differentiation in vivo seems to have 

“systemic” anti-leukemic effect within the BM leukemic niche, as we observed a significant reduction 

of leukemic cells in the BM of animals treated with RA+NPs when compared with animals treated with 

empty NPs (RA-NPs). 

We also explored the potential use of this system using healthy HSCs as RA+NP carriers. Our results 

indicate that RA+NPs can be loaded in human UCB CD34+ cells as efficiently as observed in human 

AML CD34+ cell lines (4h internalization). Although, UCB CD34+ cells seem to be more sensitive to 

blue laser irradiation, shorter irradiation time (1 min) at lower laser power level (40mW) was still 

sufficient to trigger RA release from NPs and trigger the expression of CD38 in UCB CD34+cells.  

The drug delivery systems describe here, composed of carrier cells and RA+NPs offer a versatile a 

promising therapeutic strategy for targeting BM not only on hematopoietic malignancies, such as AML 

but also for regenerative medicine, such as HSCT. 

 

4.2. Introduction 

Several drug delivery strategies have been developed to increase the therapeutic efficiency of 

bioactive molecules. However, their clinical translation has been limited due to their poor specificity 

and efficient drug release at desired location. Furthermore, many therapeutic agents can be recognized 

and destroyed in their route to desired sites by host’s immune system, such as the mononuclear 

phagocytic system (MPS)463, thus decreasing their therapeutic potential. 

The use of stem cells as carriers in cell-mediated drug delivery strategies is an attractive emerging 

approach to overcome the current limitations of conventional medicines. Stem cells can act not only as 

“shields” for therapeutic agents, but also as specific targeting agents by themselves due to their natural 

tropism for specific tissues, organs and sites of injury594,455, with the added advantage of being able to 
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cross biological barriers, such as anatomical (e.g. blood brain barrier)563 or physiological barriers (e.g. 

tumor site heterogeneity). Moreover, stem cells themselves can be used as therapeutic agents as they 

can be modified to secret trophic factors to promote the recovery of the damaged tissue and potentially 

differentiate to a wide variety of functional cells and consequently help in the repopulation of their target 

site.  

MSCs and HSCs have high bioavailability and can be harvested readily from bone marrow of 

healthy unaffected individuals or isolated from UCB units599-604. MSCs have been used as NP carriers 

to target brain tumours568,605, in regenerative medicine606 and cancer therapy 604,607. HSCs are also good 

candidates to target NPs to the HSC niche at the bone marrow in regenerative medicine (e.g. 

hematopoietic stem cell transplant – HSTC) and to treat haematological malignancies (e.g. leukemia). 

NPs can modulate HSC paracrine activity and their engraftment in the BM 608,593. NPs can also be used 

to target HSCs into the BM niche or to recruit other cells to the niche548. 

LSC could also potentially be used as NP carriers, as they could serve as targeting agents to 

otherwise difficult access leukemic niches. This constitutes a special environment where LSCs 

responsible for relapses reside and traditional chemotherapy cannot reach. However, the use of LSCs 

should be made with caution as they could potentially have detrimental effects on the host. For example, 

systems using LSC could include the expression of self-destructive suicide genes after it reaches the 

target sites to prevent carrier-derived tumor formation or even go through rounds of genetic correction 

for leukemia mutations, using the recently described CRISPR/ Cas9 gene correction systems. 

HSC transplantation with bone marrow and mobilized peripheral blood is an important therapeutic 

tool in the management of hematological malignancies and some inherited blood disorders137. 

Unfortunately, repopulation of hematopoiesis can be adversely affected by the inability of HSC s to 

home to appropriate marrow niches or poor engrafting efficiency and self-renewal. In addition, 

individuals requiring an allogeneic HSC transplant may have problems to find a suitable matched 

donor260,261. UCB may offer an important resource for such patients; however, individual units of cord 

blood (CB) contain too few HSCs to allow them to be transplanted into adults without a substantial 

delay in engraftment267. Therefore, methodologies to increase the number or engraftment efficiency of 

stem cells could provide substantial clinical benefit. Although strategies to accomplish this goal have 

been developed in the last years such as exogenous treatment of the HSC s with pro-survival/pro-

engraftment factors644,645 and the stimulation of the adult HSC niche646, 623, 596, they have shown limited 

success. 

In the bone marrow, HSC reside within the context of a complex microenvironment of different cell 

types and extracellular molecules that dictate stem cell self-renewal and differentiation 647-650. The direct 

stimulation of the adult HSC niche might be a strategy to improve HSC engraftment. In mouse models, 

the pharmacologic use of PTH increases the number of HSCs mobilized into the peripheral blood for 

stem cell harvests, protects stem cells from repeated exposure to cytotoxic chemotherapy and expands 

stem cells in transplant recipients 647. However, the effect is modest. An alternative to the direct 

manipulation of endogenous HSC niche is to enhance the engraftment of HSCs into the bone marrow 

niche. Several approaches have been described in the last few years to accelerate and improve the 

engraftment of HSCs including inhibition or deletion of CD26 644, exposure to recombinant human NOV 
645, treatment with prostaglandin E2 651 or cholera toxin 652, but these approaches are at pre-clinical stage. 

All the methodologies described so far are based in the exogenous treatment of the stem cells with pro-
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survival/pro-engraftment factors before their intravenous delivery. In most cases, although the stem cell 

treatments contribute for efficient mobilization of the HSC to the bone marrow niche their effect may 

not be enough to promote a successful and rapid engraftment.  

An alternative to the 2 previous approaches is to potentiate both the expansion and engraftment of 

HSCs 653. The transcription factor HOXB4 is a particularly attractive candidate for use in HSC expansion 

and engraftment. Studies have shown that HOXB4 mediates a significant expansion of HSCs and long-

term repopulation potential either in vitro or in vivo 654,655. However, the expression of HOXB4 should 

be in a regulated manner to avoid potential unwanted effects. High expression levels of HOXB4 led to 

a statistically significant reduced engraftment of the transduced cells at the BM 656, reduce the 

differentiation of stem cells into the erythroid cell lineage656, and increases the risk of leukemia 657. 

Furthermore, the stability of HOXB4 protein in physiological conditions has proven to be an obstacle 

to its clinical application658. 

To be used as drug carriers in cell-mediated delivery systems, NPs need to possess some specific 

characteristics. They must be biocompatible, without exerting cytotoxic effects to carrier cells, or 

without affecting their critical stem cell biological characteristics such as, self-renewal, proliferation and 

differentiation capacity as well as their migratory and homing capacity. Also, NPs components need to 

be biodegradable by the normal cell metabolism.  

In this chapter our objective was to explore the potential use of NP-delivery systems not only to 

modulate the diseased HSC BM niche in AML but also healthy HSC BM niches. To achieve this, the 

murine AML disease model MLL-AF9 and intravital microscopy was used to find out how the remote 

release of RA within the BM niche affects the interaction between delivery cells and malignant cells. 

Next, we explored the possibility of using healthy HSCs (e.g UCB CD34+) as delivery cells. Finally, we 

explore the possibility of using NP systems to carry HoxB4 inside HSC during HSCT. We hypothesize 

that transiently increasing the levels of the transcription factor HOXB4 in bone marrow transplanted 

HSCs may increase HSC engraftment and proliferation.  

4.3. Results and discussion 

4.3.1 In vitro effect of RA+NPs in AML mouse model MLL-AF9 

Although humanized murine AML models provide a better experimental setting towards a 

translational use of this NP formulation, it has some limitations when it comes to study fundamental 

biological interactions. Since our main goal was to study the paracrine effect of the release of RA from 

carrier cells and the interaction between carrier cells and BM niche components, we decided to use a 

murine AML disease model, which allows to apply a more straight experimental approach without 

affecting so much normal BM homeostasis, like the normally required procedure of myeloablation, 

which affects the homeostasis of the normal bone marrow (i.e. deterioration of sinusoids by 

irradiation659), and provides more reliable information about the complex niche interactions without the 

“noise” introduced by using cells coming from different species. For this purpose, we decided to use a 

murine AML model which encompasses the fusion oncogene MLL-AF9, similar to the human cell line 

THP-1, used in the previous chapter. In this model, most of the Leukaemia Stem Cells (LSCs) are 

downstream myeloid lineage cells, phenotypically similar to GMP cells660.  
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Like in the other cell types tested, most RA+NPs are internalized by MLL-AF9 blasts after just 4 h 

of treatment (data not shown), so for the in vitro tests we followed the same methodology as before 

(Figure 4.A), 4 hours internalization followed by wash and 5 minutes exposure for blue laser activation, 

after which the differentiation at 72h post treatment was evaluated by flow cytometry (Figure 4.B). 

Interestingly, in these cells, soluble RA and RA delivered by NP activation seem to promote distinct 

differentiation pathways (Figure 4.C). Although to a lesser extent than in other cell lines, soluble RA 

was able to induce differentiation of MLL-AF9 blasts towards granulocyte lineage, more specifically 

towards neutrophil-like cells (CD11b+Ly6G+) as previously reported661. However, when RA was 

delivered intracellularly by photo-activation of RA+NPs, granulocyte differentiation was not significant, 

on the other hand, RA+NPs appear to prime monocyte/macrophage differentiation (CD11b+Ly6G-

F4/80+) (Figure 4.D). Although previous studies have shown differentiation towards 

monocyte/macrophage lineage in vitro when AML cell lines were treated with vitamin D662, which can 

be further enhanced by combining vitamin D treatment with RA, this was the first time to our knowledge 

that monocyte/macrophage differentiation was observed with RA treatment alone.  Furthermore, 

activation of RA+NPs seems to promote the type 1 macrophage polarization (M1) (MHC II+CD206-) 

which has been shown to suppress tumour growth663, and not type 2 macrophages (M2), contrary to 

previous reports for the human AML cell lines HL-60 and THP-1 differentiation in vitro when combined 

RA+VitD treatments were used664. Of note, RA differentiation effect in APL was associated with 

restoration of normal PU.1 gene expression665, a transcription factor essential for macrophage 

differentiation and full neutrophil maturation666. Also, RA has been previously reported to negatively 

regulate neuropeptide Y gene expression667, a widely expressed neuroregulatory peptide, which 

suppresses macrophage activity668. 
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Figure 4.1 – In vitro Differentiation profile of MLL-AF9 YFP blast cells after treatment with soluble RA or 

RA+NPs. (A) Schematic representation of the experiment. MLL-AF9 YFP cells were incubated in serum-free 

RPMI-1640 with RA+NPs (10 μg/mL) for 4 h. Then, cells were washed three times with PBS to remove NPs not 

internalized, activated or not by blue laser (405nm, 80mW) during 5 min, and cultured in complete medium for 

additional 3 days. Alternatively, MLL-AF9 YFP were cultured in complete medium for 3 days having soluble RA 

(3μg/mL). (B) Representative gating strategy for Lin- MLL-AF9 YFP cells treated with RA+NPs. Dead cells 

excluded by DAPI staining. (C-D) Percentages of positive single cells were calculated based in the FMOs controls 

and are shown in each scatter plot. (C) Monocytes (Ly6G-CD11b+), Neutrophil (Ly6G+CD11b+) and Macrophage 

(Ly6G- CD11b+F4/80+) differentiation markers. (D) Percentage of macrophage activation markers for type 1 

(MHC II+CD206-) and type 2 (MHC II-CD206+) polarization. In D and E results are expressed as mean±s.e.m. 

(n=3).  Statistical analyses were performed by two-way ANOVA followed by a Holm-Sidak post-test. *P<0.05, 
**P<0.01, ***P<0.001 and ****P<0.0001. 
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4.3.2 Paracrine effect of RA+NPs in AML mouse model MLL-AF9 leukaemic niche 

 

To better understand the therapeutic potential of RA+NPs it was important to confirm if the same 

type of differentiation could be observed in vivo and how this differentiation in situ - within the 

leukaemic BM microenvironment - could affect the progression of the disease. We also adopted a 

different methodology, closer to the normal disease progression, where we allowed LSC to invade and 

remodel the BM niche in steady state (initiation) before applying our treatment during the progression 

phase of the disease, which was followed by intravital microscopy70. In short, first mTmG MLL-AF9 

blasts were injected in healthy mice to induce disease infiltration. After 12-14 days YFP MLL-AF9 

blasts previously loaded with RA+NPs or empty NPs were injected. One or two days later, after 

confirming by intravital microscopy the homing of YFP blasts to the same niche as mTmG blasts, the 

nanoparticles were activated by exposing the mouse calvaria to the blue laser for 10 minutes. This 

activation was repeated the following day. Three days after the last activation, the progression of the 

disease and MLL-AF9 activity were monitored inside the niche by time-lapse image acquisition (Figure 

4.2A). In the end of the acquisitions, mice were sacrificed, and BM was collected from the calvaria and 

long bones and analysed by flow cytometry (Figure 4.2B).  

The in vivo results allowed to confirm the observations made in chapter 3, where we have shown 

that NP loading of cells did not affect their homing capacity and RA release from NPs could be triggered 

remotely with the blue laser. More importantly, our results show that RA+NP were able to induce a 

reduction of both MLL-AF9 blasts population (YFP+ and mTmG+) in the BM of animal, particularly in 

the calvaria BM, the site of activation (Figure 4.2C). These results suggest that RA+NPs could help to 

decrease the disease burden of the resident mTmG+ MLL-AF9 AML mouse model. Furthermore, when 

looking at differentiation of YFP+ carrier cells (Figure 4.2D), we can observe a small increase in the 

neutrophil population in the calvaria BM of animals treated with RA+NPs. Although this increase is not 

statistically significant, this effect could only be observed at the calvaria BM and not in the long bones, 

suggesting this observation was due to activation of NPs at the calvaria BM. As for macrophage 

differentiation (Figure 4.2E), we did not observe significant differences between treatment groups at 

the whole BM, but by looking at the YFP+ cells differentiation we can observe a significant increase in 

the macrophage population, not only at the calvaria BM, but also at the long bones BM. 

Although we did not explore the mechanisms behind the observed effect and more experiments 

would be necessary to fully understand these results in this experimental setting for AML disease model, 

at least three hypotheses should be considered: the effect of blue laser irradiation (405nm), the impact 

of NPs and their photo-activation by-products, and finally the effect of RA release by carrier cells within 

the leukemic niche.  

Indeed, other studies have reported that blue light exposure can induce reactive oxygen species 

(ROS) generation669,670 and ROS have also been shown to promote macrophage differentiation and 

activation671. Also, ROS have been shown to induce an increase in RARα protein levels672, the main 

RAR isotype involved in RA dependent differentiation in APL 327,328. Furthermore, although in a 

different biological scenario, UV irradiation in skin cells is known to promote the production of vitamin 

D673, a molecule also involved in the promotion of macrophage differentiation662.  
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Figure 4.2 - In vivo activation of AML MLL-AF9 differentiation program by light at the bone marrow. (A) 

Schematic representation of the protocol for the generation murine MLL-AF9 mTmG AML disease model (12 

days infiltration) and treatment with delivery cells MLL-AF9 YFP+ previously transfected with RA-NPs (n=3) or 

RA+NPs (n=3) by tail vein injection. After the homing (1 day) of delivery cells, the NPs were remotely activated 

by irradiating the mouse calvaria with a blue laser (5 min, 405 nm, 80mW) on the following two days. On the fifth 

day after MLL-AF9 YFP injection mouse were sacrificed and BM from the calvaria and long bones isolated for 

flow cytometry analysis. (B) Representative plots of flow cytometry gating strategy analysis for MLL-AF9 YFP+ 

and mTomato+ calvaria and long bone BM composition (C) and MLL-AF9 YFP+ differentiation in (D) neutrophils 
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or (E) macrophages. (C) Percentage of MLL-AF9 YFP+ or mTomato+ cells in BM of the calvaria and in the long 

bones. (D) Percentage of the neutrophil differentiation (CD11b+Ly6G+)  at the calvaria and long bones quantified 

within the GMP population, identified by gating by Lin-Sca1-c-kit+ CD16/32highCD34+ of MLL-AF9 YFP+ cell 

population. (E) Percentages of macrophage differentiation (CD11b+Ly6G-F4/80+) at the calvaria and long bones 

at the hole BM or MLL-AF9 YFP+ population. Dead cells excluded by DAPI staining and percentages of YFP and 

mTmG cells were calculated based on the total BM live cells. Percentages of positive single cells were calculated 

based in the FMOs controls. Results are expressed as mean±s.e.m. (n=3). Statistical analyses were performed by 

two-way ANOVA followed by a Holm-Sidak post-test. ***P<0.001 and ****P<0.0001. 

Also, the mononuclear phagocytic system (MPS) has been shown to be determinant for the systemic 

recognition and clearance of NPs in the organism464. However, the exact mechanisms and the direct 

metabolic effects of NPs in macrophages are still under scrutiny. One of the mechanisms proposed is 

the recognition of polyanions (e.g. dextran sulphate) by folate receptors present in macrophages532,533. 

Also, a recent study has shown that different NP systems can induce different metabolic reprograming 

effects in macrophages, through: increased glycolytic activity, altered tricarboxylic acid cycle, and 

reduced ATP generation, which are consistent with a proinflammatory phenotype (M1) of 

macrophages674. 

These effects that can be mediated by the radiation or directly by the NPs, may have some 

contribution for the results observed in this work. Nevertheless, it must be low because no significant 

effect was seen in vivo when mice were treated with RA-NPs loaded MLL-AF9 blasts and irradiated 

with the blue laser. This suggests that RA release from NPs is the main factor responsible for 

monocyte/macrophage differentiation. 

 

4.3.3 Effect of RA+NPs in CD34+ cells 

 

In a clinical setting, the use of LSC as NP carriers is not desirable for the obvious reasons, so we 

decided to investigate the possibility of using healthy hematopoietic cells as carriers and what would be 

the effect of the NPs and their light-activation in healthy hematopoietic cells.  To do this we decided to 

test the NPs in UCB CD34+ cells, a common cell source used in hematopoietic stem cell transplant 

(HSCT), but as the availability of these cells is scarce, we did the initial tests in a CD34+ immortalized 

AML cell line, the KG1a. 

 

Internalization and cytotoxicity of NP and laser exposure 

The first step was to determine the CD34+ cells uptake of nanoparticles and the conditions of NP 

treatment and activation (laser exposure) which do not affect the viability. Our initial approach was the 

same conditions used during chapter 3. Briefly KG1a cells were treated with different concentrations of 

RA+NPs (0.1, 1 and 10ug/mL) for 4 hours in complete RPMI-1640 media with 1% FBS. After the 

incubation period cells were washed with PBS several times to remove non-internalized NPs and 

replated with complete RPMI-1640 with 10% FBS and irradiated or not with a blue laser (405nm, 5 

minutes at 80mw). After 48h cells were collected and AnexinV/PI (AnV/PI) flow cytometry protocol 

was used to assess the toxicity of the NPs (Figure 4.3A).  
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Figure 4.3 - Cytotoxicity of RA+NPs and light activation at human AML CD34+ cell line (KG1a) and UCB 

CD34+. Cytotoxicity of RA+NPs and laser exposure against human leukaemic cell line KG1a (A, B) and UCB 

CD34+ cells (C-E) and evaluated 48 h post-treatment by Annexin/PI staining followed by flow cytometry analysis. 

Live cells were negative for Annexin V and PI staining. (A) Cells were cultured in medium supplemented with 

different concentrations of RA+NPs for 4 h, washed and exposed or not to a blue laser (5 min, 405nm 80mW). (B) 

Cells were exposed to a blue laser at 80mW for different time periods. (C) Cells were exposed to a blue laser for 

5 minutes at different laser powers. (D) Cells were exposed to a blue laser at 40mW for different time periods. (E) 

Cells were cultured in medium supplemented with different concentrations of RA+NPs for 4 h, washed and 

exposed or not to a blue laser (1 min, 405nm 40mW). All results are expressed as mean±s.e.m (n = 3). Statistical 

analyses were performed by one-way ANOVA (B-D) or two-way ANOVA (A, E) followed by a Holm-Sidak post-

test. *P<0.05, **P<0.01, ***P<0.001. 

 

According to these results, the NPs alone do not show any cytotoxicity in non-irradiated KG1a cells. 

However, we could observe <25% decrease in viability when comparing non-irradiated with irradiated 

pairs in cells without NP treatment and when treated with 10ug/mL NPs. Surprisingly, in cells treated 

with 0.1 and 1 ug/mL of NP we couldn't observe any significant effect in their viability after being 

exposed to blue laser. These results suggest that RA+NPs could exert a protective effect against 
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irradiation, which could be due to irradiation absorption by the photo-responsive element of the NPs, 

DMNC. The next step was to find non-toxic conditions for the laser exposure. To do this, we tested 

different times of laser exposure while maintaining the laser power at 80mW and after 48h in culture 

the viability was assessed again using AnV/PI protocol (Figure 4.3B). These experiments confirm that 

300 seconds (5 minutes) of laser exposure in KG1a cells already have a significant effect in their 

viability, but no toxic effect was observed up to 150 seconds of laser exposure at 80mW.  

With the acquired knowledge regarding the toxicity of NPs and blue laser in KG1a cells, we could 

now start testing the cytotoxicity in UCB CD34+ cells. As the laser exposure seemed to have a higher 

impact in cell viability, we started to test different laser powers (Figure 4.3C) and we could observe 

that using laser powers higher than 20mW for 5 minutes had a significant effect in cell viability. Despite 

the fact that we could already observe a toxic effect using 40mW laser power, reducing the laser power 

would also reduce the amount of released cargo from the NPs, so we tried to find a compromise between 

laser power and exposure time and tested the toxicity of 40mW for different exposure times (Figure 

4.3D). At 40mW laser power, we observed a decrease in viability for laser exposure over 60 seconds. 

Finally, we tested the combined effect of the laser exposure and NP treatment in UCB CD34+ cells 

(Figure 4.3E). Although the laser exposure still seems to have a negative effect in viability in cells 

without NP treatment, just like in KG1a, the toxicity effect is decreased with increased concentrations 

of NP treatment. In fact, no significant toxicity is observed in cells treated with 10µg/mL NPs with or 

without subsequent laser exposure for 60 seconds at 40mW laser power. This could be due to the anti-

apoptotic proprieties of RA675 and/or due to the presence of the photo-sensible antenna (DMNC), which 

could diminish the irradiation effects on cells. 

Next, we wanted to characterize the internalization kinetics and the dilution of internalized NPs 

during extended cell culture periods (Figure 4.4A).  
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Figure 4.4 - Cellular uptake and dilution of RA+NPs in human AML CD34+ cell line (KG1a) and UCB 

CD34+cells. (A, B) Uptake of TRITC-labelled RA+NPs (10 μg/mL) in human AML CD34+ cell line (KG1a) (A) 

and UCB CD34+ cells (B) as determined by FACS. Cells were cultured in medium supplemented with NPs for the 

time defined in the graph, washed and characterized by flow cytometry. The results are expressed as mean±s.e.m 

(n = 3). (C, D) Dilution of TRITC labelled RA+NPs with cell culture. KG1a (C) and UCB CD34+ cells (D), were 

transfected with RA+NPs in serum-free media for 4h, washed with PBS to remove non-internalized RA+NPs and 

cultured in complete media for additional 4h, 3 days and 6 days. After each incubation time cells were washed and 

NP dilution evaluated by flow cytometry. The results are expressed as mean±s.e.m (n=3) (E) Representative 

confocal imaging of 4 h internalization of TRITC-labeled RA+NPs (red) at UCB CD34+ cells stained with the 

membrane marker PKH67 green and nuclear staining DAPI (scale bar 5µm) 



CHAPTER 4 - Prospective studies on nanoformulations that are able to modulate healthy and leukemic niches 

108 

 

Similar to what has been done in chapter 3, cells were treated TRITC-labelled RA+NPs for different 

periods of time and after several washes with PBS, internalization levels were assessed by flow 

cytometry (Figure 4.4B). Both KG1a and UCB CD34+ cells show similar internalization kinetics to 

what was observed in other cell lines (chapter 3). Although it only takes 4 hours to have almost all the 

cells with NPs internalised (%TRITC), they seem to continue to accumulate NPs over this time, which 

is shown by the continuous increase in the mean fluorescence intensity (M.F.I) of TRITC in the cells. 

In the case of UCB CD34+ cells, we also observed by confocal microscopy the internalized NPs after 

4h. Surprisingly, we did not observe a homogenous distribution of the NPs in the cell cytoplasm as we 

expected, instead in the case of UCB CD34+ cells, the internalization seems to be polarized. This could 

indicate that NP internalization in these cells is mainly by pinocytosis and not by receptor mediated 

endocytosis, as the observed cytoplasmic deformation only occurs during phagocytosis and 

micropinocytosis internalization, but HSC do not have phagocytic activity.(Figure 4.4E). 

For the dilution experiments, cells were treated with TRITC-labelled RA+NPs for 4 hours after 

which they were extensively washed and replated and cultured for an additional 3 or 6 days. To have a 

baseline, the internalization level was measured after 4h of NP treatment. At the selected time points 

cells were collected and the percentage of NP-loaded cells was evaluated by flow cytometry (Figure 

4.4C). In KG1a cells, after 3 days and 6 days only 15% and 5%, respectively, of the cells retained the 

NPs. When compared to percentage of internalization observed at 4 hours of internalization, these 

reductions represent approximately a 3-fold decrease for every 3 days in culture. In UCB CD34+ cells, 

similar to what we observed in KG1a, there was a 2-fold and 3-fold reduction of nanoparticles after 3 

days and 6 days in culture, respectively.   

 

Biological effect of RA-NPs in CD34+ cells 

Next, we evaluated the differentiation capacity effect of RA+NP in CD34+ cells. We started to test 

the effect of RA+NPs in the differentiation of KG1a cells and also the differentiation potential of 

RA+NPs after 3 and 6 days in culture before activation. The RA+NPs were internalized for 4h hours and 

after being washed with PBS, divided into 3 groups, one where cells were irradiated with the blue laser 

right after wash (4 h activation), in the second and third group cell were cultured for additional 72 h or 

144h, respectively, before laser activation. As a control condition, soluble RA was added to cells at the 

same time of laser activation of each group. In all groups the differentiation was evaluated 3 days after 

activation, by flow cytometry with CD11b/CD13 staining (Figure 4.5A). At 4 hours activation, all 

treatments seem to initiate the differentiation program of KG1a, observed by the decrease in 

CD13+CD11b- population and increase of CD13dimCD11b-/+ populations, however statistical significant 

terminal differentiation (CD13+CD11b+) can only be observed when cells are treated with RA+NPs and 

activated by blue laser (Figure 4.5B). As we observed previously, the percentage of cells that retain 

RA+NPs decreased with culture time (Figure 4.4B), so as expected the differentiation potential of the 

NPs was diminished when NPs were activated only after 72 or 144 h. 
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Figure 4.5 - Differentiation profile of in human AML CD34+ cell line (KG1a) and UCB CD34+cells after 

treatment with soluble RA or RA+NPs. (A, B) KG1a cells were incubated in complete IMDM with 2% serum 

with soluble RA or 10 µg/mL RA+NPs for 4 h. Then, cells were washed three times with PBS to remove NPs not 

internalized and replated in IMDM 20% serum. Cells were irradiated with a blue Laser (405 nm 80mW, 3 min) 

immediately or after 3 or 6 days and then cultured for 3 days after being irradiated. (A) Flow cytometry analysis 

of differentiated KG1a cells cultured for 3 days. Cells were initially gated in an FSC/SSC plot and gated analysed 

for CD13 and CD11b expression levels. Percentages of positive cells were calculated based in the isotype. (A) 

Percentages of CD13+CD11b- CD13+ CD11b+, CD13dimCD11b- and CD13dimCD11b+ in KG1a cells activated 

at 4h, 3 days and 6 days after RA+NP treatment and differentiated for 72 h. (B) KG1a CD13+ CD11b+ 

differentiation profile evolution at different times of activation. (C) UCB CD34+ cells were incubated in complete 

XVIVO15 media (supplemented with Flt3 and SCF). with soluble RA or 1 µg/mL RA+NPs for 4 h. Then, cells 

were washed three times with PBS to remove NPs and irradiated with a blue Laser (405nm 40mW,60 sec). After 

3 days in culture, cells were stained for CD34 and CD38 markers and differentiation analysed by flow cytometry. 

The results are expressed as mean±s.e.m (n=3). Statistical analyses were performed by two-way ANOVA followed 

by a Holm-Sidak post-test. *P<0.05, **P<0.01 and ****P<0.0001. 

Next, we tested the NPs effect on the differentiation of UCB CD34+ cells following a similar 

methodology as previously described, however we only tested activation right after 4 h of 

internalization, and 72h later cells were stained for CD34 and CD38 and differentiation evaluated by 

flow cytometry. Again, cells treated with RA+NPs and activated by light showed the most significant 

increase in CD38 staining when compared to all other conditions. Furthermore, none of the treatments 

had an effect in CD34 expression. These results are in line with previous observations, where soluble 

RA induced CD38 expression in normal hematopoietic progenitor cells and leukemic human cells. 

However, CD38 increased expression was only correlated with terminal differentiation in CD34- 

progenitors and leukemic promyelocytic cell lines (e.g. HL-60).  Conversely, in CD34+ leukemic cell 

lines (e.g. KG1a) and in primary human CD34+ cell cultures derived from AML patients, CD38 

expression and terminal differentiation were not correlated676. 
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Since we have shown that polymeric photo-triggerable NPs could be efficiently loaded in human 

HSC and remotely activated without toxic effects while maintaining their functionality, we decided to 

further explore their potential use to modulate healthy HSC. 

 

4.3.4 Production and characterization of functional TAT-HoxB4 recombinant protein 

To have functional HoxB4 that could be used in this study, we produced a recombinant version of 

HoxB4 fusion protein, TAT-HoxB4. We have used a TAT-HoxB4 expression vector that has a C-

terminal 6xHistag which allows us to purify the protein by affinity and a N-Terminal TAT sequence, 

which facilitates the internalization of the protein677. The protein was produced similarly to what has 

been done in the past655,658. In short, recombinant HoxB4 was produced in E.coli expression system and 

purified by affinity under denaturing conditions (in the presence of Urea) and elution made with 

increasing concentrations of imidazole (Figure 4.6A panel I). Then the protein underwent a second 

purification step using an ionic-exchange chromatography (Figure 4.6A panel II) and finally eluted and 

shock-refolded in a single step by using high concentration of NaCl (Figure 4.6A panel III). Finally, 

the protein was eluted in PBS. As a result of the needed multiple purification, resulting protein 

concentration was very low to be used in our experiments, so we decided to concentrate it by using an 

Amicon 10 kDa. The purity and concentration of the TAT-HoxB4 and fusion protein were determined 

by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and detected with 

Coomassie Blue staining. The purified TAT-HoxB4 run as ~37 kDa protein and the concentration was 

estimated by comparison with a BSA protein standard in the same gel.  

To demonstrate that the purified protein had biological activity, we proceeded to an electrophoretic 

mobility shift assay (EMSA). Purified TAT-HoxB4 protein was incubated with an oligo containing the 

HoxB4 consensus sequence (5’-CGAATTGATTGATGCACTAATTGG AG-3’). The detection of the 

shift was done using a DNA/Protein double stain kit and although the shift is not very clear at the protein 

level, when looking at the DNA probe bands it was clear that the produced protein interacts with the 

probe, by the observed shift in the DNA band (Figure 4.6B). To confirm that this shift was not caused 

by unspecific interaction with contaminant proteins present in the TAT-HoxB4 solution, we also 

included a control in which we previously incubated the protein extract with an antibody for HoxB4. 

The increased shift observed in this condition confirms the specificity of the interaction and overall that 

the produced protein is functionally active and able to interact with its target, contrary to the commercial 

HoxB4. 
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Figure 4.6 - Production and validation of biological activity of TAT-HoxB4. (A) Purification of recombinant 

TAT-HoxB4 (~37kDa) by (I) HisTrap affinity followed by (II) cationic exchange and a final step of shock-

refolding by (III) fast dessalting. (B) DNA-Binding competence of produced TAT-HoxB4 assessed by 

electrophoretic mobility shif assay using a probe for the consensus HoxB4-PBX1 binding site oligo sequence (5’ 

CGA ATT GAT TGA TGC ACT AAT TGG 3’). Activity of Hoxb4 confirmed by the shift in the presence of 

double-stranded oligo and further specificity of the reaction confirmed by the supershift in the presence of an anti-

HoxB4 antibody, observed in the increase of intensity of higher bands in both DNA(SYBR Green) and protein 

stain(SYPR Ruby). (C) Schematic representation of the methodology used for cell cycle and G0 determination 

experiments. (D) and (E) Flow cytometry results of the effect of TAT-Hoxb4 on the cell cycle of modified murine 

pro-B cells, BaF3-GATA2. (D) Gating strategy. (E) Percentages of the cell cycle phases determined after 48 h of 

a single treatment with β-ER or TAT-HoxB4 (50nM and 500nM). Statistical analyses were performed by two-way 

ANOVA followed by a Holm-Sidak post-test. *P<0.05, **P<0.01 ***P<0.001 and ****P<0.0001. 
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4.3.5 Effect of TAT-HoxB4 in the cell cycle 

 

Next, we wanted to evaluate if the produced protein was biologically active. Because the quiescence 

of HSCs is a key aspect for the homing and maintenance of stemness of the HSC654, we decided to 

evaluate the influence of TAT-HoxB4 in the cell cycle. Classical flow cytometry cell cycle assays allow 

to determine the different phases of the cycle (G1/0, S, G2/M) only by DNA levels, however it does not 

allow to distinguish between quiescent cells (G0) from active G1 cells as they will have similar DNA 

amounts. By using a RNA fluorescent probe, we can separate G0 and G1 phases, as the dormant G0 

cells will have lower levels of RNA when compared to G1678. 

To validate and optimize the G0 determination protocol we initially used the BaF3 murine cell line 

stably expressing a GATA2-Estrogen Receptor inducible construct (BaF3-GATA2/ER). This cell line 

was previously used to determine the role of GATA2 in the cell cycle of haematopoietic stem and 

progenitor cells, where the addition of β-estradiol (β-ER) to the culture media will activate the 

transcription of GATA2, increasing the quiescence of the cells406.  Also, HoxB4 has been reported as a 

direct downstream target of the GATA2 in human CD34+ cells679. 

For cell cycle assays and G0 determination (Figure 4.6C), BaF3-GATA2 were cultured with RPMI 

culture medium supplemented with murine IL-3 and treated with a single addition of TAT-HoxB4 (50 

and 500 nM) or β-ER (1µm) as an internal control of G0 induction. After 48h in culture, cells were 

stained for DNA (7-AAD) and RNA (Pyronin) and analysed by flow cytometry (Figure 4.6D). Only at 

high concentrations of HoxB4 a similar level of G0 to the one observed in the control conditions (β-ER) 

could be achieved (Figure 4.6E). These results go along with previous observations that HoxB4 protein 

is very unstable in culture medium658, with a reported half -life of 2h and that continuous 

supplementation of fresh HoxB4 is needed to achieve a positive effect in the expansion of HSCs680. 

To better understand the dose effect of TAT-HoxB4 in the cell cycle of HSCs we tested the influence 

of different HoxB4 dosages during cell culture. Although our final objective is to deliver HoxB4 to 

human UCB CD34+, the availability of this cells is scarce, so we decided to use as a model the KG1a681 

cell line, a differentiation-resistant human AML cell line containing a very primitive population of 

CD34+CD38-. For this purpose, we treated KG1a cells with TAT-HoxB4 for 48 h (Figure 4.7A), in one 

experimental group TAT-HoxB4 was renewed after 24h, in the other group was renewed every 8 h. 

After the treatments cells were collected and analysed for cell cycle (G0 arrest) (Figure 4.7B) and for 

gene expression (Figure 4.8B). 

With cell cycle analysis we could observe that only two treatments of HoxB4 are already enough to 

induce quiescence in these cells, however only when multiple treatments are applied that we can see 

most of the cells acquiring a quiescence state (Figure 4.7C). 
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Figure 4.7 - TAT-HoxB4 Dosage effect in the cell cycle of human AML CD34+ cell line KG1a. KG1a cells 

were incubated in complete IMDM supplemented with HoxB4 (500nM). Every 8h or 24h cells were supplemented 

with fresh HoxB4. Cells were collected 48h after the first treatment and stained with 7AAD (DNA) and PyroninY 

(RNA) followed by flow cytometry analysis of the cell cycle and G0 determination. (A) Schematic representation 

of the methodology used. (B) Representative gating strategy for cell cycle analysis. (C) Percentages of the cell 

cycle phases determined after 48 hours of multiple treatments with TAT-HoxB4 (500nM), every 24h or every 8h. 

Results are expressed as mean±s.e.m (n=3). Statistical analyses were performed by two-way ANOVA followed 

by a Holm-Sidak post-test. *P<0.05, **P<0.01 ***P<0.001 and ****P<0.0001. 

Next, we monitored the effects of the different TAT-HoxB4 treatments on the transcriptional 

regulation of key genes related with HoxB4 regulation cascade (HEMGN, GATA2, CUL4 and PBX1) 

and cell-cycle associated genes CDC20 and CDK2 (Figure 4.8). Consistent with the cell cycle data, the 

strongest upregulation of HoxB4 related genes was observed in the 8 hours treatments, with PBX1, a 

transcriptional co-factor of HoxB4, being the most upregulated; followed by the Hoxb4 direct targets 

HEMGN and GATA2. Also, not surprisingly, we could observe high levels of expression of CUL4, a 

ubiquitin ligase protein, previously associated with the high levels of cellular degradation of HoxB4658. 

As for CDC20 and CDK2, cell cycle regulators in cell division (M phase) and S phase entry, we could 

observe an increase with HoxB4, but no significant difference was observed with different HoxB4 

treatments. This data supports the double role of HoxB4 in the maintenance of HSC stemness by 

promoting an accumulation in G0 without a full cell cycle arrest, allowing the expansion of HSCs. 
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Figure 4.8 - Genes modulated by HoxB4 during G0 induction in KG1a cells as assessed by qRT-PCR 

analyses. (A) Gene expression profile of KG1a cells 2 h, 4 h and 8 h after treatment with 500nM HoxB4. (B) Gene 

expression of KG1a cells after 48 h of treatment with HoxB4 (500nM), with HoxB4 renewal every 24h or every 

8h. In each run, the expression of each gene was normalized by GAPDH gene. Gene expression in each 

experimental group was normalized by the corresponding gene expression observed in nontreated KG1a cells. 

Results are expressed as mean±s.e.m (n=3). Statistical analyses were performed by two-way ANOVA followed 

by a Holm-Sidak post-test. *P<0.05, **P<0.01 ***P<0.001 and ****P<0.0001. 

 

4.3.6 Immobilization of HoxB4 in NPs 

Next, we hypothesized that if we could encapsulate or immobilize the TAT-HoxB4 in a nanoparticle 

system, we could improve not only the stability of the protein, but also take advantage of the light-

activatable NP platforms developed in our group which would allow us to control with higher precision 

the time, location and dosage of the release. Our first approach was to try to encapsulate TAT-HoxB4 

by replacing RA with the TAT-HoxB4 in PEI-DMNC:DS nanoparticles (Figure 4.9A). However, 

despite many attempts using different concentrations of HoxB4 we could not detect any protein 

associated with the NPs using Coomassie (Figure 4.9B). In fact, all the protein seems to be lost during 

the first centrifugation at 350g. In normal conditions, we can only achieve sedimentation of soluble 

proteins with >10000g forces, so this sedimentation of TAT-HoxB4 at 350g may indicate that the protein 

is losing solubility either by forming aggregates with itself and/or with dextran sulphate, the polyanion 

block of the nanoparticles.  
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Figure 4.9 - HoxB4 ligation to light sensitive NP platforms. (A, B) Characterization of the encapsulation of 

TAT-HOXB4 in PEI-DMNC:DS NPs. Size, zeta potential and number of NPs (Kcps) of NPs in an aqueous 

suspension exposed or not to UV light (5min 100W). (B) Evaluation of encapsulation efficiency by SDS-PAGE. 

(C) Schematic representation of procedure to test the covalent ligation of TAT-HOXB4 (positively charged) to the 

PCL of up-conversion nanocrystals (negatively charged) SDS was used to eliminate electrostatic interactions. (D) 

SDS-PAGE evaluation of supernatants (SN) and pellets (P) from the different steps. 

 

As the physical encapsulation did not seem to be feasible with the DS:PEI-DMNC NP system we 

decided to try a different approach. In this second approach we used an up-conversion nanocrystal (NC) 

system developed in our group, which can convert infrared irradiation to UV irradiation. These NCs 

were functionalized with a photocleavable linker (PCL), sensible to the UV, which allows to covalently 

bond proteins by their C-terminal; in the case of our recombinant HoxB4 this is especially relevant as 

the TAT-sequence is at the N-terminal. In this way, we could maintain the full functionality of TAT-

HoxB4 and still use light stimulus to control the release. After confirming the functionalization of the 
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NCs with the PCL, the carboxylic group of TAT-HoxB4 was activated and the ligation made by click-

chemistry. To confirm the ligation reaction (Figure 4.9C), we run both pellets and supernatants (Figure 

4.9D, SN-1) of a 5000g centrifugation of TAT-HoxB4+NC suspension, before (Figure 4.9D, P-1 and 

SN-1) and after 10 minutes irradiation with UV (Figure 4.9D, P-2 and SN-2). Despite we could detect 

almost all the protein with the NCs pellet before irradiation, we were unable to detect protein in the 

supernatant after UV irradiation of the NC suspension. As the NCs are negatively charged and the TAT-

HoxB4 has a positive isoelectric point (pI.~10), we hypothesized that TAT-HoxB4 could be interacting 

electrostatically with the NC surface instead of being covalently bound by the PCL. To test this, we 

incubated the TAT-HoxB4+NCs with a 10%SDS PBS solution for 10 minutes before proceeding to the 

centrifugation. By using a detergent, we expect to reduce the electrostatic interactions. In fact, by doing 

this most of the protein was detected in the supernatant of the solution (Figure 4.9D, SN-3) Although 

some protein could be detected in the pellet fraction (Figure 4.9D, P-3), this was likely to be still either 

some carryover from the protein in the SN or still protein electrostatically bound to the NC. 

While we were able to produce biological active HoxB4 protein, which can regulate HSC self-

renewal, conjugation of HoxB4 to a nanoplatform showed to be more challenging than expected and 

further work is need to overcome the obstacles found during the development of this work. 

 

 

4.4. Conclusions 

In this chapter we were able to demonstrate that athe feasibility in AML therapy of targeted spatio-

temporal controlled drug release system, composed by LSCs and photo triggerable RA+NPs, can be 

successfully used in an AML disease model. Our results   show that, instead of alternately to soluble RA 

treatments, RA+NPs can be used to induce AML differentiation towards monocytic/macrophage lineage 

not only in vitro but also in vivo in an MLL-AF9 mouse model of AML. Also, we have shown in vitro 

evidence that soluble RA and more significantly, activation of RA+NPs, stimulate antitumoral M1 

macrophage activation. This macrophage induced differentiation in vivo seems to have “systemic” anti-

leukemic effect within the BM leukemic niche, as we observed a significant reduction of leukemic cells 

in the BM of animals treated with RA+NPs when compared with animals treated with empty NPs (RA--

NPs). 

We also explored the potential use of this system using healthy HSCs as RA+NP carriers. Our results 

indicate that RA+NPs can be loaded in human UCB CD34+ cells as efficiently as observed in human 

AML CD34+ cell lines (4h internalization). Although, UCB CD34+ cells seem to be more sensitive to 

blue laser irradiation, shorter irradiation time (1 min) at lower laser power level (40mW) was still 

sufficient to trigger RA release from NPs and trigger the expression of CD38 in UCB CD34+cells. 

In the final part of this chapter, we were able to produce biologically functional HOXB4, which we 

were able to show it is capable to induce a quiescent state in human AML CD34+ cell lines. 

Unfortunately, HOXB4 loading or surface ligation in NP proved to be difficult, probably due to its 

intrinsic physico-chemical properties (e.g. size, charge, conformation). 
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4.5. Materials and Methods 

 

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Total 

RNA was extracted and purified using RNeasy Micro Kit (Qiagen) and immediately stored at -

80ºC. Total RNA was quantified in a NanoDrop ND-1000 Spectrophotometer (NanoDrop 

Technologies, Inc., USA) by spectrophotometry at 260 nm. The cDNA was reverse transcribed 

from 0.5 μg of total RNA, using TaqMan Reverse Transcription Reagents kit (Invitrogen) according 

to the manufacturer’s instructions. The cDNA obtained was stored at -20ºC until further analysis 

by qRT-PCR using SYBR Green technology and qRT-PCR analyses were performed using the ABI 

PRISM 7500 Fast System (Applied Byosystems). Quantification of target genes was performed 

relative to GAPDH gene according to the equation: 2[–(Ct sample –Ct GADPH)]. The mean minimal cycle 

threshold values (Ct) were calculated from quadruplicate reactions.  

 

 

RA+NPs internalization by MLL-AF9 blasts and differentiation - MLL-AF9 YFP cells were 

incubated in serum-free RPMI-1640 with RA+NPs (10 μg/mL) for 4 h. Then, cells were washed three 

times with PBS to remove NPs not internalized, activated or not by blue laser (405nm, 80mW) during 

5 min, and cultured in complete medium for additional 3 days. Alternatively, MLL-AF9 YFP were 

cultured in complete medium for 3 days having soluble RA (3μg/mL). The differentiation at 72h post 

treatment was evaluated by flow cytometry: GMPs (Ly6G+CD11b-), Neutrophil (Ly6G+CD11b+) and 

Macrophage (Ly6G- CD11b+F4/80+) differentiation markers. Percentage of macrophage activation 

markers for type 1 (MHC II+CD206-) and type 2 (MHC II-CD206+) polarization. Percentage of 

myelocytic differentiation MLL-AF9 cells in neutrophils or macrophages and percentage of type 1 and 

type 2 macrophage polarization. 

Intravital microscopy to monitor cell activity inside the calvaria BM niche. First mTmG MLL-

AF9 blasts were injected in healthy mice to induce disease infiltration. After 12-14 days YFP MLL-AF9 

blasts previously loaded with RA+NPs or empty NPs were injected. One or two days later, after 

confirming by intravital microscopy the homing of YFP blasts to the same niche as mTmG blasts, the 

nanoparticles were activated by exposing the mouse calvaria to the blue laser for 10 minutes. This 

activation was repeated the following day. Three days after the last activation, the progression of the 

disease and MLL-AF9 activity were monitored inside the niche by time-lapse image acquisition. In the 

end of the acquisitions, mice were sacrificed and BM was collected from the calvaria and long bones 

and analysed by flow cytometry. 

 

Treatment with delivery cells MLL-AF9 YFP+ previously transfected with RA-NPs (n=3) or 

RA+NPs (n=3) by tail vein injection. After the homing (1 day) of delivery cells, the NPs were remotely 

activated by irradiating the mouse calvaria with a blue laser (5 min, 405 nm, 80mW) on the following 

two days. On the fifth day after MLL-AF9 YFP injection mouse were sacrificed and BM from the 

calvaria and long bones isolated for flow cytometry analysis. 
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NPs in UCB CD34+ cells Internalization and Cytotoxicity of RA+NPs and light activation at 

human AML CD34+ cell line (KG1a) and UCB CD34+ Briefly KG1a cells were treated with different 

concentrations of RA+NPs (0.1, 1 and 10ug/mL) for 4 hours in complete RPMI-1640 media with 1% 

FBS. After the incubation period cells were washed with PBS several times to remove non-internalized 

NPs and replated with complete RPMI-1640 with 10% FBS and irradiated or not with a blue laser 

(405nm, 5 minutes at 80mw). After 48h cells were collected and AnV/PI flow cytometry protocol was 

used to assess the toxicity of the NPs. To find non-toxic conditions for the laser exposure, cells were 

exposed to a blue laser at 80mW for different time periods…… 

 

Cellular uptake and dilution of RA+NPs in human AML CD34+ cell line (KG1a) and UCB 

CD34+cells. Uptake of TRITC-labelled RA+NPs (10 μg/mL) in human AML CD34+ cell line (KG1a) 

and UCB CD34+ cells was determined by FACS. Cells were cultured in medium supplemented with 

NPs, washed and characterized by flow cytometry. Dilution of TRITC labelled RA+NPs with cell 

culture. KG1a and UCB CD34+ cells were transfected with RA+NPs in serum-free media for 4h, washed 

with PBS to remove non-internalized RA+NPs and cultured in complete media for additional 4h, 3 days 

and 6 days. After each incubation time cells were washed and NP dilution evaluated by flow cytometry.  

 

Differentiation capacity of RA+NP in KG1a e UCB CD34+ cells. The RA+NPs were internalized 

for 4h hours and after being washed with PBS, divided into 3 groups, one where cells were irradiated 

with the blue laser right after wash (4 h activation), in the second and third group cell were cultured for 

additional 72 h or 144h, respectively, before laser activation. As a control condition, soluble RA was 

added to cells at the same time of laser activation of each group. In all groups the differentiation was 

evaluated 3 days after activation by flow cytometry by CD11b/CD13 staining 

 

TAT-HoxB4 production. Recombinant HoxB4 was produced in E.coli expression system and 

purified by affinity using an HisTrap HP chromatography column (GE Healthcare) under denaturing 

conditions (in the presence of 8M Urea) and elution made with increasing concentrations of imidazole 

(Figure 4.6A panel I). Then the protein underwent a second purification step using an ionic-exchange 

chromatography (HiTrap SP HP, GE Healthcare ) (Figure 4.6A panel II) and finally eluted and shock-

refolded in a single step by using 20mM HEPES supplemented with 1M NaCl (Figure 4.6A panel III). 

At this point, the sample buffer was then exchanged to PBS, using an HiTrap desalting column and as 

the resulting eluted protein concentration was low, purified recombinant HoxB4 was concentrated using 

and Amicon 10 kDa. The purity and concentration of the TAT-HoxB4 and fusion protein were 

determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and detected 

with Coomassie Blue staining. The purified TAT-HoxB4 run as ~37 kDa protein and the concentration 

was estimated by comparison with a BSA protein standard in the same gel. 

 

Validation of biological activity of TAT-HoxB4. An electrophoretic mobility shift assay (EMSA) 

was used. Purified TAT-HoxB4 protein was incubated with an oligo containing the HoxB4 consensus 

sequence (5’-CGAATTGATTGATGCACTAATTGG AG-3’) for 1hour and then loaded in a 6% non-

denaturing polyacrylamide gel. The detection of the shift was done using a DNA/Protein double stain 

kit  
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Effect of TAT-HoxB4 in cell cycle. Classical flow cytometry cell cycle assays allow to determine 

the different phases of the cycle (G1/0, S, G2/M) only by DNA levels, however it does not allow to 

distinguish between quiescent cells (G0) from active G1 cells as they will have similar DNA amounts. 

By using a RNA fluorescent probe, we can separate G0 and G1 phases, as the dormant G0 cells will 

have lower levels of RNA when compared to G1. BaF3 murine cell line stably expressing a GATA2-

Estrogen Receptor inducible construct (BaF3-GATA2/ER). For cell cycle assays and G0 determination, 

BaF3-GATA2 were cultured with RPMI culture medium supplemented with murine IL-3 and treated 

with a single addition of TAT-HoxB4 (50 and 500 nM) or β-ER (1µm) as an internal control of G0 

induction. After 48h in culture cells were stained for DNA (7-AAD) and RNA (Pyronin) and analysed 

by flow cytometry. 

 

TAT-HoxB4 Dosage effect in the cell cycle of human AML CD34+ cell line KG1a. KG1a cells 

were incubated in complete IMDM supplemented with HoxB4 (500nM). Every 8h or 24h cells were 

supplemented with fresh HoxB4. Cells were collected 48h after the first treatment and stained with 

7AAD (DNA) and PyroninY (RNA) followed by flow cytometry analysis of the cell cycle and G0 

determination.  

 

Immobilization or Encapsulation of HoxB4. Encapsulate TAT-HoxB4 by replacing RA with the 

TAT-HoxB4 in PEI-DMNC:DS nanoparticles. Detect protein associated with the NPs using Coomassie. 

Encapsulation efficiency by SDS-PAGE. Covalent ligation of TAT-HOXB4 (positively charged) to the 

PCL of up-conversion nanocrystals… 

 

Statistical analysis. Statistical analyses were performed with GraphPad Prism software. For 

multiple comparisons, a two-way ANOVA followed by a Holm-Sidak post-test was performed. Results 

were considered significant when P< 0.05. Data are shown as mean ± s.e.m. unless other specification. 

 

  



CHAPTER 4 - Prospective studies on nanoformulations that are able to modulate healthy and leukemic niches 

120 

 

  



 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 - General Conclusions and Future 

Work 
 

  



CHAPTER 5 - General Conclusions and Future Work 

122 

 

 



CHAPTER 5 - General Conclusions and Future Work 

123 

 

General conclusions and Future work 

In conclusion, with this work we were able to develop a naturally targeted drug delivery system for 

AML therapy, featuring a high degree of precision in the spatio-temporal control of drug release and 

delivery. 

To achieve this, we developed a biocompatible photo-triggerable NP system to deliver RA 

intracellularly. Photo-triggerable RA+NPs can be quickly internalized and avoid cellular degradation by 

lysosomal escape, which allows a prolonged intracellular accumulation of functional NPs inside LSC400. 

Our nanoformulation, allowed us to explore the natural tropism of LSCs (as a targeting strategy) to 

deliver RA+NPs in leukaemic niches of the BM in a stealthy manner, as cell carriers avoid systemic 

immunological recognition and response. We would also expect this system to have less off-target 

accumulation and side effects, when compared with other targeted drug delivery systems. Although we 

did not evaluate the systemic distribution in the whole animal, we believe the great majority of RA+NP 

loaded cells would naturally accumulate at the BM. Furthermore, our photo-triggerable system allowed 

us to choose, with precision, the time and location (i.e. calvarium bone) of RA release from NPs by an 

external stimulus (i.e. blue laser irradiation – 405nm). 

We also observed that RA+NPs can help to reduce leukaemia burden in MLL-AF9 AML mouse 

model and promote macrophage differentiation of carrier cells in vitro and in vivo. However, further 

investigation is necessary to clarify our observations. Although it was not possible to analyse before the 

submission of this thesis, we also used intravital microscopy imaging techniques70 to acquire calvaria 

tilescans, and 3h time-lapses of calvarium BM before and after exposure to blue laser in animals treated 

with NP-loaded MLL-AF9 cells. Intravital imaging was performed in the same animals used in flow 

cytometry characterization of BM cell composition in animals treated with empty NP (RA-NPs) and 

RA+NPs. We are now conducting image analyses in order to better understand the mechanism. This kind 

of analysis would allow to observe biological events to support our results, such as: phagocytic events 

from carrier cells, apoptotic events from either carrier cells or resident leukaemic cells. We could also 

investigate the different migration patterns of both MLL-AF9 blasts used in this experiment. We would 

expect to find the majority of YFP+ to migrate preferentially to the vicinity of mTmG MLL-AF9 cells 

expanding in the BM of treated mice. 

Preliminary data obtained by particle analysis, showed that we could potentially use two-photon 

laser to activate RA+NPs with high precision, which coupled with intravital imaging could allow us to 

study, in deeper detail, the interaction promoted by our system within the bone marrow niche. For 

example, we could activate carrier cells preferentially located at different niches (endosteal v.s. 

perivascular niche) and follow the promoted effects by intravital time-lapse imaging.  

Our observations could be further improved towards a potential clinical application by: 

1) doing a better characterization of BM cells, either by a better choice of antibody panel choice 

which could better identify macrophages and type of activation, or by better discrimination of different 

BM fractions (e.g. flushing central marrow diaphysis and trabecular-rich areas by crushing metaphysis 

area682; 

2) testing the impact of RA+NPs related LSC clearance in the survival; 
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3) using in a combined therapy approach, with other therapeutic agents683; for example, RA+NPs 

could be used in combination anti-CD38-based therapeutic agent (Mol Cancer Ther. 2004 Mar;3(3):345-

52). 

RA is a signalling molecules with pleiotropic effects, serving as key modulator in different parts of 

the organism. in the modulation of haematopoiesis, while it induces LSC differentiation in APL or in 

HSPCs, it can also be involved in the regulation of HSC self-renewal and maintenance380. Making 

RA+NPs a good candidate to be tested in HSCT therapy used during remission therapy. Although we 

did not fully explore this option, our results indicate that HSC could be a good candidate to be the carrier 

cell on our drug delivery system, as we showed that RA+NPs can be loaded and activated efficiently in 

UCB CD34+. Also, a fast NP internalization protocol can decrease the exposure of HSC to normoxia 

atmospheric conditions, which compromises HSC recovery from the BM and cord blood274. 

Besides AML, RA+NPs could potential be explored in other types of cancer therapy, such as brain 

tumours, or other hematopoietic malignancies specially in other leukaemia, bone metastasis and also in 

regenerative therapy. For example, we could take advantage of the small RA passive release (leakiness 

of the NPs) to help in maintaining HSC functionality during transplantation. This would probably 

potentiate a higher efficiency in terms of numbers of HSCs that reach the niche. On the other hand, due 

to the rarity and difficulty to isolate HSCs in high numbers for experimental purposes, maybe by using 

cells with higher availability as NP carriers would be more rewarding; such as: MSC, 

Macrophages/Monocytes, T cells, NK cells. 

NP delivery systems are attractive for the delivery of protein and in particular transcription factors. 

They can help in stabilizing and protecting proteins from degradation and also because they can serve 

as an intracellular delivery system, important in transcription factors delivery as they often require post-

translational modifications in order to become biologically active. In this work, the conjugation of 

functional HOXB4 with a NP-delivery system failed and we are actively looking for other alternatives. 

In the meantime, further NP improvements have been made in our group which would allow a higher 

diversity of applicability either by allowing for an easier conjugation/loading of proteins, small 

molecules or nucleic acids684-686, or by using light wavelengths which allow higher body penetration and 

less toxic effect than 405nm laser irradiation. In particular, Jimenez-Balsa A et al NP systems would be 

specially interesting as it could possibly allow for a double delivery system, by encapsulating a small 

molecule and conjugate any other type of biomolecule to the photo-cleavable linker. 
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