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Abstract—Vehicles need to locate other vehicles and network
infrastructure elements on unmanned autonomous vehicle (UAV)
systems. Human passengers also need to locate and be located
by the vehicles, preferentially using a portable device, such
as a smartphone. This paper analyses the accuracy of several
localization algorithms in the remote location of entities running
WiFi access points, using measurements collected in moving
vehicles using a new application developed by us. The algorithms
analysed include closed form estimators and one based on second
order cone programming (SOCP) relaxation, which exhibits the
best accuracy and is capable of estimating the path loss exponent
and the transmission power. Although, due its lower complexity,
the Levenberg-Marquardt algorithm was better suited for the
stand-alone Android prototype application. The results show
that real-time accurate positioning of static/slow moving remote
entities is possible, even though the accuracy degrades when the
measuring vehicle’s speed increases.1

Index Terms—Location algorithms; WiFi localization;
Vehicular-based performance evaluation; Android application.

I. INTRODUCTION

Vehicles need to locate other vehicles and network infras-
tructure elements on autonomous vehicle systems. Humans
also need to locate and be located by the vehicles, prefer-
entially using a portable device. This paper addresses the
challenge of providing a portable localization system that maps
static or slow moving remote nodes without requiring any
known anchor or map, using only the smartphone’s sensors,
Android’s services, and the energy received from the remote
nodes. The idea is not to locate the terminals location, but the
location of a remote node sending a given SSID.

Fingerprinting and multilateration are two main approaches
for WiFi positioning [1]. Fingerprinting-based WiFi position-
ing matches the measured Received Signal Strength (RSS) val-
ues to a pre-surveyed radio map database [2]. Multilateration-
based WiFi positioning calculates the ranges between the
device and Access Points (APs) using a wireless signal propa-
gation model; trilateration or multilateration algorithms, such
as the ones in [3], [4], are used to estimate the position of the
nodes. Fingerprinting usually provides more accurate position
solutions for a terminal location [1], but fails to provide the

1This work was funded by FCT/MEC through national funds and when
applicable co-funded by FEDER – PT2020 partnership agreement under the
project UID/EEA/50008/2013 and Program Investigador FCT under Grant
IF/00325/2015.

exact location of a remote node. Multilateration is the best
approach to locate remote nodes, requiring only the relative
position of nodes [5].

Localization precision can be increased by using enhanced
GNSS services (e.g. Assisted-GPS (A-GPS) [6]), Angle of
Arrival (AoA) (e.g. [7]) and the micro-electro-mechanical
systems (MEMS) sensors present in the portable devices
(e.g. [1]). MEMS sensors can be used to implement inertial
navigation system (INS) and/or pedestrian dead reckoning
(PDR) for vehicle or pedestrian navigation applications.

Simultaneous Localization and Mapping (SLAM) algo-
rithms address the localization problem assuming no prior site
information. Most SLAM solutions combine PDR/INS and
fingerprinting, although with more elaborate robotic sensors
and mobility scenarios [8]. SLAM is a nonconvex problem
and most SLAM algorithms are based on iterative nonlinear
optimization. State-of-the-art iterative solvers fail to converge
to a global minimum of the cost function for relatively small
noise levels, so methods that explored the nonconvexity nature
in SLAM and alternative maximum likelihood formulations
were proposed, that allow a global optimization solutions using
(convex) semidefinitive programming (SDP) [8]. Other authors
proposed equal efficient and less complex convex relaxation
solutions [9]. Although different, evolution of multilateration
algorithms followed a similar path, and some of the best
performing ones are also based on convex relaxation solutions
(e.g. [4], [10]).

This paper proposes a multilateration approach for remote
node localization. Several multilateration algorithms were
analysed using the same RSS samples collected by a smart-
phone in a vehicular scenario.The emphasis in this paper
is identifying the multilateration algorithms that best handle
the input measurement errors. The paper’s main contributions
is the analysis and performance evaluation of multilatera-
tion techniques, comparing classical static ones, maximum
likelihood formulations, convex SDP and convex relaxation
solutions. A new Android application that supports remote
localization of APs is also presented.

This paper is organized as follows: the system overview is
presented in section II. Multilateration algorithms are reviewed
in section III, and their performance is evaluated in section IV.
Section V summarizes the main conclusions.



II. SYSTEM ARCHITECTURE

The system is designed for a mobile terminal to track the
location of static or slow moving entities running WiFi APs.
The approach followed is illustrated in figure 1. A moving
terminal collects in multiple locations RSS measurements
of the signal received from the APs, recording the terminal
location at each measurement. This paper focuses exclusively
in a non-cooperative implementation, where the multilatera-
tion algorithm uses only the terminal’s RSS vectors. But a
combination of vectors from several terminals could be used.

Fig. 1. Localization scheme.

The main component is the software running in the terminal,
which implements the modules depicted in figure 2. The lo-
calization module is capable of switching between an outdoor
mode and an indoor mode (not described in this paper). In
outdoor mode, it uses the Android localization service, which
combines GNSS, WiFi and cellular signals to estimate the
location. An odometry module is used in indoor mode, to
track the relative position of the terminal from the last known
global position. A WiFi scanner module is run concurrently,
which collects the RSS vectors using the android.net.wifi
Android’s library. In the non-cooperative mode, the vectors
are fed to the multilateration algorithm, implemented at the
FindAP module, which returns the location of the selected
AP. A prototype Android application was implemented2 for
the non-cooperative mode. The current prototype application
provides two visualization mechanisms for the AP’s location:
it can provide an arrow pointing to the direction towards the
AP (fig. 3); or, it can provide the location of the APs in a map
(fig. 4). It was developed mainly for human users. However,
it can be easily extended to an UAV scenario: the FindAP
module can send the APs’ locations directly to an autonomous
driving unit inside the vehicle and the localization module
could receive the location from the vehicle’s odometry unit
(that may use sensors attached to the wheels).

For testing purposes, the application was extended to collect
AP’s RSS measurements, time, odometry/android location,
allowing the evaluation of multiple algorithms with real mea-
sured data, which is presented in this paper.

2The app source code can be downloaded from https://github.com/
dario-pedro/wifi_finder.

Fig. 2. Terminal operation scheme.

Fig. 3. Find AP interface Fig. 4. Map interface

III. LOCALIZATION ALGORITHMS

The problem of localizing a remote node is dual to the
classical localization problem. Let t denote the target with
unknown coordinates and si, i = 1, ..., N , the set of known
positions where the terminal collected the target’s RSS values,
P r
i . The distance corresponding to a given RSS value P r can

be obtained using the Friis equation,

d = 10
α−Pr−10γ log10(f)

10γ , (1)

where γ represents the path loss exponent (PLE), f the carrier
frequency and α the contributions of the antennas gains and
the transmission power (assumed uniform) [11]. The measured
distance is defined by

di = ∥si − t∥+ εi, (2)

where εi is the error in the ith measurement, which among
others, includes contributions from the terminal location error
and due to errors in the estimated PLE value. Errors are
assumed independent. Equation (2) can be generalized to
D = h(t) + ε, where D denotes the measurement vector, h
the vector-valued measurement function and ε the error vector.
The objective of a positioning method is to find the position
t that minimizes the residual between the true distances and
the measured ones, which defines a multilateration problem.
One way for obtaining an estimate of the target’s location, t∗,
is via the least square (LS) criterion, i.e,

t∗ = argmin
t

∥D − h(t)∥2 = argmin
t

N∑
i=1

(di − hi(t))
2
. (3)



In this paper we compare a set of algorithms that might be
suitable for our application due to their high accuracy and low
complexity. We analyse the performance of the following well
known closed form estimators for overdetermined systems:

• Simple - simple intersection method is derived by ex-
panding and solving the squared range equations to
2sTi t = ∥t∥2 + ∥si∥2 − d2i [3];

• Range-Bancroft - this method is also based on an ex-
pansion of the squared range equations presented above,
but it uses Moore-Penrose matrices’ pseudo-inverses to
obtain estimate solutions and select the one with minimal
residual value [3];

• Beck - Beck et al. [12] defined a procedure for computing
the exact least-quartic solution for the range equations.
The procedure uses the bisection method to find a root
of a univariate strictly monotonous function on an interval
that is easily computed;

• Cheung - Cheung et al. [13] gave a constrained weighted
least squares solution for range measurements. It assumes
each measurement error εi is a zero-mean white Gaussian
process with known variance σ2

i .
Additionally, we consider two closed form iterative algo-

rithms and review an estimator based on a convex relaxation
solution [4], presented in the subsections below.

A. Gauss-Newton

Gauss-Newton method is an iterative method to minimize a
sum of squared function values for scenarios with additive
noise with finite variance. In this paper we consider the
regularized Gauss-Newton method [3], which reduces the
divergence problems using an algorithm that is equivalent
to a Bayesian maximum-a-posteriori algorithm with prior
distribution chosen around the center point of the terminal
positions. Let td denote the mean point of si, i = 1, ..., N and
c a regularisation coefficient. The results presented in section
IV were obtained by using a maximum number of iterations of
Kmax = 8, c = 10−4 and the stopping tolerance δ = 2∗10−2.

B. Levenberg-Marquardt

The Levenberg-Marquardt (LM) algorithm is an alternative
iterative technique that locates the minimum of a function
expressed as the sum of squares of nonlinear functions [14].
LM can be thought of as a combination of gradient descent
and the Gauss-Newton method. When the current solution
is far from the correct one, the algorithm behaves like a
gradient descent method: slow, but guaranteed to converge.
When the current solution is close to the correct solution, it
becomes a Gauss-Newton method. This is implemented using
a dampening factor ϑ, which is calculated in each iteration.
A weight wi, i = 1, ..., N was used in the sum, with a value
wi = 1/di

2. To avoid divergence problems due to matrices
over-dimensioning, the measured distances were bound to
di = max(di, 10

−7).
The algorithm starts by calculating the initial starting po-

sition, t0 = td and defining the stopping tolerance δ (10−4

times the function tolerance). In each step, the Jacobian J is

calculated, and tk+1 = tk+∆tk where ∆tk is the least-squares
solution to (JTJ + ϑdiag(JTJ))∆t = JT ε. The dampening
factor ϑ is updated based on the success of the last tk update.
The cycle stops when ∥∆tk∥ < δ, or when Kmax is reached.

LM algorithm was initially implemented using the Mat-
lab library, and latter selected for the non-collaborative
Android prototype, where it was implemented using
the org.apache.commons.math3.fitting.leastsquares.Levenberg
MarquardtOptimizer library, with a maximum number of
iterations Kmax = 1000.

C. Tomic SOCP Relaxation

Tomic et al. [4] derived a convex estimator, by tightly
approximating the ML (Maximum Likelihood) estimator for
small noise. This estimator is based on SOCP relaxation
technique. Contrarily to the previous algorithms, this algorithm
handles γ and the transmission power PT as unknowns,
estimating them simultaneously with the t’s position. The
following path loss model (dB) was considered,

Li = L0 + 10γ log10 ∥t− si∥/d0 + vi, i = 1, . . . , N, (4)

where L0 denotes the value of losses along the path at a
short reference distance d0 (∥t− si∥ ≥ d0) and vi is the log-
normal shadowing term modeled as a zero-mean Gaussian
random variable with variance σ2

i , i.e. vi ∼ N
(
0, σ2

i

)
. This

formulation combines (1) and (2) in a single equation.
To formulate the joint localization problem, the ML criterion

was considered, but finding the ML estimator, θ̂, implies
solving the non-linear and non-convex least-squares problem,

θ̂ = argmin
θ=[t;L0;γ]

N∑
i=1

1

σ2
i

×[(
Li − hT θ

)
− 10gT θ log10

∥∥CT θ − si
∥∥

d0

]2
, (5)

where h = [02×1; 1; 0], g = [03×1; 1] and C = [I2; 02×2]. The
problem defined by (5) is not convex and has no closed-form
solution. Therefore, the solution proposed in [4] estimates the
position of interest following the iterative procedure:

1) Set the initial estimate of γ, γ̂0 ∈ [γmin, γmax], and the
iterator counter k = 1.

2) Solve the SOCP problem [4]: minimize
t,g,z,η,p

p

subject to
∥∥[2z p− si

]∥∥ ≤ p+ 1, ∥t− si∥ ≤ gi,

zi = ψigi − ηd0, i = 1, . . . , N. (6)

3) Use γ̂k−1 and t̂k−1 to compute L0’s ML estimative,

L̂k
0 =

N∑
i=1

(
Li − 10γ̂k−1 log10

∥∥t̂k−1 − si
∥∥

d0

)
/N (7)

4) Use t̂k−1 and L̂k
0 to find the ML estimative of γ, γ̂

γ̂k =

∑N
i=1 10 log10

∥t̂k−1−si∥
d0

(
Li − L̂k

0

)
∑N

i=1

(
10 log10

∥t̂k−1−si∥
d0

Li − L̂k
0

)2 (8)



If γ̂k /∈ [γmin, γmax] the process should be stopped at
this point and use t̂k−1 as the final estimate.

5) If k > KT
max ( KT

max represents the maximum number
of iterations) it must stop and consider t̂k as estimate ;
Otherwise repeat step 2 with the help of γ̂k and L̂k

0 and
increment k.

IV. PERFORMANCE EVALUATION

The performance of the localization algorithms was anal-
ysed for a smartphone inside a moving vehicle using the loca-
tion information provided by A-GPS to the Android service,
which has an expected accuracy for a static terminal of around
8 m [15]. A static AP was placed in the location represented
in figure 5 with PT = 28 dBm. The RSS measurements were
registered every second using a OnePlus 2 smartphone running
Android 6.0.1. The application allows the user to export the
data, which was later swot in MATLAB, and all algorithms
described in section III were implemented and run using the
same data. Moreover, γ0 = 2.5, γmin = 1.5 , γmax = 3.5 and
KT

max = 3 were considered for the algorithms that require
these parameters. The metric used to compare the accuracy
of one estimated location was the Euclidean distance to the
exact location of the test AP. The overall performance metric
considered for each algorithm was the Root Mean Square Error

(RMSE),
√∑M

i=1

∥∥t− t̂i
∥∥2/M , where M denotes the size of

the measurement set.

Fig. 5. Vehicular testing scenario.

Two sets of tests were done following the path depicted
in figure 5, inside Caparica Campus of NOVA University of
Lisbon, at two different vehicle average speeds: 20 km/h and
30 km/h. Figure 6 depicts the RSS values measured in two of
the tests. Due to the constant sampling rate, a lower number of
samples was measured for the higher speed and the measured
RSS values have a narrower variation range, probably due to
some filtering implemented at the Android library. RSS values
stay low during the first measurements, and start to increase
until a first maximum, when the car passed in front of the
AP coming from the left in the right lane in figure 5. RSS
decreases and has a second maximum value when the car
drives to and goes around the roundabout and passes a second
time in from of the AP coming from the right in the opposite
lane, before returning to the starting point.

Figures 7 and 8 depict the distance between the estimated
and the exact location of the test AP, after the ith measurement

Measurement

0 10 20 30 40 50 60 70 80 90 100

P
o

w
e

r 
(d

B
m

)

-80

-75

-70

-65

-60

-55

-50

-45
20 km/h

30 km/h

Fig. 6. RSS measured at 20 km/h and 30 km/h.

for the two speeds. Note that the ith sample uses all measure-
ments of the previous samples, and some variations may occur
due to measurements with higher error being added.

It can be seen at figures 7 and 8 that the accuracy decreased
for the highest speed, most likely due to the less accurate RSS
and vehicle location values. At 20km/h it was possible to have
initial location estimations (after 2 or 3 RSS samples) with an
accuracy below 40m, whereas for 30km/h it was only possible
to have an accuracy below 50m for two of the methods.
Nevertheless, these measurements require more RSS samples
to stabilize, as anticipated. The accuracy remains stable until
the first significant RSS variation occurs, i.e, when the vehicle
approaches the AP and goes around the roundabout. The
overall accuracy is presented in table I for two regions, RMSE1
and RMSE2. RMSE1 corresponds to the samples between 1
and 50 for 20km/h and between 1 and 38 for 30km/h; the
"breaking point" was the position at which the vehicle reaches
the farthest point from the AP in the roundabout. RMSE2
contains the remaining samples, but the localization uses all
the previous samples, including RMSE1 ones. Therefore, it
includes more samples with higher RSS values, that were more
successfully used by some of the algorithms to increase the
accuracy. It can be seen that Simple and Gauss-Newton have
the worst RMSE2 accuracy, while Tomic SOCP algorithm
tends to have the best accuracy, as expected. This is probably
due to considering more unknowns during the optimization,
and its increased computational complexity that was able
to compensate part of the vehicle location error, achieving
an accuracy of 4.18 m, far below the A-GPS accuracy at
20km/h. On the other hand, Levenberg-Marquardt algorithm
performance was the best within the closed form estimators,
with an accuracy of 6.58 m, also below A-GPS’ accuracy.
Its accuracy beat Tomic SOCP’s for RMSE2 in the 30km/h
scenario, where the RSS and vehicle location errors were
much higher. It is worth mentioning that the closed-form
estimators were run with predefined γ and PT values, which
introduce additional errors, since the γ tends to vary during the
course. Thus, they are less prepared for differentiated and/or
cooperative scenarios, where PT and γ values considered
might not be optimal.

Table I also presents the average calculation time used by
the algorithms in MATLAB with a RSS vector with 30 sam-
ples. In order to run the application in real-time, mitigate old



TABLE I
AVERAGE ERROR

Algorithm Runtime
(ms)

20 km/h 30 km/h
RMSE1 (m) RMSE2 (m) RMSE1 (m) RMSE2 (m)

Simple Intersection 8.66 47.76 77.16 65.35 77.64
Bancroft 12.31 40.61 14.95 44.83 17.72
Gauss-Newton 26.5 36.51 43.42 52.53 44.33
Beck 26.8 36.25 10.5 47.56 14.7
Cheung 15.2 36.26 10.48 47.46 14.68
Levenberg-Marquardt 249 39.44 6.58 60.51 12.47
Tomic SOCP 3,91×104 44.83 4.18 53.24 14.26

readings effects and process estimations without influencing
the application fluidity, we decided to limit the RSS measure-
ments stored in the application prototype to 30. It can be seen
that Levenberg-Marquardt is the second more computationally
intensive algorithm in the Matlab implementation, but it is
about 100 times lighter than Tomic SOCP. Additionally, using
the org.apache.commons.math3 library and considering the
maximum vector size of 30 samples, we were able to measure
an average run time of 13.47 ms with the prototype application
running in the smartphone. Therefore, due to its excellent
trade-off between accuracy and execution time, this algorithm
was chosen for android application implementation for non-
cooperative localization. However, we plan to use a convex-
based estimator, like the Tomic SOCP, for the cooperative
localization implementation, due to its higher accuracy.
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Fig. 7. Location accuracy at 20 km/h.
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Fig. 8. Location accuracy at 30 km/h.

V. CONCLUSION

This paper compared the performance of several localiza-
tion algorithms, using real RSS data measurements acquired
through a smartphone inside a moving vehicle, considering a
stand-alone operation. It also presented the prototype Android

application that implements the best suited algorithm, which
for the considered non-cooperative scenario was the LM
algorithm. Our experimental results showed that it is possible
for a vehicle to estimate the position of an AP node using only
3 samples with an error of 40 m. But the error can be reduced
by having more samples. Therefore, these can be obtained by
regulating the sample period according to the vehicles speed.
Although, further studies are needed to understand what is
the maximum vehicle speed that is effectively supported by
the application, due to the higher RSS and vehicle location
errors for higher speeds. This paper only studied the GNSS
based smartphone’ location measurements. Odometry based
measurements will be covered in a future paper. Future work
will include the study of the performance of the localization
algorithms in a cooperative scenario, where the additional
estimation capabilities of the Tomic SOCP and new algorithms
using relaxation methods are expected to contribute more in a
cooperative context.
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