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Abstract 
 

The rainfall regime in southern Portugal is clearly 
Mediterranean. In such regions, the research on 
space-time patterns of extreme precipitation is an 
important contribution to assess desertification 
dynamics, among other impact studies applications. 
For the space-time interpolation and uncertainty 
assessment of an extreme precipitation index, in the 
southern region of continental Portugal, we explore 
the application of direct sequential cosimulation 
(coDSS), which allows incorporating covariates such 
as altitude. The technique is illustrated using 
precipitation observations measured at 105 monitoring 
stations with data within the period 1970-2000. The 
results provide evidences of an increase of the spatial 
continuity of the extreme precipitation index in the last 
decades. The relationship between elevation and the 
index is decreasing along time. The promising results 
from this study indicate the coDSS technique as a 
valuable tool to deepen the knowledge on the space-
time patterns of extreme precipitation indices. 
 
1. Introduction 
 

The accurate analysis of precipitation patterns is an 
important issue, because it is essential for climate 
monitoring, modeling of erosion, runoff and pollutant 
transport, among other applications for ecosystem and 
hydrological impact modeling. 

In arid and semi-arid regions such as the 
Mediterranean Basin, the research on space-time 
patterns of extreme precipitation indices is an 
important contribution to assess desertification 
dynamics and to identify areas potentially at risk from 
land degradation. In such environments, prolonged 
periods of drought in some areas may reduce the 
availability of water resources; while other areas can 
be affected by an increase of heavy precipitation 

events, with an increase of erosion and flood risk 
([14]). 

The spatial interpolation of precipitation has been 
the focus of much research (e.g. [9], [6], [5]). 
However, the number of studies analyzing space-time 
patterns of extreme precipitation indices is very 
limited. The large majority of studies focus on their 
temporal linear trends and, although desirable, a spatial 
analysis sometimes is not feasible due to the sparse 
number of monitoring stations over large study regions 
([13]). An exception is the work of [11] in which the 
station values of the daily precipitation were 
interpolated through external drift kriging, using a 
digital elevation model as secondary information and, 
afterwards, several extreme precipitation indices were 
calculated. 

Geostatistical techniques, known as kriging, provide 
statistically unbiased estimates of surface attributes 
from a set of observations measured at point locations, 
using the estimated spatial and temporal covariance 
structure of the observed data. A major advantage of 
geostatistical prediction, such as kriging with an 
external drift or cokriging techniques, is that sparsely 
sampled observations of the primary attribute can be 
complemented by secondary attributes that are more 
densely sampled ([8], [9]). 

Kriging is locally accurate in the minimum error 
variance sense, but it provides inaccurate 
representations of spatial variability ([1]), also known 
as the “smoothing” effect of kriging ([7], pp. 370). To 
overcome this limitation, stochastic simulation has 
become a widely accepted technique to reproduce the 
spatial distribution and uncertainty of highly variable 
phenomena ([7], [1], [16]). 

As other southern European regions, the rainfall 
regime in southern Portugal is highly variable in both 
the spatial and temporal dimensions, being clearly 
Mediterranean. The southern part of the country is 
highly vulnerable to climate impacts, namely to 

Seventh IEEE International Conference on Data Mining - Workshops

0-7695-3019-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDMW.2007.10

589



droughts and erosive rainfall, and it is consequently 
vulnerable to desertification processes. Therefore, the 
research on space-time patterns of extreme 
precipitation indices over this region is especially 
relevant, and is the main objective of this work. 

For the interpolation and uncertainty assessment of 
an extreme precipitation index, in the southern region 
of continental Portugal, we explore the application of 
direct sequential cosimulation ([16]) which allows 
incorporating covariates such as altitude. 

The stochastic simulations were developed for an 
extreme precipitation index recommended by the joint 
working group on climate change detection of the 
World Meteorological Organization – Commission for 
Climatology (WMO–CCL) and the Research 
Programme on Climate Variability and Predictability 
([15]). 

The technique is illustrated using high quality daily 
precipitation observations measured at 105 monitoring 
stations located in southern Portugal, with data within 
the period 1970-2000. The direct cosimulation 
algorithm was implemented in a 800x800m grid using 
a digital elevation model (DEM) as exhaustive 
secondary information. The space-time patterns of the 
extreme precipitation index are analyzed, and 
uncertainty is assessed. 
 
2. Study region and precipitation data 
 

The study region is located in the South of 
continental Portugal, and 105 monitoring stations with 
daily precipitation data were selected (Figure 1). Most 
of the precipitation series were extracted from the 
National System of Water Resources Information 
(SNIRH – Sistema Nacional de Informação de 
Recursos Hídricos) database (http://snirh.inag.pt), and 
three of them were compiled from the European 
Climate Assessment dataset (http://eca.knmi.nl). Each 
station series data was previously quality controlled 
and studied for homogeneity by [2] and [3]. 

Numerous extreme precipitation indices are 
described and analyzed in the literature. Indices based 
on percentile thresholds are more appropriate for 
regions that contain a broad range of climates, whereas 
indices based on the count of days crossing fixed 
thresholds are beneficial for impact studies as they can 
be related with extreme events that affect human 
society and the natural environment ([13]). 

Taking into consideration the purposes of this study, 
we selected an index based on the count of days with 
precipitation above the 20mm threshold ([15]). The 
R20 index measures the frequency of heavy 
precipitation events, and is defined as the number of 

days per year with precipitation amount above or equal 
to 20mm. 

 

 
Figure 1. Study region and stations’ locations 

 
As other extreme precipitation indices, the R20 

index is sensitive to the number of missing days, thus 
the selected stations satisfy the following criterion. The 
daily records are as complete as possible, with less 
than 16% of data missing in each year. Hence, for each 
station, the R20 index for a specific year was set to 
missing if there were more than 16% of the days 
missing for that year ([10]). 

 
3. Methodological framework and 
implementation issues 
 
3.1. Direct sequential cosimulation 
 

Sequential simulation is a widely used tool for 
obtaining a set of equiprobable simulated realizations 
of variables from natural phenomena, honoring their 
spatial distribution and uncertainty. While sequential 
indicator simulation (SIS) and sequential Gaussian 
simulation (SGS) require the transformation of original 
variables, direct sequential simulation (DSS) has been 
proposed ([12]) for simulating directly in the original 
data space and does not rely on multi-Gaussian 
assumptions. [12] showed that for the sequential 
simulation algorithm to reproduce a specific 
covariance model it suffices that simulated values are 
drawn from local distributions centered at the simple 
kriging estimates with a variance corresponding to the 
simple kriging estimation variance. This result 
guarantees that the spatial covariance of the original 
variable is reproduced but not the histogram. To 
overcome this limitation, [16] proposed a DSS 
algorithm that uses the local simple kriging estimates 
of the mean and variance, not to define the local 
cumulative distribution function (cdf) but to sample 
from the global cdf. Moreover, this approach allows 
for the joint simulation of more than one variable 
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without any data transformation, thus named direct 
sequential cosimulation (coDSS). 

Instead of simulating all variables simultaneously, 
this approach simulates each variable in turn 
conditioned to the previous simulated variable. In this 
study, the primary variable is defined as the extreme 
precipitation index (R20) measured at the monitoring 
station’s locations, and the secondary variable is the 
elevation data provided by the DEM in a 800x800m 
grid defined over the study region. 

The coDSS algorithm is thoroughly described by 
[16] and uses collocated simple cokriging to 
incorporate the exhaustive secondary information ([7], 
Ch. 6). In this study, the collocated cokriging was 
applied with the Markov-type approximation ([7], pp. 
237-239), thus only the primary variable variogram 
and the linear correlation coefficient between primary 
and secondary variable was required. 

 
 
3.2. Implementation 

 
It is recognized that topography and other 

geographical factors are responsible for considerable 
spatial heterogeneity of the precipitation distribution at 
the sub-regional scale. [9] incorporated a DEM into the 
spatial interpolation of annual and monthly rainfall 
observations, averaged over the period of January 1970 
to March 1995, and measured in the most southern 
region of continental Portugal (Algarve). Precipitation 
generally increases with elevation because of the 
orographic effect of mountainous terrain. The relief of 
Algarve, which is within our study region, is 
dominated by two mountainous regions. Therefore, has 
expected in that work, the linear correlation coefficient 
between annual rainfall and elevation was equal to 
0.79. Moreover, [9] found that the correlation 
coefficient was wicker in dry months (equal to 0.33 in 
August). 

For the implementation of the coDSS procedure, a 
preliminary analysis revealed that the linear correlation 
coefficient between the extreme precipitation index 
and elevation ranges from 0.24 to 0.62 within the 
period 1970-2000, over the study region (Figure 2). 
The terrain north of the Algarve region does not have 
high elevations, which might explain those weak to 
moderate correlations. 

For each year, the collocated cokriging incorporated 
a different correlation value between the primary and 
secondary variable. Moreover, for each decade, the 
stochastic simulations used a different spherical model 
fitted to the experimental semivariogram of the 
primary variable (for further details see the Space-time 
patterns section). For each decade, the histogram of 

simulated values over the study area was allowed to 
range from zero (minimum observed value) to the 
maximum observed value of R20 (equal to 29, 33 and 
37 days for the 70's, 80's and 90's decades, 
respectively) plus 10% of each maximum. 
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Figure 2. Linear correlation coefficient 

between R20 and elevation, by year 
 
To reproduce the spatial distribution and uncertainty 

of the extreme precipitation index, 100 equiprobable 
simulated realizations were generated through the 
coDSS algorithm, for each year, using the mentioned 
specifications. The space-time inference was then 
performed by means of computing the mean and the 
median of the distribution of the 100 simulated values 
at each simulated grid node, by year. Finally, 
uncertainty was assessed by means of computing the 
standard-deviation, the coefficient of variation and the 
inter-quartile range of the distribution of the 100 
simulated values at each simulated grid node, by year. 
 
4. Results and discussion 
 
4.1. Space-time patterns 
 

Experimental space-time semi-variograms were 
calculated for three decades (1970-79, 1980-89, and 
1990-99), and spherical models fitted. The spatial 
dimension was modeled using an isotropic variogram. 
The parameters of each variogram model fitted, and the 
decadal average of the linear correlation coefficient 
between R20 and elevation, are summarized in Table 1.  

 
Table 1. Average correlation between R20 and 
elevation, and parameters of the space-time 
variograms (a1: range; c1: sill), by decade 

Decade Corr. a1 (m) a1 (years) c1 
1970-79 0.54 46000 4.5 25.09 
1980-89 0.45 160000 3 32.71 
1990-99 0.38 150000 3.3 26.02 
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There are no apparent tendencies in what concerns 
the temporal component of the semi-variograms. 
However, the relationship between elevation and R20 
has decreased along the study period (see also Figure 
2), whereas there are evidences of an increase of the 
spatial continuity of R20 in the last decades. This 
evidence is consistent with the finds of [4] for other 
extreme precipitation indices computed for the same 
region within 1940-99. 
 
4.2. Space-time inference 
 

Using the coDSS technique, a set of 100 
equiprobable simulated realizations of the extreme 
precipitation index (R20) was computed at each 
simulated grid node (800x800 m), by year. The space-
time inference was performed by means of computing 
the mean and the median of those distributions. For 
illustration purposes, the results of 1974 and 1999 are 
presented since they correspond to the years with the 
maximum (0.62) and minimum (0.24) correlation 
coefficient between R20 and elevation, respectively. 

 

 
Figure 3. Mean of the distribution of the 100 

simulated values, 1974 
 

 
Figure 4. Median of the distribution of the 100 

simulated values, 1974 
 

The maps of the median (Figure 4 and Figure 6) are 
less smoothed than the maps of the mean (Figure 3 and 
Figure 5). Within the study period, the higher values of 
the R20 index are mostly located in the two 
mountainous regions of Algarve, though not very 
evident in the maps of 1974 (Figure 3 and Figure 4). 

The spatial continuity of R20 seems to be lower in 
the northern part of the maps because of the lack of 
monitoring station's data in that area. However, it is 
important to call attention to the fact that most of that 
area is out of the study region (Figure 1). 

 

 
Figure 5. Mean of the distribution of the 100 

simulated values, 1999 
 

 
Figure 6. Median of the distribution of the 100 

simulated values, 1999 
 
The contribution of elevation to the prediction of 

R20 is difficult to assess, especially by just observing 
the maps of 1974 and 1999. Using other extreme 
precipitation indices, [4] concluded that 1974 was the 
driest year of the 1970's decade, which might explain 
that difficulty. Moreover, when the entire study period 
is analyzed, it is much more evident that elevation 
contributes more to the prediction of R20 when the 
correlation coefficient is higher, as expected. 
 
4.3. Uncertainty assessment 
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Uncertainty was assessed by means of computing 
the standard-deviation (Figure 7 and Figure 10), the 
coefficient of variation (Figure 8 and Figure 11) and 
the inter-quartile range (Figure 9 and Figure 12) of the 
distribution of the 100 simulated values at each 
simulated grid node, by year. 

 

 
Figure 7. Standard-deviation of the 

distribution of the 100 simulated values, 1974 
 

 
Figure 8. Coefficient of variation of the 

distribution of the 100 simulated values, 1974 
 

 
Figure 9. Inter-quartile range of the 

distribution of the 100 simulated values, 1974 
 
As expected, the region where the distribution of 

R20 has greater dispersion, thus more uncertainty, is in 

the northern part of the maps, corresponding to a 
region less densely sampled. This is especially evident 
in the maps of the standard-deviation and inter-quartile 
range. 

 

 
Figure 10. Standard-deviation of the 

distribution of the 100 simulated values, 1999 
 

 
Figure 11. Coefficient of variation of the 

distribution of the 100 simulated values, 1999 
 

 
Figure 12. Inter-quartile range of the 

distribution of the 100 simulated values, 1999 
 

The coefficient of variation provides a relative 
measure of the dispersion of variable's values 
regardless of their units. Hence, the maps of the 
coefficient of variation are particularly useful because 
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they allow to: compare the uncertainty of R20 in 
different years; compare the uncertainty of R20 with 
other indices, whenever the same inference 
methodology is used; and compare the uncertainty of 
R20 using different inference methodologies. 
 
5. Conclusion 
 

The results provide evidences of an increase of the 
spatial continuity of the extreme precipitation index in 
the last decades that is consistent with the finds of [4]. 
The relationship between elevation and the index 
decreased along time. Future studies should verify if 
this decrease is anyhow related with the increase of the 
spatial continuity of the index. The influence of dry 
and wet periods in the relationship between elevation 
and the index is not clear and should be also further 
investigated. The direct sequential cosimulation proved 
to be a valuable technique to deepen the knowledge on 
the space-time patterns of extreme precipitation 
indices, because it allows incorporating secondary 
information into prediction and uncertainty assessment. 
The results of this application open perspectives for 
new approaches of the analysis of extreme climate 
events, particularly in the context of impact studies. 
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