Nonmonotonic Reasoning with
Well Founded Semantics

Luis Moniz Pereira

Al Centre, Uninova and DCS, U. Nova de Lisboa
2825 Monte da Caparica, Portugal
Imp@fct.unl.pt

Joaquim Nunes Aparicio

AT Centre, Uninova and DCS, U. Nova de Lisboa
2825 Monte da Caparica, Portugal
jna@fct.unl.pt

José Jilio Alferes

AT Centre, Uninova and DCS, U. Nova de Lisboa
2825 Monte da Caparica, Portugal

jja@fct.unl.pt

Abstract

Well Founded Semantics is adequate to capture nonmonotonic reasoning
if we interpret the Well Founded model of a program P as a (possibly incom-
plete) view of the world. Thus the Well Founded model may be accepted to
be a definite view of the world and the extended stable models as alternative
enlarged consistent belief models an agent may have about the world.

Our purpose is to exhibit a modular systematic method of representing
nonmonotonic problems with the Well Founded semantics of logic programs.
In this paper we use this method to represent and solve some classical non-
monotonic problems. This leads us to consider our method quite generic.

1 Introduction

Well Founded Semantics (W F'S) [15] is adequate to capture nonmonotonic
reasoning if we interpret the Well Founded model (W F M) of a program P as
a (possibly incomplete) view of the world. Thus the W FM may be accepted
to be a definite view of the world and the eXtended Stable Models (X.SMs)
as alternative enlarged consistent belief models an agent may have of the
world, all of each containing the WF M. The agent’s world view may be
completed (or refined) by hypothesizing (e.g. abducing, using default rules,
the closed world assumption, etc.) about unknown information. Przymusin-
ski [11, 12, 13] shows that Well Founded semantics is equivalent to suitable
forms of four major nonmonotonic reasoning formalisms (Circumscription,
Closed World Assumption, Autoepistemic Logic and Default Logic).

In the case the WFM is a 2-valued model then no degree of freedom is

left to the agent to conjecture or hypothesize about the world. If the WFM
is 3-valued, hypothetical reasoning in the agent’s mind is delimited by the
unknown facts of the WFM.

Our purpose is to exhibit a modular systematic method of representing
nonmonotonic problems with the Well Founded semantics of logic programs.
In this paper we present this method and use it to represent and solve some
classical nonmonotonic problems. The programs and some others selected
from [5] were tested with a WF Semantic interpreter produced in [7], and
the desired conclusions were obtained. This encourages us to consider our
method quite generic.

We begin by proposing a representation of information in hierarchical
taxonomy problems. In the section ”Possible Worlds” we represent hypothet-
ical reasoning problems, interpret the results and propose a representation
for unknown knowledge. Then, grounded on the former examples, we present
a systematization of our problem representation approach. Afterwards, we
use our methodology to represent additional classical nonmonotonic prob-
lems (planning, event calculus), arguing that it is sufficiently generic. Finally
we stir some discussion and compare the method to related work.

2 Hierarchy Representation

In this section we illustrate how to represent a hierarchy in extended logic
programs with the Well Founded semantics. In this representation we wish
to express general rules, and their exceptions, as well as exceptions to ex-
ceptions. For instance, we want to represent general rules such as ”birds
normally fly” and ”penguins normally don’t fly” where each can act as an
exception to the other (in the absence of additional information). Further-
more, as in this instance, we wish to be able to express preference for one
rule over another in case they conflict and are both applicable. Thus we
can prefer the most specific information (e.g. for a penguin, which is a bird
we want to conclude that it doesn’t fly, unless there is even more specific
information regarding possible exceptions to the ”penguins normally don’t
fly” rule).

Our presentation is made step by step using the well known ”Birds Fly”
hierarchical taxonomy.

2.1 One level hierarchy

Let us begin with the simplest version of this problem: Normally birds fly.

We need a rule flies(X) < bird(X) that applies whenever possible, but
which can be defeated by exceptions. These exceptions can be had by explicit
exception to the conclusion predicate (flies) or by a weaker exception to this
rule only. In other words, we want to be able to say that a given bird doesn’t
fly and also that for a given bird this rule doesn’t apply.

In order to allow exceptions to the conclusions, we state that a bird flies
only if there is no evidence that it doesn’t. Specifically':

flies(X) « bird(X), ~—flies(X)2.
To allow exceptions to the rule, we "name” that rule?:
flies(X) < bird(X), ~—flies(X), bird_flies(X). (1)

To capture the notion that the rule applies whenever possible, i.e. that is a
default rule, we introduce:

bird_flies(X) <—~-bird_flies(X). (2)

which with (1) captures the notion that if there is no way to prove that an
object is an exception to the rule, then assume that the rule applies.

—bird_flies(X) accounts for exceptions to bird_flies(X). By renaming
—bird_flies(X) to McCarthy’s abnormal bird(X) [6], then from (1) and (2)
there follow the rules:

flies(X) « bird(X), ~abnormal bird(X)
abnormal _bird(X) <+ —flies(X).

We prefer having rule (2), it being a modular statement of an assumption
about a predicate. Note also that (2) can be seen as a closed world assump-
tion about —bird_flies(X). Abridging, we represent the initial ”Birds Fly”
taxonomy with the (extended) logic program:

s f(X) < b(X),~=f(X),bf(X)
bf(X) = ~=bf(X)

where f stands for flies, b for bird and bf for bird_flies.

Let us see what are the Extended Stable Models (XSM) of ; if we add
to it the facts, Facts; = {b(a),b(b),~f(b)}. II; U Facts; has a unique XS
Model coinciding with the Well Founded Model (W F M), which is

{f(a)a N_'f(a)a _'f(b)v Nf(b)v b(a)a b(b)a bf(a)a N_'bf(a')v bf(b)a N_'bf(b)}

The fact that this model is 2-valued? reflects that no choices are available
to obtain other X SMs. This seems quite an acceptable result. Regarding
b we know for sure that it is a bird and it doesn’t fly. We can say that the
rule might apply, because there are no exceptions defined for it. About a
we know that it is a bird, and as there is no exception for flies, when X is
bound to a, we can say for sure that it flies. Thus the birds fly rule is applied
maximally, as default rules are supposed to. This problem domain can next
be extended by saying that all penguins are birds, penguins don’t fly, and b
is a penguin.

2.2 [Exceptions to exceptions

In a hierarchy, instead of saying that ”penguins don’t fly”, we would like
to say that normally penguins don’t fly. This will allow us to express an
exception to this exception rule for birds fly, and hence the possibility that
an exceptional penguin may fly. Let the problem statement now be:

Normally birds fly. Penguins are birds. Normally penguins don’t fly.

According to what was said before this problem is represented as:

9 f(X) « b(X),~f(X),bf(X). Normally birds fly
bf(X) « ~=bf(X). This is a default
-f(X) « p(X),~f(X),pnf(X). Normally penguins don’t fly
pnf(X) + ~—pnf(X) This is a default
b(X) « p(X). Penguins are birds

where p stands for penguin and pnf stands for penguin_not_flies.
With this program, we consider two birds, one of them being a penguin,
Factsa = {b(a),p(b)}. The WF Model of 9 U Facts, is:

W F(oUFactsg) =
{f(a)a N_'f(a)abf(a')a N_'bf(a)apnf(a)a N_'pnf(a')v b(a)a Np(a),
bf (b), ~=bf (b), pnf (b), ~—pnf(b),b(b), p(b)}

About a everything is defined, and we have exactly the same case as
before. About b this model only tells us that it is a bird and a penguin,
leaving the predications flies and —flies undefined for it. This is due to
the fact that there are two exception rules that might apply, each of which
inhibits the conclusion of the other. So nothing can be said for sure about b
flying or not.

But the program has two more XS Models:

XSMy = WEM U {f(b), ~f(b)}
XSMy=WFMU{-f(b),~f(b)}

These models can be seen as different models (i.e. consistent beliefs) an
agent may have of the world. This is quite an intuitive result, since we can
believe that b flies (because it is a bird) or that it doesn’t (because it is a
penguin). The WF Model is the intersection of these two, and intuitively
gives us our definite belief about the world, the things with are able to believe
unconditionally. In WFM nothing can be said definitely about b flying or
not. This topic will be further discussed in the sequel.

In a hierarchy, however, since we always want to apply the most specific
information, there should be in this case an explicit preference between the
rules bird_flies and penguin_not_flies, so as to establish that the property
of flying is either true or false of any individual in the taxonomy.

By having rules named, this preference is quite easy to represent. What
we wish to say is that if we can apply the rule penguin_not_flies to a pen-
guin then we are in presence of an exception to the bird_flies rule. So the
preference rule is simply:

—bf(X) « p(X),pnf(X)°.
With this rule the only XS Model is the W F' Model:

WFE ={ f(a),~=f(a),bf(a),~bf(a),pnf(a),~=pnf(a),b(a), ~p(a),
_'f(b)a Nf(b)a _'bf(b)a Nbf(b),pnf(b), N_'pnf(b)a b(b),p(b)}

which expresses our intuitive notion about the hierarchy. b doesn’t fly and
it is an exception to the bird_flies rule.
Next we can represent exceptions to exceptions:

Factss: f(X) < fp(X). Flying penguins definitely fly
p(X) <+ fp(X). Flying penguins are penguins
fp(c). c is a flying penguin

where fp is short for flying_penguin. The W F Model of 5 U Factss is:

WFM = {f(C), N_'f(c)v _'bf(c)a Nbf(c),pnf(c), N_'pnf(c)v b(c),p(c), fp(C)}

Note ¢ is also an exception to the bird_flies rule since its a penguin.
Nevertheless it flies, but because of the more specific and absolute rule that
flying penguins fly.

3 Possible Worlds

In hierarchies, as seen, everything is defined, leaving no choices available.
This is not the case for general hypothetical reasoning problems. In this
section we represent hypothetical reasoning problems in the Well Founded
Models Semantics and interpret the results.

3.1 The ”Nixon diamond” problem

Normally quakers are pacifists. Normally republicans are hawks.
Pacifists are non hawks. Hawks are non pacifists.
Nixon is a quaker and a republican. Pacifists are non hawks.
There are other republicans. There are other quakers.

Using the representation method of last section this example is expressed as:

Normally quakers are pacifists
pacifist(X) <« quaker(X),quaker_pacifist(X),
~=pacifist(X).
quaker_pacifist(X) <+ ~—quaker_pacifist(X).

Normally republicans are hawks
republican(X), republican_hawk(X),
~=hawk(X).
~=republican_hawk(X).

T

hawk(X)

T

republican_hawk(X)

—hawk(X) <+ pacifist(X). Pacifists are non hawks
—pacifist(X) < hawk(X). Hawks are non pacifists
quaker(nizon). Nixon is quaker.
republican(nizon). Nixon is republican.
quaker(other_quaker). There are other quakers.
republican(other_republican). There are other republicans®

Here there is no preference defined between the rules nor between their
conclusions. So for nixon we want to be able to hypothesize him to be a
pacifist or a hawk. Let us have a closer look at the extended stable models
of this program, and interpret them carefully. The W FM is”:

{qua(n),rep(n), gp(n), rh(n),
qua(o-q), qp(0-q),rh(0-q), pac(o-q), —hawk(o-q), ~—pac(o-q), ~hawk(o-q),
rep(or), gp(o-r), rh(or), hawk(o-r), ~pac(o-r), ~—hawk(o-q), ~pac(o-q)}

For nixon, as expected, it is unknown whether he is a pacifist or a hawk.
Nevertheless we have quaker_pacifist(nixon) and republican_hawk(nixon), so
that both rules applied. This is not a strange result since rules are maximally
applicable, and nixon does not consist an exception to the rules through
to their conclusions. Of course, for other quakers and other republicans
everything is defined.

Since we have unknown literals not present in the WF Model we might
have other extended stable models. In this case the other XS Models are®:

XSM, = WFM U {pac(n), ~hawk(n)}
XSMy = WFM U {-pac(n), hawk(n)}

These remaining XS Models can be seen as possible extended world views
in which some consistent choices of belief have been made. X SM; represents
a world view where nixon is a pacifist and a non hawk, and X SMs represents
a world view where nixon is a hawk and a non pacifist.

3.2 Unknown application of rules

In the last example, exceptions are not present on the application of rules,
but only on their conclusions, and so the rules were maximally applied. But
in some cases we would like to choose between applying or not some rule,
by keeping the rule name unknown in the W F Model.

Above, a rule of the form name_of _rule(X) +—~—-name_of_rule(X) ex-
presses that the rule is true if possible. To have the possibility of applying
or not the rule, we add a clause stating that the rule name is not true if
possible, gaining this way freedom to apply or not the rule. The additional
clause is clearly:

—name_of rule(X) <~name_of rule(X).

With this formulation rule names, and consequently their conclusions, be-
come unknown in the W F Model, if nothing else is said about their name.
X S Models appear: ones with the rule name being true, and others with it
being false.

Furthermore, one might want to have the possibility of applying a rule or
not, but only under certain conditions, and applying it maximally otherwise.
As an example suppose:

Normally quakers are pacifists. (1) Nixon is a quaker.
We are not sure if (1) applies to nixon. (2) There other quakers.

Because of (2), we wish to choose between having or not rule (1) applied
to nixon, but to apply it maximally to other individuals. Given (2), rule (1)
becomes a rule with a possibly undecided applicability.

Accordingdly, our representation of this problem is:

Normally quakers are pacifists
pacifist(X) <« quaker(X),quaker_pacifist(X),
~=pacifist(X).
quaker_pacifist(X) <+ ~—quaker_pacifist(X).

Rule (1) might not apply to nixon
—quaker_pacifist(nizon) < ~quaker_pacifist(nizon).
quaker(nizon). Nixon is a quaker.
quaker(other_quaker). There are other quakers.

The W F Model of this program is:

WFM ={ quaker(nizon),quaker(other_quaker),
paci fist(other_quaker), ~—pacifist(other_quaker)}

and its consistent XS Models are”:

XSM, = WFM U{pacifist(nizon),quaker_pacifist(nizon)}
XSMy = WFM U {—quaker_pacifist(nizon)}

In the WF Model we are not able to conclude anything about nixon
being a pacifist because we are not able to apply the rule.

X SM, represents a world where nixon is a pacifist, by choosing to apply
the rule quaker_pacifist via its name being true; X.SM, is a world where we
choose not to apply the corresponding rule, via its name being false, so that
we can prove nothing about nixon being a pacifist'C.

The interpretation of the above results, in particular in what concerns
XSMs where literals not in the WEF Model become true, suggested to us a
relationship between the XS Models of a program with rules like (1) and the
concept of abduction within WF Semantics [9].

3.3 Unknown possible facts

Similarly to rules about which we are undecided regarding their applicability,
we might be unsure about some facts. Note that this is different from not
having any knowledge at all about such a fact. Consider this simple example:

John and Nixon are quakers. John is a pacifist.

represented by the program:
IT = {quaker(john), quaker(nizon), pacifist(john)}.
The W F M (which is the only XS Model) is:

{quaker(john), quaker(nizon), pacifist(john), ~pacifist(nizon)}

and expresses exactly what is intended, i.e. john and nixon are quakers, john
is a pacifist and we don’t have reason to believe nixon is a pacifist. Now
suppose we add: Nixon might be a pacifist (3). In our view, we wouldn’t
want in this case to be so strong as to affirm ~pacifist(nizon), thereby not
allowing for the possibility of nixon being a pacifist. What we are prepared
to say is that Nixon might be a pacifist if we don’t have reason to believe
he isn’t and, vice-versa, that Nixon might be a non pacifist if we don’t have
reason to believe he isn’t one. This is clearly expressed as:

pacifist(nizon) < ~—pacifist(nizon).
—pacifist(nizon) < ~pacifist(nizon).

Program together with these rules has
W FM = {quaker(john), quaker(nizxon), pacifist(john), ~—pacifist(john)},

and two more XS Models:

XSM, = WF U {pacifist(nizon), ~—paci fist(nizon)}
XSMy = WF U {=pacifist(nizon), ~paci fist(nizon)}

which is the result we were seeking. Facts like (3) are what we call unknown
possible facts.

4 Summary of our representation method

In this section we summarize and systematize the representation method
adopted in all the above examples. The type of rules for which we propose
a representation is, in our view, general enough to capture a wide domain of
nonmonotonic problems. Each type of rule is described in a subsection by
means of a schema in natural language and its corresponding representation
schema, .

e Definite Rules If A then B. The representation is: B + A.
e Definite Facts A is true. The representation is: A.

e Default (or maximally applicable) Rules Normally if A then B.
The representation is:

B + A,name_A_B,~—B.
name_A_B <+ ~—name_A_B.

where name_A_B is a predicate symbol that "names” this rule only. Its
arguments are those arguments in A or B. We will consider Default
Fuacts as a special case of Default Rules where A is absent. As an
example consider the rule ”Normally birds fly”. Its representation is:

fly(X) <« bird(X),bird_flies(X), ~=fly(X).
bird_flies(X) < ~=bird_flies(X).

e Possible Rules Rule ”If A then B” may or may not apply. Its repre-

sentation is:

B + A ,name_A_B,~—B.
name_A_B <+ ~—name_A_B.
-name_A_B <+ ~name_A_B.

where name_A_B is a predicate symbol that "names” the first rule
only. Its arguments are all those arguments in A or B. As an example
consider the rule ”Quakers might be pacifists”. Its representation is:

pacifist(X) « quaker(X), quaker_pacifist(X), ~—pacifist(X).

quaker_pacifist(X) <+ ~—quaker_pacifist(X).
—quaker _pacifist(X) < ~quaker_pacifist(X).

e Exceptions to Default Rule Under certain conditions COND there
are exceptions to the default rule named NAME.

-NAME <+ COND.

As an example, the representation of the exception ”Penguins are ex-
ceptions to the "normally birds fly” rule” is:

—bird_flies(X) < penguin(X).

e Possible Exceptions to Default Rule Under certain conditions
COND there might be exceptions to the default rule named NAME.

-NAMFE <+ COND,~NAME.

As an example, the representation of the exception ”Nixon is a possible
exception to the "normally quakers are pacifists” rule” is:

—quaker_paci fist(nizon) <~quaker_pacifist(nixon).

e Preference Rules Under conditions COND, prefer to apply the de-
fault rule NAME+ instead of the default rule named NAME-.

~-NAME—- + COND,NAME + .

As an example consider ”For penguins, if the rule that says that "nor-
mally penguins don’t fly” is applicable then inhibit the ” normally birds
fly” rule”. This is represented as:

—bird_flies(X) < penguin(X), penguins_no_flies(X).

e Unknown Possible Fact F might be true or not (in other words, the
possibility of F' should be considered).

F <+« ~~F.
—-F + ~F.

5 Application To Other Problems

We now apply the programing method described above to some other prob-
lems. We will not argue that this method is the best for representing these
problems. Instead, we want to show that it gives the right results, so being
a general method to represent nonmonotonic problems.

5.1 The Yale Shooting Problem

This problem, supplied in [3], will be represented in a form near to the one
suggested in [4]. Predicate holds(P,S) expresses that property P holds in
situation S; predicate normal (P, E, S) expresses that in situation S, event
does not normally affect the truth value of property P; the term result(E, S)
names the situation resulting from the occurrence of event E in situation S.

The problem and its formulation are as follows:

Initially (in situation s0) a person is alive: holds(alive, s0).

After loading a gun the gun is loaded: holds(loaded, result(load, S)).

If the gun is loaded, then after shooting it the person will not be alive.
Note that the latter is not a normally-rule:

—holds(alive, result(shoot, S)) < holds(loaded, S).

After an event things normally remain as they were, i.e. properties which
hold before will normally still hold after the event; likewise, properties which
do not hold before the event will normally not hold afterwards as well. Here
predicate normal (P, E, S) will be used to name both these rules:

holds(P,result(E, S)) «

holds(P, S),normal(P, E, S), ~—holds(P,result(E,S)) (pp)"
—holds(P,result(E,S)) +

—holds(P, S),normal(—~P, E, S), ~holds(P,result(E, S)) (np)'?
normal (P, E, S) +

~=normal (P, E, S)

In principle we should use different names for each of the rules. In fact
normal (=P, E, S) is just a syntactic gimmick to avoid a new name predicate
for (np), and thus avoid an additional rule for it.

Consider the question ”What holds and what doesn’t hold after the load-
ing of a gun, a period of waiting and a shooting 7” represented as two queries:

<+ holds(P, result(shoot, result(wait, result(load, s0))))
— —holds(P, result(shoot, result(wait, result(load, s0))))

With this formulation the W F Model is the only XS Model. The subset of

its elements that match with at least one of the queries is'3:

{holds(loaded, s3), ~—holds(loaded, s3), ~holds(alive, s3), ~holds(alive, s3)}

which means that in situation s3 the gun is loaded and the person is not
alive. This result coincides with the one obtained in [4] for holds.

To get the result given by circumscription [6] and default logic [14], we
must reformulate the problem by adding the sentence: the wait event might
not preserve the persistence of the loaded property; in other words, after a
wait event the gun might be unloaded. This clearly requires an unknown
application of (pp). So the rule to add is:

—normal(loaded, wait, S) <—~normal(loaded, wait, S).

Now the subset of the WF Model is {~—holds(loaded, s3)}. This means that
in the W F M we have no proof that the gun is not loaded. This is acceptable
because there is no evidence for it to be unloaded. All other properties are
unknown in the WF model.But we have two XS Models, corresponding to
the two default extensions. Their subsets of elements that match a query
are:

{holds(alive, s3), ~=holds(alive, s3), ~—holds(loaded, s3)}
{—holds(alive, s3), ~holds(alive, s3), holds(loaded, s3), ~—holds(loaded, s3)}

We tested this example with other modifications, for example (1) Considering
that having a gun loaded after a wait action is an exception to the (pp) rule.
(2) In the initial situation the gun might be loaded.

In applications to some other problems, in an extended version of this
paper, our representation method also gives quite intuitive results.

6 Discussion and open work

Here we raise points of discussion, including comparisons with other work.

6.1 Using contrapositives of default rules

One might wish to have contrapositive variants of a default rule. For exam-
ple, one might want it holds to, given the "normally birds fly” rule, that an
individual which doesn’t fly, is normally not a bird.

Given the ”birds fly” rule:

flies(X) « bird(X), bird_flies(X), ~—flies(X) (cl)
its sole contrapositive is:
=bird(X) «+ —flies(X), bird_flies(X), ~bird(X) (c2)

This has the disadvantage of using the same rule name in both, and be-
ing somewhat repetitive. Syntactically, one could write rules allowing con-
trapositives in a distinct form, for example: (flies(X) < bird(X)) <+
bird_flies(X), which, of course would stand for (cl) and (c2), and where
< stands for material implication.

Note that the last literal of each of the above rules, is needed only to
avoid contradictory well founded models.

For example, consider the program P = {f < b,bf bf <—~=bf b —f}
not having such literals. This program has a contradictory WF Model. How-
ever, adding ~—f to the body of the first clause, leads to a noncontradictory
WF Model containing —f. The effect of those literals in the WF Model can
be seen as a preference for the use of definite rules over default ones. The
next point of discussion suggests a modification to the semantics in order to
have that preference without the need for those literals.

6.2 Avoiding contradiction in the WF Model

A literal assumed false!* in the WF Model (Closed World Assumption
(CWA)), can lead to a contradictory WFM when classical negation is
present. If an assumption leads to a contradiction it seems natural to be
able to go back on that assumption.

A suggestion is to build a new class of models, defined as being the
noncontradictory models, resulting from allowing some literals assumed false
by CWA in the WF Model to have the unknown truth value, just in case
the WF Model is of contradictory. All these models would be smaller, by
Fitting’s ordering [1], than the WFM. For this reason we call them Sub
Well Founded Models (SW F Models)[8]. The maximal SWF Models can
also provide Sub X SM models.

Note that for programs having a contradiction derived from definite rules
or facts (Ex: {p. -p.}) there are no SWF Models. As these models remove

contradiction by changing the truth value only on NAF negated literals, and
those literals never appear in definite rules, they reflect preference on the
use of these rules over the use of default ones, as proposed above.

6.3 Comparison with ”Logic Programs With Exceptions”[4]

We deal with exceptions to exceptions in a uniform and modular way. Be-
cause of its inherent asymmetry, the "rules with exceptions” approach re-
quires changing previous rules in the program each time an exception to an
exception is made, because head literals need to change. For instance, a
three level hierarchy of birds, penguins and flying penguins requires rules
like

fly(X) « bird(X)

nofly(X) « penguin(X)
fly(X) «+ flying_penguin(X)

and the exceptions:

~fly(X) < nofly(X)
—nofly(X) < flying_penguin(X)

We allow both positive and negative conclusions in rules, inclusively for
the same predicate.

The extension of well founded semantics to classical negation provides
a (non contradictory) well founded model of definite conclusions in cases
where e-answer set semantics provides only alternative models. For instance,
in the pacifist/hawk example we obtain a well founded model containing
the facts {quaker, republican}, besides the two alternative e-answer sets.
By introducing "name predicates” in rules, we have shown how to express
exceptions to rules, rather than exceptions to whole predicates, and how to
express preference amongst rules within the language.

6.4 Comparison with ” Answer-set Semantics”[2]

The three-valued semantics subsumes the two-valued semantics of answer-set
semantics. The techniques for nonmonotonic reasoning we’ve presented are
in part adoptable by the answer-set semantics of extended logic programs.

6.5 Comparison with ”Poole’s naming device”[10]

We deal with preference between rules within the language. Poole does this
using his constraints. These constraints are not in the language of logic
programs, and are in fact a meta-level model-theoretic construct outside it.

The use of formulas by Poole, instead of rules, includes all contrapositives
even if not wanted. Again the pruning effect can only be achieved by the use
of constraints. In our method we have only the contrapositives effectively
written. If all are wanted all can be included.

Acknowledgements

We thank ESPRIT Basic Research Project COMPULOG (no. 3012), Insti-
tuto Nacional de Investigacao Cientifica and Gabinete de Filosofia do Con-
hecimento for their support. Thanks to Fariba Sadri and Tony Kakas for
fruitful discussions.

Notes

'This rule is similar to Reiter’s normal defaults [14], where bird(X) is the
precondition

2The symbol ~stands for the negation as failure operator. — stands for
classical negation as in [2]

3This is akeen to Poole’s naming device [10], but used for rules instead
of formulas

4Note that all predicates and their classical negations are defined

Poole [10] does this using his constraints, a meta-level model-theoretic
construct outside the language of logic programs

6other_quaker and other_republican can be envisaged as Skolem constants

"Where qua stands for quaker, rep for republican, pac for pacifist, qp
for quaker_pacifist, rh for republican_hawk, n for nixon, o_q for other_quaker
and o_r for other_republican

8 As these two models are 2-valued we don’t show the additional ~literals,
which are implicit

9Again, as the two models are 2-valued we don’t present the additional ~
literals

ONote that this model contains ~paci fist(nizon) and ~—paci fist(nizon)

Hpp stands for positive persistence

2np stands for negative persistence

13Where s3 denotes the term result(shoot,result(wait,result(load,s0))).

1A literal is assumed false in the W FM if it appears under ~there.

References

[1] M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of
Logic Programming, 2(4):295-312, 1985.

[2] M. Gelfond and V. Lifschitz. Logic programs with classical negation.
In ICLPY0 -Israel, pages 579-597, September 1990.

[3] S. Hanks and D. McDermott. Default reasoning, nonmonotonic logics
and the frame problem. In AAAI-86, pages 328-333, August 1986.

[4] R. Kowalski and F. Sadri. Logic programs with exceptions. In JCLP90
-Jerusalem. Israel, 1990.

[5]

[14]

[15]

V. Lifschitz. Benchmarks problems for formal nonmonotonic reason-
ing. In M. Reinfrank, J. d. Kleer, M. Ginsberg, and E. Sandewall, edi-
tors, Non Monotonic Reasoning: 2nd International Workshop -Grassau,
FRG, pages 202-219. Springer Verlag, 1988.

J. McCarthy. Applications of Circumscription to Formalizing Common-
Sense Knowledge. Readings In Nonmonotonic Reasoning. Morgan Kauf-
man Publishers, Inc, 1987. Also in Al journal v28 (1986).

L. M. Pereira, J. N. Aparicio and J. J. Alferes . A derivation proce-
dure for extended stable models. Technical report, CRIA/UNINOVA,
December 1990.

L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Contradiction within
Well Founded Semantics. Technical report, CRIA/UNINOVA, 1991.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Hypothetical reasoning
with well founded semantics. Technical report, CRIA/UNINOVA, 1990.

D. L. Poole. A logical framework for default reasoning. Artificial Intel-
ligence, 36(1):27-47, 1988.

T. C. Przymusinski. On the relantionship between logic programming
and non-monotonic reasoning. In AAAI88 -Saint Paul, Minnesota,
pages 444-448. Morgan Kaufmann, 1988.

T. C. Przymusinski. Non-monotonic formalisms and logic programming.
In ICLP-89 -Lisbon, Portugal, pages 655—674. mit press, 1989.

T. C. Przymusinski. Three-valued formalizations of non-monotonic rea-
soning and logic programming. In H. Levesque R. Brachman and R. Re-
iter, editors, 1st Conference on Principles of Knowledge Representation
and Reasoning -Toronto, Canada, pages 341-348. Morgan Kaufmann
Publishers, San Mateo, California, 1989.

R. Reiter. A Logic for default Reasoning. Readings In Nonmonotonic
Reasoning. Morgan Kaufman Publishers, Inc, 1987. Also in AI13(1980).

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded se-
mantics for general logic programs. Journal of ACM, pages 221-230,
1990.

